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Abstract 

This paper considers the problem of estimating a variable mean for a population of elements where data are only 
available as aggregate sums for groups of multiple elements. The proposed model addresses an additional 
complication created when the group measure includes the contribution of diverse elements that were only 
partially in operation or present as part of the group during the measurement period. The model also accounts for 
statistical dependency between the contributions of individuals belonging to the same group. The degree of 
statistical dependency is reflected in a correlation coefficient parameter, which, while not observable, can be 
adjusted to reduce heteroscedasticity in the group data. A simple example is provided to illustrate the model. 
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1.  Introduction 
 
One of the authors was asked to design a study to estimate the utilization rate per year of an item 
by individual practitioners in a healthcare profession, where measurements of utilization are 
generally available only on the basis of total combined use by all partners in a practice because 
orders of supplies and inventories are maintained on combined basis. While units of the variable 
being measured are ultimately assignable to one individual member of the practice, the 
decomposition from aggregate group-level measurement to individual measurements is not 
observable. 

Similar circumstances of sample measurements being available only for aggregates of 
individual elements occur in other settings. Examples are utilization of office supplies per worker 
where common supply closets are used by all employees in an administrative unit, consumption 
of food by individuals in a living unit with a shared kitchen, and water consumption per housing 
unit in neighborhood where single units do not have water meters. 
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A common tool for addressing these situations is a ratio estimator. Cochran [1] provides a 
good presentation of ratio estimators. The sampling in this framework measures two variables: 
the variable of primary interest Y and an auxiliary variable X that counts or measures the size of 
the aggregated element. Ratio estimators focus on the ratio Y/X, which is a proxy for the rate of 
variable Y per unit of variable X. The theory provides equations for point and interval estimates of 
the ratio. In cases where the total number of elements is assumed to be known, the theory also 
provides point and interval estimates for the total of Y across the population. 

The assumption for the classical case of ratio estimators is that Y is a linear multiple of X, the 
variance in Y is a linear multiple of X, and the residual in Y from the linear relationship between Y 
and X is normally distributed. For the problem studied here, the variable X would be the number 
of units included in the aggregate group measurement of variable Y. If the variance in Y increases 
linearly with the number of individual elements in the group being measured, the variance of Y 
would be equal to the variance for a group with a single element, multiplied by the number of 
units in the group. 

Since the variance of the sum of a set of identical, statistically independent random variables 
is the variance of one of the variables multiplied by the number of random variables, the 
assumption above implies that the contribution of each individual element in a group aggregate is 
independent of other elements in their group. This assumption may be too strong. In the case of 
the usage of a medical supply by individual healthcare practitioners, if the usage by one 
professional in the group is higher than the mean per capita rate in the population, the per capita 
rates of others in the same group may be more likely to be high relative to the population. The 
variance within a group may be less than expected if group members really did perform 
independently of their group membership. This might occur because the individuals in a group 
have a particular type of practice or may influence one another as to the manner in which they 
execute their practice. Although some of this dependency can be removed by including covariates 
in the analysis, the drivers of intragroup dependency may not be readily obvious. 

An alternative approach that does not presume that variance among elements within a group is 
equal to the variance among elements across the population is cluster sampling. Bhatti [2] 
provides a comprehensive treatment for analyzing the presence of reduced variation with group or 
cluster elements, called cluster effects. Typically in cluster sampling, clusters are sampled 
randomly from the population of clusters and then a random sample of elements within each 
selected cluster is selected and measured. A main difference between the problem studied in this 
paper and typical cluster sampling applications is that the second level of cluster sampling 
provides measurements for individual elements within the sample, while in this paper it is 
assumed there is a single measurement from each group: the sum of values across all elements in 
the group or cluster. 

Another issue that needs to be addressed in our methodology is the impact of the composition 
of the group on intragroup variation. A healthcare practice consisting of a single full-time 
professional may not have the same variance as a healthcare practice of two half-time 
professionals. Although both practices have a similar size in terms of containing one full-time 
equivalent professional, the latter case of two half-time professionals may have a smaller variance 
than the single full-time professional. 

