
An Ant Colony Optimization Approach for the Machine-Part Cell Formation Problem 

Mehdi Hosseinabadi Farahani* 
Department of Industrial Engineering, University of Kurdistan, Pasdaran Boulevard, Sanandaj, Iran 

Leila Hosseini 
Department of Industrial Engineering, University of Kurdistan, Pasdaran Boulevard, Sanandaj, Iran 

E-mail: leila.hosseini@uok.ac.ir 
 

 

 

Abstract 

In this paper, the problem of grouping machines and parts into cells (machine-part cell formation problem) is 
considered with the objective of minimizing grouping efficacy. An ant colony optimization algorithm is developed 
to solve such problem. In the proposed algorithm, solutions are constructed in a new manner, two heuristic 
algorithms are used to determine part families and machine cells and the similarity between parts is used as 
heuristic information. The proposed algorithm is experimented on 35 test problems from the literature which shows 
its advantage over existing algorithms. The algorithm improves the best known values of the grouping efficacy for 
5 problems. 

Keywords: Cellular manufacturing; Machine-part cell formation; Ant colony optimization; Heuristics; Grouping 
efficacy. 

                                                 
*Corresponding author. Tel./fax: +98-871-6660073; Email: mehdi.hosseinabadi@uok.ac.ir  

1. Introduction 

Cellular manufacturing (CM) as an application of group 
technology is concerned with the formation and 
operation of manufacturing cells in which a set of part 
families are processed using machine cells. One of the 
most important problems encountered in designing CM 
system is cell formation (CF), which deals with 
identifying machine cells and part families.1  

Many solution methods have been developed to 
solve the machine-part cell formation (MPCF) problem 
in which a given machine-part incidence matrix is 
modified to obtain machine cells and part families with 
the objective of minimizing inter-cellular movements 
and maximizing machines’ utilization. 

Similarity and dissimilarity coefficient based 
methods apply a measure based on the relationships 
between machines or parts and use an algorithm to 

group machines and parts into cells. Single linkage 
clustering (SLINK)2, complete linkage clustering 
(CLINK)3, and average linkage clustering (ALINK)4 
are some of these algorithms. Yasuda and Yin have 
proposed5 an approach based on the calculation of an 
Average Voids Value (AVV) that exploits a 
dissimilarity coefficient to group machines. 

Array based methods are based on rearrangement of 
rows and columns of the machine-part incidence matrix 
to obtain a block diagonal structure. Rank order 
clustering algorithm, the most popular array based 
method, has been developed by King6 and been 
improved by King and Nakornchai7, Chan and Milner8 
and Chandrasekharan and Rajagopalan9. 

Nonhierarchical clustering algorithms presented 
firstly by Chandrasekharan and Rajagopalan10 have 
been improved in ZODIAC11 and GRAFICS12 which 
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are relatively efficient among cluster analysis 
algorithms. 

Graph partitioning approaches consider machines 
and parts as nodes and the processing of parts as arcs. 
In order to identify machine cells and part families, 
these methods aim at obtaining disconnected subgraphs 
from the machine-part graph. Kumar et al. have 
considered13 the MPCF problem as a graph 
decomposition problem with fixed number of groups. 
Vannelli and Kumar have shown14 that the minimal 
bottle-neck cell is equivalent to minimal cut-node 
problem and used a heuristic to find minimal bottle-
neck cells and to determine machines to be duplicated. 
Askin et al. have solved15 a Hamiltonian path problem 
to determine machine cells and part families, and Ng 
has used16 the minimum spanning tree approach to 
solve the problem. Oliveira et al have presented17 a 
bipartite graph modeling with a graph clustering 
algorithm for determining machine cells and part 
families in the CM systems. 

Some studies have been devoted to solve the MPCF 
problem as a mathematical programming optimization 
problem. P-median model has been suggested by 
Kusiak18 and Won19. Integer programming models have 
been proposed by Choobineh20 and Gunasingh and 
Lashkari21. Shtub22 and Srinivasan et al.23 have modeled 
the problem as an assignment problem.  

