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This paper considers inference under progressive type-II censoring scheme with a compound Rayleigh failure
time distribution. The maximum likelihood (ML) and the Bayes estimators for the two unknown parameters of
the compound Rayleigh distribution (CRD) distribution are derived. A Bayesian approach using Markov chain
Monte Carlo (MCMC) method to generate from the posterior distributions and in turn computing the Bayes
estimators are developed. Point estimation and confidence intervals based on maximum likelihood and boot-
strap methods are also proposed. The approximate Bayes estimators have been obtained under the assumptions
of informative and non-informative priors. An example with the real data is discussed to illustrate the proposed
methods. Finally, we made comparisons between the maximum likelihood and different Bayes estimators using
a Monte Carlo simulation study.
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1. Introduction

In the past several decades, censoring is very common in life tests. There are many situations in
life-testing and reliability studies in which the experimenter may be unable to obtain complete infor-
mation on failure times of all experimental items. There are also situations wherein the removal of
items prior to failure is pre-planned in order to reduce the cost and time associated with testing.
The most common censoring schemes are type-I and type-II censoring, but the conventional type-I
and type-II censoring schemes do not have the flexibility of allowing removal of items at points
other than the terminal point of the experiment. For this reason, we consider a more general cen-
soring scheme called progressive type-II right censoring. It can be described as follows. Suppose
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that n independent items are put on a life test with continuous identically distributed failure times
X1,X2, ...,Xn. Suppose further that a censoring scheme (R1,R2, ...,Rm) is previously fixed such that
immediately following the first failure X1,R1 surviving items are removed from the experiment at
random, and immediately following the second failure X2,R2 surviving items are removed from the
experiment at random. This process continues until, at the time of the m th observed failure Xm,
the remaining Rm surviving items are removed from the test. The m ordered observed failure times
denoted by X (R1,...,Rm)

1:m:n , X (R1,...,Rm)
2:m:n , ...,X (R1,...,Rm)

m:m:n are called progressively type-II right censored order
statistics of size m from a sample of size n with progressive censoring scheme (R1,R2, ...,Rm). It is
clear that n = m+∑

m
i=1 Ri. The special case when R1 = R2 = · · · = Rm−1 = 0 so that Rm = n−m

is the case of conventional type-II right censored sampling. Also when R1 = R2 = · · · = Rm = 0,
so that m = n, the progressively type-II right censoring scheme reduces to the case of no censoring
(ordinary order statistics). Many authors have discussed inference under progressive type-II cen-
sored using different lifetime distributions, see for example, [7,5,20,22,17,8] and [16]. A thorough
overview of the subject of progressive censoring is given in [4], and in the excellent review article
by [3].

In Bayesian approach, we need to integrate over the posterior distribution and the problem is that
the integrals are usually impossible to evaluate analytically. Markov chain Monte Carlo (MCMC)
technique is a Monte Carlo integration method which draws samples from the target posterior dis-
tribution. MCMC methodology provided a convenient and efficient way to sample from complex,
high-dimensional statistical distributions. Recently, application of the MCMC method to the esti-
mation of parameters or some other vital properties about statistical models is very common. Green
et al. [12] using the MCMC method for estimating the three parameters Weibull distribution, and
they showed that the MCMC method is better than the ML method, when given a proper prior dis-
tribution of the parameters. As a generalization of the two parameter Weibull model, Gupta et al.
[13] gave a complete Bayesian analysis of the Weibull extension model using MCMC simulation
and complete sample. Recently, Mahmoud et al.[18] using Markov chain Monte Carlo to Study the
estimation of the coefficient of variation.

The compound Rayleigh distribution (CRD) is a special case of the three-parameter Burr type-
XII distribution. The two-parameter version of this distribution was studied by several authors,
such as [1], [2] among others. The two parameter compound Rayleigh distribution CRD(α,β )

provides a population model which is useful in several areas of statistics, including life testing
and reliability. The probability density function (pdf), and the cumulative distribution function (cdf)
of the CRD(α,β ) are given, respectively, by

f (x;α,β ) = 2αβ
αx(β + x2)−(α+1), x > 0, α,β > 0, (1.1)

and

F(x;α,β ) = 1− (1+
x2

β
)−α , x > 0, α,β > 0, (1.2)

where α and β are the shape and the scale parameters respectively.
In this paper we consider the Bayesian inference of the shape and scale parameters for progres-

sive type-II censored data when both parameters are unknown. We assumed that the shape param-
eter α and the scale parameter β have the gamma prior and they are independently distributed. As
expected in this case also, the Bayes estimates can not be obtained in closed form. We propose
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to use the Gibbs sampling procedure to generate MCMC samples, and then using the Metropolis–
Hastings (MH) algorithms, we obtain the Bayes estimates of the unknown parameters. We perform
some simulation experiments to see the behavior of the proposed Bayes estimators and compare
their performances with the maximum likelihood estimators (MLEs).