This paper presents a model for estimating the ratio of a variable per unit that addresses the 
possibility that within-group variation of individuals in a group is less than the variation across all 
individuals in the population and considers the compositions of the sampled groups. 

 

Published by Atlantis Press 
Copyright: the authors 

193



2.  The Basic Model 
 
Suppose a population is comprised of groups of one or more individual units. There is a 
measurable characteristic variable Yij for each individual unit j belonging to group i. However, 
only the sum of the Yij for a group is observable. A random sample of n groups will be drawn 
from the population and a measurement of Zi = ∑ Yij for group i is recorded. 

Individual units may only operate at a fraction of a full-time unit and the value of Yij is scaled 
to reflect the operating level. A parameter fij indicates the operating level, with fij = 1 for a unit 
that is operating full-time or 100%. Although the model assumes that individual values of Yij are 
not observable, the model assumes that the values of fij are observable for any group selected in 
the random sample. 

The value of Yij is presumed to be normally distributed, with a mean of fij µ and a variance of 
fij

2 σ2. The values of µ and σ2 are assumed to be unknown. The expected covariance in Y for 
individual units included in sample groups is presumed to be ρ fij fik σ2 for two individual units j 
and k that belong to the same group i, where 0 ≤ ρ ≤ 1, and zero for two individual units 
belonging to different groups. The parameter ρ is the coefficient of correlation in variable Y for 
any pair of individual units in the same group. The assumption of common intragroup correlation 
is employed widely in cluster sampling models, such as Scott and Holt [3]. In this section, we will 
consider the parameter ρ as a value set by the researcher; in a subsequent section, we will 
consider how to select the value of ρ. 

Let mi represent the number of individual units in group i. Based on known results for sums of 
random variables [4], we can conclude the expected value for the measured total Zi for group i is 

 

∑∑
≤≤≤≤

==
ii mj

ij
mj

iji fYEZE
11

)()( µ   

 
And the variance for the measured total Zi for group i is 
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Splitting the first term and reorganizing leads to 
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Since the number of full-time equivalent units in group i is known, the total observed value Zi 

for group i can be transformed to a variable Ri for the per capita rate observed for the group, with 
the following expected value and variance: 
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For the case where a group consists entirely of fully operating individual units (i.e., fij = 1 for 

all units), Eq. (1) simplifies to 
 

22 /)1()( ρσσρ +−= ii mRVar  (2) 

 
When ρ = 0 and the value of each individual unit is independent of the values of other individual 
units in its group, the variance in Eq. (2) is the familiar expression for the average of identical but 
independent random variables. When ρ = 1, the values of individual units are perfectly correlated 
with other firms in the group, and the variance of the per capita rate is the same regardless of the 
number of units in the group. 

Point estimates and confidence intervals for µ can be obtained by collecting the observed 
values of Ri from the random sample of groups and calculating the minimum variance estimate. 
However, since each group has a different variance for Ri due to different group compositions, 
heteroscedasticity is generally present, and it is necessary to use a weighted estimate of 
population parameters. The weights should be set such that the weighted variables have the same 
expected variation. Using Eq. (1), a suitable set of weights wi would be 
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The goal of the model is to provide estimates of mean µ and variance σ2 of the value of the 

variable being studied as it applies to a full-time single unit. Based on standard formulas used in 
statistical software [5], we calculate the estimates as follows: 

The minimum variance point estimate for µ is weighted mean of the Ri values. 
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Since wi is set so that σ2= wi Var(Ri), the squared deviation of Ri from the weighted mean is 
effectively a sampled value from a normal distribution with mean zero and variance σ2/ wi. By 
averaging the weighted squared differences and correcting for sample variation in the weighted 
mean, the unbiased estimate of variance σ2 corresponding to a single, full-time unit is 
 

1

)( 2

12

−

−
=
∑
≤≤

n

RRw
s

wi
ni

i

 