The CF problem is non-deterministic polynomial 
(NP) complete problem24 and consequently traditional 
optimization methods are incompetent to solve the large 
scale problems optimally within a reasonable amount of 
time. Therefore, metaheuristic methods have been used 
widely for solving the CF problem. Cheng et al. have 
formulated25 the problem as a traveling salesman 
problem (TSP) and developed a GA to solve it. 
Onwubolu and Mutingi have considered26 minimization 
of cell-load variation as well as intercellular 
movements, and developed a GA to solve the problem. 
Wu et al. have presented27 a tabu search method that 
uses long-term memory mechanism as well as dynamic 
tabu tenure. Goncalves and Resende24 have combined 
GA with a local search heuristic to obtain product-
machine groups. Muruganandam et al. have 
developed28 a memetic algorithm with the objective of 
minimizing total number of moves as well as 
minimizing cell load variation. Stawowy has 
developed29 a non-specialized and non-hybridized 
evolutionary strategy for the problem. James et al. have 

combined30 grouping GA with the local search heuristic 
proposed by Goncalves and Resende24 to determine part 
families and machine cells. Wu et al. have proposed31 a 
simulated annealing (SA) algorithm. Tariq et al. have 
proposed32 a GA combined with a local search 
heuristic. Wu et al. have presented33 an approach based 
on SA that exploits mutation operator from GA. 
Mahdavi et al. have presented34 a model for the 
problem with the objective of minimizing exceptional 
elements and number of voids in cells, and developed a 
GA to solve the model for real sized problems. Yang 
and Yang have proposed35 a neural learning algorithm 
based on modified adaptive resonance theory to solve 
the MPCF problem. Spiliopoulos and Sofianopoulou 
have provided36 an ant colony optimization approach to 
form part families and machine groups. Hung et al have 
proposed37 a novel procedure based on a fuzzy 
relational data clustering algorithm for solving the 
manufacturing cells design problem. 

In this paper, an ant colony optimization (ACO) 
algorithm is presented to solve the MPCF problem. In 
the proposed ACO algorithm, in contrast to most of 
previously developed metaheuristics for the MPCF 
problem, the solution is encoded by a permutation of all 
parts which is more relevant for ACO implementation. 
Two heuristic procedures are used for determining part 
families and machine cells based on the sequence of 
parts constructed by each ant. Heuristic information is 
defined effectively based on similarity between parts. 
Computational experiments on 35 test problems from 
the literature demonstrate the effectiveness and 
robustness of the algorithm. 

The remainder of this paper is organized as follows: 
in section 2, problem definition and performance 
measure are described. In section 3, the ACO algorithm 
for the MPCF problem is presented. In section 4, 
computational experiments are conducted and reported. 
Section 5 concludes the paper.   

2. Machine-part cell formation problem 

Machine-part cell formation problem can be defined as 
a block diagonalization problem by using a 0-1 
machine-part incidence matrix A. The element Aij 
equals to 1 if part j (1,..., n) needs to be processed by 
machine i  (1,..., m)  and 0 otherwise. Fig. 1 shows an 
example of machine-part incidence matrix in which 
rows and columns of the matrix state for machines and 
parts respectively.  
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Fig. 1. Initial machine-part incidence matrix 
 

The block diagonalization problem aims at 
minimizing the number of 1s in the off-diagonal blocks 
as well as the number of 0s in the diagonal blocks by 
rearranging rows and columns of matrix A. In the ideal 
situation the solution is a perfect block diagonal matrix 
that the number of 1s in the off-diagonal blocks and the 
number of 0s in the diagonal blocks are equal to zero 
(See Fig. 2). This implies the minimum intercellular 
movements and the maximum utilization of machines. 
 

 
 
 
 
 
 
 

Fig. 2. Perfect block diagonal matrix 
 

The quality of a solution to this problem is 
determined by a specified performance measure. One of 
the most prevalent measures that have been used 
commonly in the literature is grouping efficacy (GE).38 

 0 ,
v

e e
GE

e e

−
=

+
 (1) 

where e is the total number of 1s, e0 is the number of 
exceptional elements, i.e., 1s in the off-diagonal blocks, 
and ev is the number of voids, i.e., 0s in the diagonal 
blocks. 