The rest of the paper is organized as follows. In the next section, the ML estimators of the
unknown parameters and approximate confidence intervals are presented. The corresponding para-
metric bootstrap confidence intervals for the parameters are given in Section 3. In Section 4, we
cover Bayes estimates and construction of credible intervals using the MCMC techniques. In Sec-
tion 5, for illustrative purposes, we performed a real data analysis. Comparisons among estimators
are investigated through Monte Carlo simulations in Section 6. Finally, conclusions appear in Sec-
tion 7.

2. Maximum likelihood estimation

If the failure times of the items originally on test with progressive censoring scheme (R1,R2, ...,Rm)

are from a continuous population with probability density function f (x) and cumulative distribution
function F(x), then the joint probability density function of a progressively type-II censored sample
x = X (R1,...,Rm)

1:m:n , X (R1,...,Rm)
2:m:n , ...,X (R1,...,Rm)

m:m:n of size m from a sample of size n is given by

fx1,x2,...,xm (x1,x2, ...,xm) = A
m

∏
i=1

f (xi;α,β ) [1−F (xi;α,β )]Ri , (2.1)

where xi is used instead of X (R1,...,Rm)
i:m:n , R≥ 0, i = 1,2, ...,m and

A = n(n−1−R1)(n−2−R1−R2)...

(
n−

m−1

∑
i=1

(Ri +1)

)
, (2.2)

and f (.), F (.) are the same as defined before in (1.1) and (1.2) respectively. The likelihood function
can be written as

L(x;α,β ) = A(2α)m

(
m

∏
i=1

xi(
β + x2

i

))exp

[
−α

m

∑
i=1

(Ri +1) log
(

1+
x2

i

β

)]
, (2.3)

where A is defined in (2.2), Therefore ignoring the additive constant the log-likelihood function may
be written as

`(x;α,β ) = m logα +
m

∑
i=1

logxi−
m

∑
i=1

log
(
β + x2

i
)
−α

m

∑
i=1

(Ri +1) log
(

1+
x2

i

β

)
. (2.4)

Assuming that the parameters α and β are unknown, the MLEs of the parameters α, and β are
obtained by solving the following likelihood equations simultaneously:

α̂ = m

[
m

∑
i=1

(Ri +1) log
(

1+
x2

i

β̂

)]−1

, (2.5)

and

α̂

m

∑
i=1

(Ri +1)
x2

i /β̂ 2

1+
(

x2
i /β̂

) − m

∑
i=1

1(
β̂ + x2

i

) = 0 (2.6)
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Since Eq. (2.6) cannot be solved analytically some numerical methods such as Newton-Raphson
method must be employed.to solve (2.6) and get the MLE, β̂ , and hence α̂ , by using (2.5).

The asymptotic variance-covariance matrix of the MLE for parameters α, and β is given by
elements of the inverse of the Fisher information matrix

Ii j = E
[
− ∂ 2L

∂α∂β

]
, i, j = 1,2. (2.7)

Unfortunately, the exact mathematical expressions for the above expectations are very difficult to
obtain. Therefore, we give the approximate (observed) asymptotic varaince-covariance matrix for
the MLE, which is obtained by dropping the expectation operator E −

∂ 2`(x;α,β )

∂α2 −∂ 2`(x;α,β )

∂α∂β

−∂ 2`(x;α,β )

∂β∂α
−∂ 2`(x;α,β )

∂β 2


−1

(α=α̂,β=β̂ )

=

[
var(α̂) cov(α̂, β̂ )

cov(β̂ , α̂) var(β̂ )

]
, (2.8)

with

∂ 2`(x;α,β )

∂α2 =− m
α2 , (2.9)

∂ 2`(x;α,β )

∂α∂β
=

∂ 2`(x;α,β )

∂β∂α
=

m

∑
i=1

(Ri +1)
x2

i /β 2

1+
(
x2

i /β
) (2.10)