 

 
where n is the number of observed groups. The standard error for the estimate for µ is 
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A 100(1-α)% confidence interval for µ is 
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3.  Sensitivity of Group Weights to Intragroup Correlation, Group Size, and Group 
Composition 
 
The group weights used to determine point estimates and confidence intervals on per capita levels 
are affected by the correlation ρ between individual units in each group, the number of units mi in 
each group i, and the set of operating levels fij of the units in each group i. As shown in the 
Appendix, the formula for the group weights wi in Eq. (3) has the following equivalent 
expression: 
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where the CVi

2 is the squared coefficient of variation in unit operating levels fij: 
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A careful examination of Eq. (4) indicates that the weight will increase as the number of units 

mi increases for fixed values of ρ and CVi. However, the rate of increase diminishes as mi gets 
large, asymptotically approaching 1/ ρ. The sensitivity of group size on the weight is greater 
when the correlation coefficient is low, as unit Yij values are only weakly dependent on other unit 
values in their group and the group per capita mean will have less variance for larger groups. 

The examination of the effect of the coefficient of variation term in Eq. (4) offers two 
interesting insights. First, since the value in the denominator increases if CVi increases, the weight 
for group i gets smaller as relative variation between the fij values becomes greater. Further, since 
Eq. (4) includes no other terms related to the participation levels of the units, the average of the fij 
values has no effect on the weight if the coefficient of variation remains the same. So, for 
example, a group involving two units both operating at fij=0.5 will have the same wi weight as a 
group with two units operating at fij=1.0. Stated differently, when a group has units with uniform 
participation levels fij, the weight assigned to the group is the same for any average participation 
level and no additional information about the mean per capita rate is provided merely by higher 
average participation rates. This conclusion presumes that unit performance measurements are 
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divisible, which is a reasonable assumption if the unit Yij values are fairly large or operating levels 
of the units fij are not fractions close to zero. 

The value of the denominator in Eq. (3) will generally be less than one because for any group 
with multiple individual units operating at nonzero levels 

 
2

1

2 )( ∑∑
≤≤≤≤

<
ii mji

ij
mj

ij ff   

 
Therefore, for fixed values of CVi and mi, as the intragroup correlation coefficient increases, the 
denominator increases and the weight wi for group i decreases, approaching wi =1 as ρ approaches 
one. This occurs because when ρ =1, contributions to the group total from individual units in the 
group are perfectly correlated, so the group per capita rate effectively varies like a group 
comprised of a single unit. On the other hand, as ρ approaches zero, the weight wi increases, 
approaching a value of 
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If CVi=0, weight wi in Eq. (4) is mi, reflecting the group per capita rate being the result of units 
operating independently of other units. 
 
4.  A Simple Example 
 
Suppose a researcher is interested in the typical number of syringes used by a physician in a 
particular type of medical practice over one year. A random sample of six practices that focus on 
this specialty has been selected and queried for (1) total use of syringes over a specified 12-month 
period, (2) the number of physicians who worked in the practice office during the period, and (3) 
what fraction of a full-time, full year each individual physician worked during the period. 

The results from the survey are in Table 1. Suppose we assume the intragroup correlation 
coefficient ρ=0.3. Using the relationships from the model defined earlier, the calculated weights 
for the six groups (rounded to three decimal places) appear in the final column of Table 1. 
 

Table 1.  Sample results, use per full-time equivalent physician, and group weights when ρ=0.3. 
 

Practice 
# 

Composition 
# physicians, participation levels 

Total syringes used 
over year 

Syringe use per 
FTE 

Weight wi for 
ρ =0.3 

1 1 physician, 100%          3150      3150      1 
2 2 physicians, each 50%          2220      2220      1.538 
3 2 physicians, each 100%          4520      2260      1.538 
4 3 physicians, one 100%, two 40%          5880      3266.67      1.709 
5 3 physicians, each 60%          6020      3344.44      1.875 
6 10 physicians, each 100%        33330      3333      2.703 

 
It is interesting to note that while Practice 1 and Practice 2 has one full-time, full year 

equivalent position, Practice 2 has a larger weight. This occurs because in the second case, there 
are two physicians contributing to the syringe use, and while there is only an expected correlation 
of ρ=0.3, the count from Practice 2 provides more information about the mean per capita use. 
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Practice 3 has a similar organization to Practice 2, but the two physicians worked at 100% rather 
than 50%. Yet, the weights of the two practices are the same, because the use by each half-time 
physician can be doubled and provide an equivalent estimate of per capita use. 