3. The proposed ACO algorithm 

ACO as a metaheuristic method has been widely used 
for solving the combinatorial optimization problems 
(e.g. see Refs. 39 and 40). ACO is based on the 
foraging behavior of real ants to find the shortest path 
from the nest to the food. Ants are social insects which 

live in colonies. They prefer the benefit of their colony 
to their individual benefits. Since real ants have not 
visual ability, communicate among each other using a 
chemical substance called pheromone deposited on 
their paths.  An ant that selects the shorter path will get 
to the food and back more quickly than one that selects 
the longer path. Hence, shorter paths have higher 
amount of pheromone and will be chosen by following 
ants with higher probability. 

In the proposed algorithm, each artificial ant 
probabilistically constructs an order of parts using 
pheromone trails and heuristic information defined by 
similarity between parts. A heuristic procedure is 
applied to determine part families based on the order of 
parts constructed by each ant. Machines are then 
assigned to cells with respect to the parts assignment 
using a heuristic algorithm. The best found solution of 
any iteration is improved by means of local search 
algorithm. Furthermore, the pheromone trails are 
modified during the execution of the algorithm through 
local and global updating rules, and also limited 
between lower and upper bounds. The global structure 
of the proposed algorithm is presented as follows: 
Step 1. Set parameters and initialize pheromones trails. 
Step 2. While the stop condition is not met, do the 

following: 
2.1. For each artificial ant, do: 

2.1.1. Construct a solution and apply local 
updating rule to update pheromone 
trails. 

2.1.2. Assign parts to cells. 
2.1.3. Assign machines to cells based on parts 

assignment. 
2.2. Implement local search. 
2.3. Update the pheromone trails by applying 

global update rule, while updating the 
pheromone trails, also limit them. 

Step 3. Return the best solution found. 

3.1. Solution Construction 

A set of artificial ants is created. Each ant starts with a 
part selected randomly and successively appends a part 
that has not been already selected, to the partial solution 
until a feasible solution is constructed (i.e., all parts are 
selected). Both heuristic information and pheromone 
intensity are used to build solutions by the artificial 
ants. Choosing part j to be appended to the partial 

Machine 
Part 

1 2 3 4 
1 1  1  
2 1  1  
3  1  1 
4 1  1  
5 1  1  
6  1  1 

Machine 
Part 

2 4 1 3 
3 1 1   
6 1 1   
5   1 1 
4   1 1 
1   1 1 
2   1 1 
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solution after part i is based on ant colony system as 
follows41: 

First, q is generated according to the uniform 
distribution U[0,1]. If q≤q0, where q0 is a parameter 
between 0 and 1 determining the relative preference of 
exploitation to exploration, then,  

 ( ) ( )arg max{[ , ] [ , ] },t
v V

j i v i vα βτ η
∈

=       (2) 

otherwise, part j is appended to the partial solution 
according to the following selection probability: 

 
[ ( , )] [ ( , )]

( , )
[ ( , )] [ ( , )]

,
v V

t

t

i j i j
p i j

i v i v

α β

α β

τ η
τ η

∈

=
∑

 (3) 

where V is the set of all non-appended parts, τt(i,v) is 
the pheromone trail between part i and part v at iteration 
t of the algorithm, α is a parameter which determines 
relative importance of the pheromone trail. η(i,v) is the 
desirability of setting part v after part i in a partial 
solution based on heuristic information and β is a 
parameter which determines relative importance of the 
heuristic information. Heuristic information is 
calculated based on Jaccard’s similarity coefficient 
which is defined for parts i and v as follow42: 

 ( ), ,x
i v

x y z
η =

+ +
 (4)                         

where x is the number of machines visited by both 
parts, y is the number of machines visited by part i not 
part v and z is the number of machines visited by part v 
not part i.  

3.2. Local pheromone update 

Local pheromone update is performed after each 
solution is constructed by an ant in order to prevent 
from premature convergence by reducing the amount of 
pheromone on the corresponding path and to discourage 
following ants from selecting the same path. In the 
proposed algorithm the following local pheromone 
update rule is applied. 

 ( , ) (1 ). ( , ),t ti j i jτ ρ τ′= −  (5) 

where ρ́ is a parameter between 0 and 1. 
The applied local pheromone update rule leads the 

searching procedure to unvisited areas by increasing 
diversification more than standard ant colony system. 
Before executing the global pheromone update, the 

changes resulted from local pheromone update are 
removed. 