∂ 2`(x;α,β )

∂β 2 =
m

∑
i=1

1
(β + x2

i )
2 +

α

β 2

m

∑
i=1

x2
i (Ri +1)

[
x2

i /β(
1+
(
x2

i /β
))2 −

2
1+
(
x2

i /β
)] . (2.11)

The asymptotic normality of the MLE can be used to compute the approximate confidence intervals
for parameters α, and β . Therefore, (1− γ)100% confidence intervals for parameters α, and β

become

α̂±Zγ/2

√
var(α̂) and β̂ ±Zγ/2

√
var(β̂ ), (2.12)

where Zγ/2 is the percentile of the standard normal distribution with right-tail probability γ/2.

3. Parametric bootstrap confidence intervals

A parametric bootstrap interval provides much more information about the population value of the
quantity of interest than does a point estimate. In this section, we propose to use confidence intervals
based on the parameteric bootstrap methods (i) percentile bootstrap method (Boot-p) based on the
idea of Efron [10]. (ii) bootstrap-t method (Boot-t) based on the idea of Hall [14]. The algorithms
for estimating the confidenc eintervals using both methods are illustrated as follows

3.1. Percentile bootstrap method (Boot-p)

Algorithm 1.
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Step 1 From the original data x≡ xR
1:m:n, xR

2:m:n, ..., xR
m:m:n compute the ML estimates of the param-

eters α̂ and β̂ by solving the equations (2.5) and (2.6).
Step 2 Use α̂ and β̂ to generate a bootstrap sample x∗ with the same values of Ri,m;(i = 1,2, ..,m)

using algorithm presented in [6].
Step 3 As in Step 1, based on x∗ compute the bootstrap sample estimates of α and β , say α̂∗and

β̂ ∗.

Stap 4 Repeat Steps 2-3 B times representing B bootstrap MLE’s of α, and β based on B different
bootstrap samples.

Step 5 Arrange all α̂∗′s and β̂ ∗′s, in an ascending order to obtain the bootstrap sample (ϕ [1]
l , ϕ

[2]
l ,

...,ϕ
[B]
l ), l = 1,2 (where ϕ1 ≡ α̂∗,ϕ2 ≡ β̂ ∗).

Let G(z) = P(ϕl ≤ z) be the cumulative distribution function of ϕ1.Define ϕlboot = G−1(z) for
given z. The approximate bootstrap 100(1−2γ)% confidence interval of ϕl is given by

[ϕlboot(γ),ϕlboot(1− γ)]. (3.1)

3.2. Bootstrap-t method (Boot-t)

Algorithm 2.

Step 1 From the original data x≡ xR
1:m:n, xR

2:m:n, ..., xR
m:m:n compute the ML estimates of the param-

eters α̂ and β̂ by solving the Eqs. (2.5) and (2.6).
Step 2 Using α̂ and β̂ generate abootstrap sample x∗. Based on x∗ compute the bootstrap estimate

of α and β using (2.5) and (2.6), say α̂∗and β̂ ∗ and the following statistics

T ∗1 =

√
B(α̂∗− α̂)√
Var(α̂∗)

and T ∗2 =

√
B(β̂ ∗− β̂ )√
Var(β̂ ∗)

where Var(α̂∗) and Var(β̂ ∗) are obtained using the Fisher information matrix.
Step 3 Repeat Step 2, B boot times.
Stap 4 For the T ∗1 and T ∗2 values obtained in Step2, determine the upper and lower bounds of the

100(1− γ)% confidence interval of α and β as follows: let H(x) = P(T ∗i ≤ x), i = 1,2 be
the cumulative distribution function of T ∗1 and T ∗2 . For a given x, define

α̂Boot−t(x) = α̂ +B−1/2
√

Var(α̂)H−1(x) and β̂Boot−t(x) = β̂ +B−1/2
√

Var(β̂ )H−1(x).