Practices 4 and 5 each have three physicians and a total of 1.8 full-time, full year equivalent 
physicians, yet the weight for Practice 5 is larger. This happens because there is no variation in 
the participation fractions in Practice 5, while Practice 4 has a positive coefficient of variation in 
participation levels, so as explained in the previous section, all other things equal, the weight is 
higher for the group with a lower coefficient of variation. 

Practice 6 is at least five times as large as any of the other practices in the sample, yet the 
weight assigned to Practice 6 is less than twice as large as most of the other practice groups. This 
happens because the correlation coefficient of ρ=0.3 indicates that syringe use by one physician 
influences the use by other physicians in the group, thereby diminishing the value of the total 
syringe use in the practice toward estimating the population mean. 

Using these group weights, the model yields the following sample statistics for annual per 
capita syringe use: 
 
 Point estimate: 2982 syringes per year 
 Sample standard deviation: 698.8 syringes per year 
 Standard error of the estimate of the population mean: 217.1 syringes per year 
 95% confidence interval for the population mean: between 2424 and 3540 syringes/year 

 
Since the value of the correlation coefficient is hypothesized, the effect of the selection can be 

examined by recalculating the weights and statistics for other values of ρ. Table 2 shows the 
impact on group weights for different coefficient values. When ρ=0, practices are presumed to be 
comprised of statistically independent individual units. When the units in the group are uniform 
in participation level, the weight is equal to the number of units. These weights diminish as ρ 
increases, reflecting the higher correlation within the group and corresponding diminished value 
of each observation in estimating µ relative to the number of units. When ρ=1, every practice has 
a weight of one regardless of group composition, as perfect correlation between units in a group 
means that each group’s per capita use reflects the equivalent to information about µ provided by 
the value from a practice with one full-time physician. 
 

Table 2.  Group weights for example using different values of correlation coefficient ρ. 
 
ρ       0       0.2       0.4       0.6       0.8       1 
w1       1       1       1       1       1       1 
w2       2       1.667       1.429       1.25       1.111       1 
w3       2       1.667       1.429       1.25       1.111       1 
w4       2.455       1.901       1.552       1.311       1.134       1 
w5       3       2.143       1.667       1.364       1.154       1 
w6     10       3.571       2.174       1.563       1.220       1 
 

Table 3 shows the effect of different hypothesized correlation coefficients on the sample 
statistics. The point estimate is somewhat sensitive to the selection, with greater sensitivity when 
ρ is closer to zero. The point estimate increases as ρ gets smaller due to the fact that the observed 
per capita levels for Practices 4, 5, and 6 were higher than for Practices 1, 2, and 3, and the 
weights for the larger practices decrease more as the coefficient of correlation increases. The 95% 
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confidence interval limits are tighter and more sensitive to changes in the coefficient when ρ is 
small, since the standard error of the estimate is inversely related to the square root of the sum of 
the group weights, and that sum increases at a growing rate as ρ decreases. 
 

Table 3.  Sample statistics for individual per capita usage using different values of correlation coefficient ρ. 
 
ρ          0         0.2        0.4        0.6        0.8        1 
Point Estimate   3104.0   3004.3   2966.5   2946.9   2935.7   2929.0 
Sample 
Standard Dev     866.3     739.5     665.2     612.2     571.3     538.3 
Standard Error 
of Estimate     191.5     213.9     218.7     220.1     220.2     219.8 
LCL (95%)   2612   2454   2404   2381   2370   2364 
UCL(95%)   3596   3554   3529   3513   3502   3494 
 

 
5.  Estimation of the Intragroup Correlation Coefficient 
 
The model presented in the second section assumes that a value for the parameter ρ will be 
specified before being applied to a set of observations from groups of units. This parameter 
indicates the degree of correlation among pairs of units within groups, allowing dependency 
between the units for the variable of interest and higher variation in the aggregate group total than 
would be expected if individual units operated fully independently. However, the degree of 
correlation is not readily observable and thus is a practical concern in applying the model. 