3.3. Determining part-families 

After the sequence of parts is specified by an ant, a 
heuristic method is applied to determine part families. 
The global procedure of determining part families is 
presented below. 
Step 1. Calculate the similarity coefficient between 

each part and its immediately following part in 
the solution constructed by an ant.  

Step 2. Consider (C-1) lowest calculated numbers in 
Step1 and specify the position of associated 
parts (C is the number of cells).  

Step 3. Determine cells based on the specified position 
numbers in step2. Starting from the part placed 
at the first position, assign parts one by one to 
cell 1, until the lowest specified position 
number in Step2. By starting from the next part, 
assign parts one by one to cell 2, until the 
second lowest specified position number in 
Step2 and so on.  

3.4. Determining machine-cells 

After determining part- families, we need to determine 
machine-cells to have a complete solution. Each 
machine i is assigned to a cell c in which the most 
grouping efficacy estimation is obtained according to 
the following formula: 

 ,
,

,

1
2

,i i c
i c

i i c

ones onesout
GEE

ones zerosin
−

=
+

 (6) 

where 

 
1

1

1 ,
i

i k
k

ones ones onesout
−

=

= −∑  (7) 

 
1

1

2 ,
i

i k
k

ones ones zerosin
−

=

= +∑  (8) 

and onesouti,c is the number of 1s related to machine i 
in the off-diagonal blocks if it is assigned to cell c, 
zerosini,c is the number of 0s related to machine i in the 
diagonal blocks if it is assigned to cell c, ones is the 
total number of 1s in the machine-part incidence 
matrix, onesoutk is the number of 1s related to 
previously assigned machine k in the off-diagonal 
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blocks with regard to its cell and zerosink is the number 
of 0s related to machine k in the diagonal blocks. 

However, the machine assignment determined by 
the above procedure may be infeasible. In other words, 
it is possible that at least one cell has no machine 
assigned to it. In the case of infeasibility, a heuristic 
method is used. For each cell containing no machine, 
by starting from the smallest index, among machines 
that there is at least another machine in their 
corresponding cell, a machine is chosen that its 
assigning to the cell maximizes the grouping efficacy 
calculated from Eq.(1). The selected machine is then 
assigned to the cell. 

3.5. Local Search 

In the proposed algorithm, local search is applied to the 
best found solution of any iteration. The employed local 
search is given by Tariq et al.32 This local search works 
by checking that if any changes in machine assignment 
or part assignment improves the GE. In particular, 
starting from machine 1, each machine is assigned to 
different cells and when an improvement occurs, the 
change is recorded. The same procedure is applied to 
parts. The cycle of local improvement is started all over 
again until no further improvement is recorded. 

3.6. Global pheromone update 

Global updating is performed to make the search more 
directed. At the end of each iteration t, the following 
global updating rule is applied to the pheromone trails: 

 *
1( , ) (1 ) ( , ) ( ),t ti j i j H GEτ ρ τ ρ+ = − +  (9)    

where ρ (0≤ ρ ≤1) is the evaporation rate and H is a 
non-negative parameter employed to manage the 
change of the pheromone intensities. The parameter H 
has been set to 1 for the edges between each two parts 
assigned to same cell in the global best solution, i.e., 
the best solution found so far, and to 0 for the others; 
accordingly, the pheromone trails between each two 
parts assigned to different cells in the global best 
solution are only evaporated. 

In the beginning of the first iteration, initial 
pheromone values of all paths are set 1. The pheromone 
values of all paths are always limited between two 
boundaries τmin and τmax which are calculated based on 
the following formula: 

 *
max ,GEτ ρ=  (10) 

 min max0.0001 .τ τ=  (11) 

It is obvious that the above boundaries are updated 
only when a solution better than the global best solution 
is obtained. 

4. Computational experiments 

The proposed ACO algorithm has been coded in Visual 
C++ and implemented on a 2.00 GHz PC with 2 GB 
memory. To determine the best values of parameters, a 
series of pilot experiments were conducted. The 
following results have then been achieved: 50 artificial 
ants in the colony, ρ = 0.01, ρ́ = 0.01, α = 5, β = 0.9 and 
q0 = 0.7. The algorithm terminates after 1000 iterations 
or 30 consecutive iterations with no improvement, 
depending on which criterion is satisfied first.  