Here also, Var(α̂) and Var(β̂ ) can be computed as same as computing the Var(α̂∗) and
Var(β̂ ∗). The approximate 100(1−2γ)% confidence interval of α and β are given by

(α̂Boot−t(γ), α̂Boot−t(1− γ)) and
(

β̂Boot−t(γ), β̂Boot−t(1− γ)
)
. (3.2)

4. Bayesian estimation

In this section we describe how to obtain the Bayes estimates and the corresponding credible inter-
vals of parameters α and β when both are unknown. For computing the Bayes estimates, we assume
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mainly a squared error loss (SEL) function. Now let us consider independent gamma priors for the
parameters α and β with the pdfs as

π1(α|a,b) ∝ α
a−1e−bα , α > 0, a > 0, b > 0 (4.1)

π2(β |c,d) ∝ β
c−1e−dβ , β > 0, c > 0, d > 0 (4.2)

where a,b,c and d are assumed to be known and are chosen to reflect prior knowledge about α and
β . Note that when a = b = c = d = 0, (we call it prior 0) they are the non-informative priors of α

and β , respectively.
It follows from (2.3), (4.1) and (4.2) that the joint posterior density function of α and β given x

is thus

π
∗(α,β |x) = L(x;α,β )×π1(α|a,b)×π2(β |c,d)∫

∞

0
∫

∞

0 L(x;α,β )×π1 (α|a,b)×π2(β |c,d)dαdβ

∝ α
m+a−1

β
c−1 exp

[
−α

m

∑
i=1

(Ri +1) log
(

1+
x2

i

β

)
−dβ

]

×

(
m

∏
i=1

xi(
β + x2

i

))
(4.3)

It is not possible to compute (4.3) analytically. The problem is that the integrals in (4.3) are usu-
ally impossible to evaluate analytically, and the numerical methods may fail. The MCMC method
provides an alternative method for parameter estimation. In the following subsections, we propose
using the MCMC technique to obtain Bayes estimates of the unknown parameters and construct the
corresponding credible intervals.

4.1. MCMC technique

Markov chain Monte Carlo (MCMC) methods use computer simulation of Markov chains in the
parameter space Gilks et al. [11]. The Markov chains are defined in such a way that the pos-
terior distribution in the given statistical inference problem is the asymptotic distribution. This
allows to use ergodic averages to approximate the desired posterior expectations. Several standard
approaches to define such Markov chains exist, including Gibbs sampling, Metropolis-Hastings
(MH) and reversible jump. The MH algorithm is a very general MCMC method first developed by
Metropolis et al. [19] and later extended by Hastings [15]. Using these algorithms it is possible to
implement posterior simulation in essentially any problem which allow pointwise evaluation of the
prior distribution and likelihood function. It can be used to obtain random samples from any arbi-
trarily complicated target distribution of any dimension that is known up to a normalizing constant.
In fact, Gibbs sampler is just a special case of the MH algorithm. Details of the MCMC method can
be found in [11,21].

In order to use the method of MCMC for estimating the parameters of the CR(α ,β ) distribution,
namely, α and β . Let us consider independent priors as in (4.1) and (4.2), the full conditional
distribution for any parameter can be obtained, to within a constant, by factoring out from the
likelihood function L(x;α,β ) any terms containing the relevant parameter and multiplying by its
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prior. From (4.3), the marginal posterior density of α is proportional to

π
∗
1 (α|β ,x) ∝ α

m+a−1 exp

[
−α

(
b+

m

∑
i=1

(Ri +1) log
(

1+
x2

i

β

))]
. (4.4)

Similarly, the full posterior conditional distribution for β is proportional to

π
∗
2 (β |α,x) ∝ β

c−1 exp

[
−α

m

∑
i=1

(Ri +1) log
(

1+
x2

i

β

)
−dβ

]
×

(
m

∏
i=1

xi(
β + x2

i

)) . (4.5)

It can be seen that Eq. (4.4) is a gamma density with shape parameter (m+a) and scale parameter
b+∑

m
i=1(Ri+1) log

(
1+ x2

i
β

)
and, therefore, samples of α can be easily generated using any gamma

generating routine. But the conditional posterior distribution of β Eq. (4.5) cannot be reduced ana-
lytically to well known distributions and therefore it is not possible to sample directly by standard
methods, but the plot of it show that it is similar to normal distribution. So to generate random
numbers from this distribution, we use the Metropolis-Hastings method with normal proposal dis-
tribution.

Now, we propose the following scheme to generate α and β from the posterior density functions
and in turn obtain the Bayes estimates and the corresponding credible intervals

Step 1 Start with an β (0) = β̂ , M = burn− in.
Step 2 Set t = 1.
Step 3 Generate α(t) from Gamma distribution π∗1 (α|β ,x).
Step 4 Using Metropolis-Hastings (see, Metropolis et al. [19]), generate β (t) from π∗2 (β |α,x)

with the N(β (t−1),σ2) proposal distribution where σ2 is the variance of β obtained using
variance-covariance matrix.