The ρ parameter affects the variability of the group aggregate variable and influences the 
weighting factors wi used to compensate for heteroscedasticity in sample per capita rates due to 
diverse group compositions. In turn, the choice of ρ affects the point estimate of the mean 
operating level for a full-time unit and the standard error of that estimate. 

One can examine the effect of the choice of ρ on point or interval estimates by doing 
sensitivity analysis on the parameter. The parameter could be tested at different levels, as was 
done in the example in the previous section. If the point estimate and confidence interval for µ do 
not change much, the selection of ρ is not a serious concern. If there are noticeable differences, a 
conservative approach would be to widen the confidence interval at the desired confidence level 
to include the confidence intervals for the range of correlation coefficients tested. For example, 
with the syringe use survey presented in the last section, if the researcher is uncertain of 
correlation value, but believes the correlation coefficient is no larger than 0.6, the interval from 
2381 to 3596 would include the 95% confidence intervals for the per capita population mean for 
all values of ρ from 0 to 0.6. 

If the researcher is uncertain about the degree of intragroup correlation, but has some prior 
belief about value of ρ, a probability distribution could be defined on that parameter and a 
Bayesian approach could be applied. Or, using Monte Carlo simulation and the model of the prior 
section, the simulation for randomly generated values of ρ would provide distributions for the 
point estimate of µ and the upper and lower limits of the confidence interval for µ. 

When a fairly substantial number of groups are included in the sample, particularly for a 
sample that has considerable variation in the weighting factors wi, the sample data can be used to 
inform the selection of ρ. Since the purpose of the weighting factors is to maintain equal variation 
in the weighted residuals from the population mean, scatterplots of the weighted residuals from 
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the procedure can be examined to assess the effectiveness of the weighting factors. The squared 
residuals can be plotted against the values of weights wi. If the spread of weighted residuals is 
fairly uniform across the weights, the selected correlation coefficient is probably sound. On the 
other hand, if the spread appears to either increase or decrease as the weights increase, this 
suggests that relative sizes of the weights are not appropriate for reducing heteroscedasticity and a 
different value for the correlation coefficient might be appropriate. 

Since, as noted earlier, for any group with multiple individual units with a nonzero operating 
level, 

 
2

1

2 )( ∑∑
≤≤≤≤

<
ii mji

ij
mj

ij ff   

 
there is a negative relationship between the selection of the correlation coefficient ρ and the 
weights wi as calculated in Eq. (3). As such, if the larger weights need to be increased to balance 
the weighted squared residuals, decreasing the value of ρ would reduce the imbalance, whereas if 
the larger weights need to be reduced in relative magnitude, increasing the value of ρ should 
result in an improvement. A narrowing spread of the weighted squared residuals as the weights 
increase indicates that the weights are too aggressive and a larger value of ρ should be tried. 
Alternatively, a widening spread of weighted squared residuals suggests the higher weighted 
groups are relatively underweighted and ρ should be decreased. 

Another approach to setting the correlation coefficient is to start with the assumption of no 
intragroup correlation effect (ρ =0) and test if the level of heteroscedasticity is significant. One 
option is to place the sampled groups into categories based on the wi weights and apply the 
Levene test [6] to the weighted residuals to see if the differences in category variation are 
significant. Another option is to run a regression on the weighted squared residuals against the 
weight values (or group sizes) to see if there is a significant relationship. The White test [7] and 
Breusch-Pagan test [8] take this approach. If the test concludes that homoscedasticity must be 
rejected, the value of the correlation coefficient could be reset and retested for heteroscedasticity. 