To evaluate the performance of the algorithm, a set 
of 35 problems from the literature where the size of 
matrices ranges from 5×7 through 40×100 have been 
tested. The sources of data sets are demonstrated in 
Table 1. 

The computational results of the proposed ACO 
algorithm are shown in Table 2, which gives the 
minimum, the average, the maximum, the standard 
deviation of the obtained grouping efficacies and the 
average computation time found over 10 runs for each 
instance. 

Considering the results shown in Table 2, it is seen 
that the new approach, for 5 instances, finds solutions 
better than the best known solutions and, for 23 test 
problems, solutions equal to the best known ones. The 
average computation times are extremely low and never 
exceed 8.60 seconds for all test problems. Also, the 
standard deviation is 0 for 16 problems and at most 
0.71, which indicates the high robustness of the 
algorithm. The trade-off between intensification and 
diversification is the key point to achieve good results 
in different runs of a search algorithm.43 In the 
proposed algorithm, this trade-off is obtained by using a 
well-defined heuristic information and an effective 
local search algorithm to reinforce the intensification of 
the algorithm as well as defining upper and lower limits 
for the pheromone values and using a strategy in the 
local pheromone update to increase the diversification 
of the algorithm.  
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Table 1.  Data sources 

No. Problem Source Size 

1 King and Nakornchai7 5×7 

2 Waghodekar and Sahu46 5×7 

3 Seifoddini47 5×18 

4 Kusiak and Cho48  6×8 

5 Kusiak and Chow49 7×11 

6 Boctor 50 7×11 

7 Seifoddini and Wolfe 51 8×12 

8 Chandrasekharan and Rajagopalan9   8×20 

9 Chandrasekharan and Rajagopalan10  8×20 

10 Mosier and Taube52  10×10 

11 Chan and Milner8 10×15 

12 Askin and Subramanian53  14×24 

13 Stanfel54 14×24 

14 McCormick et al.55 16×24 

15 Srinivasan et al.23 16×30 

16 King6 16×43 

17 Carrie56 18×24 

18 Mosier and Taube57 20×20 

19 Kumar et al.13 20×23 

20 Carrie56 20×35 

21 Boe and Cheng58 20×35 

22 Chandrasekharan and Rajagopalan59 24×40 

23 Chandrasekharan and Rajagopalan59 24×40 

24 Chandrasekharan and Rajagopalan59 24×40 

25 Chandrasekharan and Rajagopalan59 24×40 

26 Chandrasekharan and Rajagopalan59 24×40 

27 Chandrasekharan and Rajagopalan59 24×40 

28 McCormick et al.55 27×27 

29 Carrie56 28×46 

30 Kumar and Vannelli60 30×41 

31 Stanfel54 30×50 

32 Stanfel54 30×50 

33 King and Nakornchai7 36×90 

34 McCormick et al.55 37×53 

35 Chandrasekharan and Rajagopalan11 40×100 

 
The results are compared to some well-known 

methods reported in the literature, including  
ZODIAC11, GRAFICS12,MST44, GATSP25, GP45, GA26, 
EA24, ES29, HGGA30, HGA32, GA*34, SA31 and HHA33. 

ZODIAC, GRAFICS, MST, and EA do not allow 
Singletons, i.e., cells containing only one machine or 
only one part, which can degrade solution quality. HHA 
has reported solutions in the both cases. 

The best grouping efficacies obtained by the 
algorithms that allow singletons reported in the 
literature are shown in Table 2. As seen, the proposed 
algorithm outperforms GATSP, ES and HGA for all 
problem instances. 

In GP, 17 problems have been considered; for 14 
problems solutions found by the new approach are 
better and for 2 problems are equal. Since GP has 
reported only three significant digits, possibly the 
rounding error causes the slight better solution for 
problem 25. In GA, 25 problems have been considered; 
the new approach obtains better solutions for 20 
problems and equal solutions for 4 problems. For 
problem 16, GA has reported a solution which is 
inconsistent with that of the other approaches.  

In comparison with HGGA, the proposed approach 
finds better solutions for 7 problems and the same 
solutions for 21 test problems. From the detailed results 
reported by HGGA, it seems that, for problems 1 and 
16, the used data is inconsistent with those used in this 
study, and for problems 27 and 30, the grouping 
efficacy values is not consistent with the reported 
solutions. In GA*, 22 problems have been considered; 
for 4 problems solutions found by the new approach are 
better and for 15 problems are equal. 