Step 5 Compute β (t) and α(t).
Step 6 Set t = t +1.
Step 7 Repeat Steps 3−6 N times.
Step 8 Obtain the Bayes estimates of β and α with respect to the SEL function as

Ê(β |x) = 1
N−M

N

∑
i=M+1

βi, and

Ê(α|x) = 1
N−M

N

∑
i=M+1

αi.

Step 9 To compute the credible intervals of β and α , order β1, ...,βN−M and α1, ...,αN−M as β(1) <

... < β(N−M) and α(1) < ... < α(N−M). Then the 100(1− γ)% symmetric credible intervals
of β and α become

(β((N−M)γ/2),β((N−M)(1−γ/2))) and (α((N−M)γ/2),α((N−M)(1−γ/2))). (4.6)

5. Illustrative example (real data)

To illustrate the application of our proposed method, we chose the real data set which was reported
by [9] and represents the survival times in years of a group of patients given chemotherapy treat-
ment. The data consisting of 46 survival times (in years) for 46 patients are: 0.047, 0.115, 0.121,
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0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501,0.507, 0.529,
0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485,
1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003,
4.033. Reference [9] shows that the Compound Rayleigh model is acceptable for these data. then
we have a previous data consisting of 46 survival times from the Compound Rayleigh distribution
(CRD), using the algorithm described in Balakrishnan and Sandhu [6], we generate a progressively
type-II censored sample of size 26 out of 46 is obtained as (X1, ...X26) = 0.047, 0.132, 0.203, 0.260,
0.282, 0.395, 0.501, 0.570, 0.641, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.553,
1.581, 1.589, 2.178, 2.416, 2.444, 2.825, 4.003, 4.033. In this case n = 46, m = 26 and the censor-
ing scheme R = (R1 = 20,R2 = R3 = · · · = R26 = 0), for simplicity we denoted to this censoring
scheme (C.S) by (20,250). For this example, 20 patient’s survival times are censored, and 26 times
are observed.

Based on these data, we compute the approximate MLEs, Bootstrap confidence intervals (Boot-
p, Boot-t) and Bayes estimates of α and β using MCMC method, we assume that informative priors
a = 2,b = 2,c = 2 and d = 2) on both α and β .The density function of π∗2 (β |α,x) as given in
(4.5) is plotted in Figure 1. It can be approximated by normal distribution function as mentioned in
Subsection 4.1. Also, we compute the 95%, approximate confidence intervals (ACI), Bootstrap con-
fidence intervals and approximate credible intervals based on the MCMC samples. The results are
given in Table 1. Figures 2 and 3 plot the MCMC out put of α and β ,using 10 000 MCMC samples
(dashed line represent means and red lines represent lower and upper bounds of 95% probability
intervals.). The plot of histogram of α and β generated by MCMC method are given in Figures 4
and 5. This was done with 1000 bootstrap sample and 10 000 MCMC sample and discard the first
1000 values as ‘burn-in’.

Table 1. Results obtained by MLEs, Bootstrap and MCMC method of α and β .

Method Parameter Point Interval Length
MLEs α 1.1463 [-0.0501,2.3428] 2.3928

β 1.1820 [-0.9624,3.3265] 4.2888
Bootstrap-p α 1.1504 [0.6350,3.0612] 2.4262

β 1.1917 [0.4511,4.2148] 3.7637
Bootstrap-t α 1.1514 [0.1791,2.6884] 2.5094

β 1.1873 [0.1329,4.1615] 4.0286
Bayes (MCMC) α 1.1058 [0.5743,1.8778] 1.3035

β 1.1685 [0.3401,2.5667] 2.2266
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Fig. 1. Posterior density function of β given α

Fig. 2. Simulation number of α generated by MCMC method.

Fig. 3. Simulation number of β generated by MCMC method.
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Fig. 4. Histogram of α generated by MCMC method.

Fig. 5. Histogram of β generated by MCMC method.