It should be noted that whenever a different correlation coefficient ρ is used, not only are the 
weights wi affected, but in turn, the estimate of the mean per capita estimate will change as well. 
As a consequence, the residuals between the observed per capita rate and estimated population 
per capita mean need to recalculated and not merely reweighted. 

There is no guarantee that heteroscedasticity can be removed sufficiently with any correlation 
coefficient ρ between zero and one. This situation may occur if the basic assumption of the model 
that groups have a similar degree of intragroup correlation is strongly violated. 

 
6.  Discussion 
 
Most statistical software packages allow the entry of a weighting variable for calculating sample 
statistics for a single sample mean. To apply the methods in this paper, the weights would need to 
be calculated separately or the software would need to be augmented with a script in a language 
like R or Python. 

While the formula for calculating the weighted mean is standard across statistical software 
tools, there are differences in the calculations of the weighted sample variance, standard error of 
the mean estimate, and confidence intervals. One source of the difference is the base used to 
calculate the sample variance. In this paper and in SAS [5], the base used to calculate the 
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(unbiased) sample variance is the sum of classes minus one. However, in SPSS [9], the base used 
is the sum of the group weights minus one. The justification for using the number of groups 
minus one is that while groups vary in size and composition, each group in the sample provides a 
single per capita estimate, and, when weighted to reflect group composition, provides a similar 
contribution to other groups in estimating the population parameters. 

Likewise, the designation of the number of degrees of freedom for the t-statistic used to create 
confidence intervals for the mean may differ based on the same issue. Since the sample variance 
in the model in this paper is an estimate based on the number of class observations, the 
confidence intervals on the estimate of the population mean employ a t-distribution using the 
number of groups minus one as the number of degrees of freedom. For algorithms where the 
sample variance is calculated using the total of the group weights in the denominator, the degrees 
of freedom will be the sum of the group weights minus one. 

Obviously, variables other than intragroup correlation and group composition may be effective 
in explaining variation in per capita levels across groups. For the example in this paper, perhaps 
subspecialties of a group practice or geographical location would be significant. Weighted 
analysis of variance or weighted least-squares regression would allow the incorporation of the 
group weights based on hypothesized intragroup correlation and composition, as well at the 
consideration of other variables. However, as with the computation of weighted sample variance 
and confidence intervals, when using weighted algorithms in statistical software packages, care 
should be taken to see how the weights are used and degrees of freedom are determined. 

In addition to providing inferences about the population from which the sample is drawn, the 
statistics generated from a sample can be used to determine whether the per capita use for a 
specific group is high or low relative to the population, given its composition. The group’s per 
capita value can be evaluated based on its position with respect to the probability distribution  
created by a linear transformation of a t-distribution having (1) a mean equal to the weighted 
mean sample per capita rate, (2) a standard deviation equal to the sample standard deviation in 
per capita amount divided by the square root of the weight assigned to the group, and (3) the 
number of degrees of freedom based on the number of groups used in the calculation of the 
sample variance minus one. With computer tools, the per capita amount for the group in question 
can be converted to a quantile with respect to that distribution. This evaluation could be applied 
to groups whether or not they were not part of the sample used to generate the sample statistics. 
 
Appendix: Derivation of the Alternate Formula for the Group Weights 
 
In the presentation of the model in the second section, the formula Eq. (3) for the appropriate 
weights for each observed class was derived using the intragroup correlation coefficient ρ and 
participation levels of the individual units comprising the group. In the third section of the paper, 
alternative formula Eq. (4) was cited that relates the appropriate weight to correlation coefficient, 
the number of units in the group, and the relative variation in participation levels with the group. 
The alternative formula is derived here. 

The first formula for weights (Eq. (3)) derived with the basic model was  
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Inverting the equation and algebraic manipulation results in the following equation: 
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Since the denominator is the square of the sum of unit fractions, and the sum of the unit fractions 
is equal to the number of units mi times the average unit fraction if , using this substitution in the 
equation yields 
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Applying the computational formula for the variance of a set of data 
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then extracting the squared coefficient of variation in the fij values using 
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followed by cancellation of terms and re-inversion of the equation, results in Eq. (4): 
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