In SA and HHA, 25 problems have been 
considered. In comparison with SA, better solutions 
have been achieved by the new approach for 10 
problems while for 14 problems, solutions are equal. In 
comparison with HHA, the new approach achieves 
better solutions for 5 problems and the same solutions 
for 18 test problems. For problem 31, SA and HHA 
outperform our approach, but, from the data reported by 
HHA, the used data is clearly different. 

In order to have a fair comparison, the proposed 
algorithm has also been run 10 replicates on each 35 
instances by considering the constraint of having no 
singleton. The results are shown in Table 3. 

The best grouping efficacies obtained by the 
algorithms that do not allow singletons, reported in the 
literature are also shown in Table 3. It can be observed 
from Table 3 that the proposed algorithm finds the best 
overall solutions for 6 instances and solutions equal to 
the best known ones for 20 test problems.  
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Table 2.  Results in the case where singletons are allowed. 

No. 
Size 

(m×n) GATSP GP GA ES HGGA SA HGA GA* HHA 

New Approach 
No. 
of 

Cells Min. Avg. Max. 
St. 
dev 

Avg. 
Time 

(s) 

1 5×7 73.68 82.35 73.68 2 73.68 73.68 73.68 0.00 0.00 

2 5×7 68 62.5 60.87 69.57 69.57 69.57 69.57 69.57 2 69.57 69.57 69.57 0.00 0.00 

3 5×18 77.36 77.36 79.59 79.59 79.59 79.59 79.59 79.59 2 79.59 79.59 79.59 0.00 0.02 

4 6×8 76.92 76.92 76.92 76.92 76.92 76.92 76.92 2 76.92 76.92 76.92 0.00 0.00 

5 7×11 46.88 50 53.13 60.87 60.87 58.62 60.87 60.87 5 60.87 60.87 60.87 0.00 0.04 

6 7×11 70.37 70.37 70.37 70.83 70.83 70.37 70.83 70.83 4 70.83 70.83 70.83 0.00 0.02 

7 8×12 68.29 69.44 68.3 4 69.44 69.44 69.44 0.00 0.03 

8 8×20 85.24 85.2 85.24 85.25 85.25 85.25 85.25 85.25 85.25 3 85.25 85.25 85.25 0.00 0.04 

9 8×20 58.33 58.7 55.91 58.72 58.72 58.41 58.72 58.72 58.72 2 58.72 58.72 58.72 0.00 0.11 

10 10×10 70.59 72.79 70.59 75 75 70.59 75 75 5 75.00 75.00 75.00 0.00 0.01 

11 10×15 92 92 92 92 92 92 92 92 92 3 92.00 92.00 92.00 0.00 0.01 

12 14×24 69.86 72.06 70.83 7 72.06 72.06 72.06 0.00 0.03 

13 14×24 67.44 71.8 63.48 69.33 71.83 71.21 70.51 71.83 71.83 7 71.43 71.51 71.83 0.17 0.35 

14 16×24 51.96 52.75 51.96 8 52.22 52.89 53.26 0.36 0.44 

15 16×30 67.83 68.99 67.83 6 67.44 68.55 68.99 0.71 0.39 

16 16×43 53.89 86.25 54.86 57.53 52.44 54.86 56.13 56.38 8 55.13 55.59 56.55 0.50 1.13 

17 18×24 54.46 57.73 54.95 9 56.07 57.15 57.73 0.59 0.33 

18 20×20 37.12 34.16 42.96 43.18 41.04 43.45 42.94 43.26 5 42.66 43.12 43.45 0.23 0.38 

19 20×23 46.62 49 39.02 49.65 50.81 50.81 49.65 50.81 7 50.00 50.52 50.81 0.27 0.64 

20 20×35 75.28 76.7 66.3 76.14 77.91 78.4 76.14 77.9 78.4 5 78.40 78.40 78.40 0.00 0.31 

21 20×35 55.14 56.8 44.44 58.06 57.98 56.04 58.38 57.61 5 57.53 58.27 58.38 0.27 0.53 