6. Simulation study

In order to compare the parameters estimators, Monte Carlo simulations were performed utilizing
1000 progressively type-II censored samples for each simulations. The mean square error (MSE) is
used to compare the estimators. The samples were generated by using the algorithm described in
Balakrishnan and Sandhu [6] using (α,β ) = (1,2),(0.5,1) with different sample of sizes (n), differ-
ent effective sample of sizes (m) and different of sampling schemes (i.e., different Ri values). Also,
we used different hyperparameters a, b, c and d. First, we used the noninformative gamma priors for
both the parameters, that is, when the hyperparameters are 0. We call it prior 0: a = b = c = d = 0.
Note that as the hyperparameters go to 0, the prior density becomes inversely proportional to its
argument and also becomes improper. This density is commonly used as an improper prior for
parameters in the range of 0 to infinity, and this prior is not specifically related to the gamma den-
sity. For computing Bayes estimators, other than prior 0, we also used informative prior, including
prior 1, a = 1, b = 2, c = 2 and d = 1. In two cases, we used the squared error loss function to com-
pute the Bayes estimates. We also computed the Bayes estimates and 95% credible intervals based
on 10000 MCMC samples and discard the first 1000 values as ‘burn-in’. We report the average
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Bayes estimates, mean squared errors MSEs, coverage percentages, and average confidence inter-
val lengths. For comparison purposes, we also compute the MLEs and the 95% confidence intervals
based on the observed Fisher information matrix. Finally, we used the same 1000 replicates to com-
pute different estimates for each scheme Tables 2-5 report the results based on MLEs and the Bayes
estimators using noninformative prior and informative prior on both α and β .

Table 2. Average values of the different estimators and the corresponding MSEs
when α = 1 and β = 2.

n m Scheme MLE (MCMC) (Prior 0) (MCMC)(Prior 1)
α β α β α β

30 20 (10,190) 1.2420 2.007 1.2644 2.0624 0.9414 2.1117
(0.0459) (0.3640) (0.0462) (0.3940) (0.0355) (0.2030)

(50,101,50) 1.2085 2.1498 1.2414 2.2049 0.9882 2.0871
(0.0586) (0.4338) (0.0599) (0.4425) (0.0378) (0.2341)

(190,10) 1.1822 2.1112 1.9331 2.1906 0.9977 2.0098
(0.0593) (0.5320) (0.0618) (0.5328) (0.0461) (0.2769)

40 20 (20,190) 1.0356 2.0321 1.0468 2.1837 0.9682 2.1004
(0.0465) (0.3849) (0.0478) (0.4012) (0.0341) (0.2135)

(201) 1.0043 2.1226 1.0776 2.1228 0.9912 2.0004
(0.0596) (0.4403) (0.0597) (0.4597) (0.0360) (0.2388)

(190,20) 1.1175 2.1917 1.2081 2.1278 0.9867 1.9982
(0.0613) (0.5382) (0.0623) (0.5471) (0.0466) (0.2870)

40 30 (10,290) 1.1978 2.1795 1.1547 2.1833 0.9769 2.1578
(0.0379) (0.3536) (0.0385) (0.3692) (0.0295) (0.1992)

(100,101,100) 1.2295 2.0222 1.0407 2.0640 0.9971 2.0358
(0.0426) (0.3882) (0.0429) (0.3907) (0.0337) (0.2097)

(290,10) 1.1337 2.1644 1.1025 2.1283 0.9382 2.0817
(0.0507) (0.4781) (0.0511) (0.4799) (0.0418) (0.2574)

50 40 (10,390) 1.1636 2.1917 1.1899 2.1401 0.9876 2.1515
(0.0276) (0.3141) (0.0278) (0.3220) (0.0223) (0.1522)

(150,101,150) 1.1678 2.1899 1.1191 2.0777 0.9814 2.0076
(0.0290) (0.3328) (0.0294) (0.3405) (0.0244) (0.1712)

(390,10) 1.1535 2.0078 1.0636 2.1459 0.9786 2.0214
(0.0317) (0.3597) (0.0318) (0.3603) (0.0266) (0.2102)

Note: Corresponding to each scheme, the first figure represents the average estimates,with
the corresponding MSEs reported below it in parentheses.
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Table 3. Average confidence interval, credible interval lengths and the coverage
percentages when α = 1 and β = 2.

n m Scheme MLE (MCMC) (Prior 0) (MCMC)(Prior 1)
α β α β α β

30 20 (10,190) 2.6570 4.0966 2.6935 4.6438 1.1577 3.9058
(0.941) (0.945) (0.945) (0.947) (0.955) (0.945)

(50,101,50) 2.7250 4.1689 2.7253 4.6949 1.2211 3.9374
(0.952) (0.946) (0.942) (0.939) (0.970) (0.961)

(190,10) 2.7505 4.2222 2.9723 4.7151 1.2978 3.9455
(0.965) (0.954) (0.949) (0.953) (0.966) (0.962)

40 20 (20,190) 2.6925 4.1017 2.7260 4.6702 1.1914 3.9348
(0.949) (0.947) (0.954) (0.945) (0.955) (0.963)

(201) 2.7322 4.1763 2.7398 4.6974 1.2671 3.9482
(0.960) (0.948) (0.962) (0.953) (0.954) (0.966)

(190,20) 2.7569 4.2583 2.7989 4.7194 1.3035 3.9818
(0.952) (0.956) (0.949) (0.951) (0.944) (0.946)

40 30 (10,290) 2.3322 3.9277 2.6123 4.3452 1.1297 3.6298
(0.947) (0.948) (0.961) (0.959) (0.956) (0.945)

(100,101,100) 2.4651 3.9658 2.7096 4.3701 1.1984 3.8698
(0.957) (0.948) (0.965) (0.943) (0.945) (0.947)

(290,10) 2.6376 4.1062 2.7326 4.4306 1.2034 3.8863
(0.945) (0.953) (0.941) (0.939) (0.955) (0.942)

50 40 (10,390) 1.7733 3.5792 1.8388 3.9629 1.0968 3.3384
(0.950) (0.943) (0.949) (0.946) (0.964) (0.941)

(150,101,150) 1.8724 3.6093 2.0194 4.0239 1.1158 3.3782
(0.955) (0.940) (0.941) (0.939) (0.945) (0.935)

(390,10) 2.1281 3.7378 2.3771 4.1756 1.1316 3.5862
(0.953) (0.941) (0.954) (0.940) (0.951) (0.939)

Note: Corresponding to each scheme, the first figure represents the average confidence interval
and credible interval lengths, with the corresponding coverage percentage reported below it in
parentheses.
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Table 4. Average values of the different estimators and the corresponding MSEs
when α = 0.5 and β = 1

n m Scheme MLE (MCMC) (Prior 0) (MCMC)(Prior 1)
α β α β α β

30 20 (10,190) 0.6137 1.1170 0.6248 1.1350 0.6109 1.0425
(0.0092) (0.0350) (0.0108) (0.0371) (0.0088) (0.0297)

(50,101,50) 0.6103 1.1773 0.6245 1.1698 0.6085 1.0135
(0.0098) (0.0374) (0.0113) (0.0388) (0.0093) (0.0310)

(190,10) 0.6065 0.9754 0.5434 1.1036 0.5307 0.9834
(0.0103) (0.0409) (0.0116) (0.0411) (0.0098) (0.0337)

40 20 (20,190) 0.5719 1.1641 0.6150 1.1485 0.5157 1.0657
(0.0093) (0.0361) (0.0110) (0.0382) (0.0091) (0.0299)

(201) 0.5038 1.0770 0.5356 1.0802 0.5028 1.0528
(0.0100) (0.0375) (0.0114) (0.0391) (0.0096) (0.0316)

(190,20) 0.5121 1.1720 0.5861 1.1736 0.5107 0.9866
(0.0114) (0.0413) (0.0123) (0.0427) (0.0102) (0.0353)

40 30 (10,290) 0.5967 1.1091 0.6102 1.1576 0.6047 1.0827
(0.0087) (0.0298) (0.0098) (0.0304) (0.0082) (0.0275)

(100,101,100) 0.5298 1.1067 0.5764 1.1774 0.5189 1.0494
(0.0095) (0.0311) (0.0103) (0.0314) (0.0089) (0.0287)

(290,10) 0.5968 1.15817 0.5424 1.1744 0.5137 1.0091
(0.0102) (0.0346) (0.0107) (0.0351) (0.0098) (0.0312)

50 40 (10,390) 0.5441 1.1539 0.5642 1.1694 0.5245 1.1132
(0.0079) (0.0215) (0.0083) (0.0229) (0.0073) (0.0211)

(150,101,150) 0.5250 1.2204 0.5542 1.2168 0.5150 1.1525
(0.0083) (0.0221) (0.086) (0.0259) (0.0081) (0.0222)

(390,10) 0.5886 1.1818 0.6078 1.0903 0.6085 1.0499
(0.0097) (0.0248) (0.0098) (0.0261) (0.0087) (0.0214)

Note: Corresponding to each scheme, the first figure represents the average estimates,with
the corresponding MSEs reported below it in parentheses.
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Table 5. Average confidence interval, credible interval lengths and the coverage
percentages when α = 0.5 and β = 1.

n m Scheme MLE (MCMC) (Prior 0) (MCMC)(Prior 1)
α β α β α β

30 20 (10,190) 1.0174 2.3867 1.0197 2.0963 1.0155 2.0884
(0.955) (0.949) (0.947) (0.943) (0.956) (0.945)

(50,101,50) 1.1194 2.4151 1.1136 2.4171 1.0167 2.0945
(0.954) (0.942) (0.961) (0.939) (0.956) (0.947)

(190,10) 1.1750 2.6012 1.2104 2.6348 1.0221 2.1279
(0.945) (0.937) (0.936) (0.941) (0.951) (0.944)

40 20 (20,190) 1.0181 2.3961 1.0201 2.0987 1.0162 2.0893
(0.954) (0.937) (0.961) (0.948) (0.952) (0.949)

(201) 1.0197 2.4157 1.0216 2.4195 1.0185 2.0959
(0.953) (0.949) (0.944) (0.937) (0.945) (0.936)

(190,20) 1.2195 2.8294 1.2254 2.8542 1.1796 2.4393
(0.947) (0.925) (0.943) (0.938) (0.941) (0.929)

40 30 (10,290) 1.0117 2.2732 1.0123 2.0906 1.0107 2.0758
(0.952) (0.948) (0.939) (0.941) (0.947) (0.934)

(100,101,100) 1.0184 2.3672 1.0189 2.3766 1.0172 2.0889
(0.957) (0.940) (0.963) (0.949) (0.952) (0.945)

(290,10) 1.2089 2.7861 1.2091 2.7936 1.1453 2.3296
(0.956) (0.936) (0.948) (0.939) (0.954) (0.948)

50 40 (10,390) 0.8307 1.5864 0.8592 1.6017 0.7871 1.4843
(0.945) (0.937) (0.946) (0.925) (0.941) (0.929)

(150,101,150) 0.8625 1.6346 0.9125 1.6364 0.8576 1.5379
(0.952) (0.939) (0.961) (0.949) (0.951) (0.945)

(390,10) 0.9251 1.7454 0.9635 1.7849 0.9131 1.6562
(0.961) (0.948) (0.952) (0.943) (0.954) (0.945)

Note: Corresponding to each scheme, the first figure represents the average confidence interval
and credible interval lengths, with the corresponding coverage percentage reported below it in
parentheses.

7. Conclusion

In this article, we have considered the maximum likelihood (ML), and Bayes estimates for the
parameters of the compound Rayleigh distribution CRD(α,β ) using progressive type-II censoring
scheme. Also, we develop different confidence intervals, namely the confidence intervals obtained
by using asymptotic distributions of the MLEs, two different bootstrap confidence intervals and the
symmetric credible intervals for the parameters of the CRD(α,β ). A simulation study was conducted
to examine and compare the performance of the proposed methods for different sample sizes, and
different censoring schemes. From the results, we observe the following.

(i) From the results obtained in Tables 2-5. It can be seen that the performance of the Bayes esti-
mators with respect to the noninformative prior (prior 0) is quite close to that of the MLEs.

Published by Atlantis Press 
Copyright: the authors 

120



Bayesian Estimation Based on Progressively Type-II Censored Samples

(ii) Tables 2-5 report the results based on informative prior, (prior 1) also in these case the results
based on using the Gibbs sampling procedure are quite similar in nature when comparing
the Bayes estimators based on informative prior clearly shows that the Bayes estimators
based on prior 1 perform better than the MLEs, in terms of both MSEs and lengths of the
confidence interval and credible interval.

(iii) From Tables 2-5, comparing the schemes (n−m, ...,0) and (0, ...,n−m), it is clear that the
MSEs, and average confidence interval lengths, credible interval lengths of the MLEs and
Bayes estimators for both parameters are greater for the censoring scheme (0, ...,n−m)

than the censoring scheme (n−m, ...,0). This may not be very surprising, because the
expected duration of the experiments is greater for censoring scheme (n−m, ...,0) than
for the censoring scheme (0, ...,n−m). Thus the data obtained by the censoring scheme
(n−m, ...,0) would be expected to provide more information about the unknown parameters
than the data obtained by censoring scheme (0, ...,n−m).
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