22 24×40 100 100 100 100 100 100 100 100 100 7 100.00 100.00 100.00 0.00 0.10 

23 24×40 85.11 85.1 85.11 85.11 85.11 85.11 85.11 85.11 85.11 7 85.11 85.11 85.11 0.00 0.11 

24 24×40 73.03 73.5 73.03 73.51 73.51 73.51 73.51 73.51 73.51 7 73.51 73.51 73.51 0.00 0.12 

25 24×40 49.37 53.3 37.62 51.88 53.29 52.44 52.5 52.87 53.29 11 52.38 52.87 53.29 0.28 3.11 

26 24×40 44.67 47.9 34.76 46.95 48.95 47.13 46.84 48.95 48.63 12 48.00 48.41 48.61 0.21 4.47 

27 24×40 42.5 43.7 34.06 44.85 47.26 44.64 44.85 47.26 46.15 12 45.21 45.73 46.26 0.37 3.55 

28 27×27 54.27 54.02 54.31 6 54.52 54.66 54.77 0.12 0.32 

29 28×46 44.78 46.91 46.43 10 45.88 46.54 47.06 0.44 4.48 

30 30×41 53.8 60.7 40.96 58.72 63.31 62.42 60.74 62.59 15 61.15 61.72 62.77 0.49 6.68 

31 30×50 56.61 59.4 48.28 59.66 59.77 60.12 59.66 60.12 60.12 13 57.80 58.70 59.66 0.63 4.36 

32 30×50 45.93 50 37.55 50.51 50.83 50.51 50.51 50.83 50.83 14 50.00 50.17 50.83 0.27 5.11 

33 36×90 43.35 46.35 44.67 17 44.27 44.82 45.30 0.31 8.60 

34 37×53 56.42 60.64 59.6 3 60.08 60.33 61.00 0.30 3.56 

35 40×100 84.03 84 83.9 84.03 84.03 84.03 84.03 84.03 84.03 10 84.03 84.03 84.03 0.00 1.09 
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Table 3.  Results in the case where singletons are not allowed. 

No. 
Size 

(m×n) ZODIAC GRAFICS MST EA HHA 

New Approach 
No. of 
Cells Min. Avg. Max. 

St. 
dev 

Avg. 
Time (s) 

1 5×7 73.68 73.68 73.68 73.68 2 73.68 73.68 73.68 0.00 0.01 

2 5×7 56.52 60.87 62.5 62.50 2 62.50 62.50 62.50 0.00 0.01 

3 5×18 79.59 79.59 2 79.59 79.59 79.59 0.00 0.02 

4 6×8 76.92 76.92 2 76.92 76.92 76.92 0.00 0.00 

5 7×11 39.13 53.12 53.13 53.13 3 53.13 53.13 53.13 0.00 0.01 

6 7×11 70.37 70.37 3 70.37 70.37 70.37 0.00 0.01 

7 8×12 68.3 68.3 68.3 68.29 3 68.29 68.29 68.29 0.00 0.01 

8 8×20 85.24 85.24 85.24 85.25 85.25 3 85.25 85.25 85.25 0.00 0.02 

9 8×20 58.33 58.13 58.72 58.72 58.72 2 58.33 58.55 58.72 0.18 0.07 

10 10×10 70.59 70.59 70.59 70.59 70.59 3 70.59 70.59 70.59 0.00 0.01 

11 10×15 92 92 92 92 3 92.00 92.00 92.00 0.00 0.02 

12 14×24 64.36 64.36 64.36 69.86 69.86 5 66.25 66.25 66.25 0.00 0.05 

13 14×24 65.55 65.55 69.33 69.33 5 69.33 69.33 69.33 0.00 0.03 

14 16×24 32.09 45.52 48.7 52.58 51.96 6 50.56 51.59 52.27 0.75 1.10 

15 16×30 67.83 67.83 67.83 67.83 67.83 4 67.83 67.83 67.83 0.00 0.07 

16 16×43 53.76 54.39 54.44 54.86 54.60 6 53.57 54.27 55.21 0.53 0.82 

17 18×24 41.84 48.91 44.2 54.46 54.46 6 53.15 54.12 54.46 0.50 0.49 

18 20×20 21.63 38.26 42.96 42.96 5 41.91 42.51 42.96 0.38 0.45 

19 20×23 38.66 49.36 43.01 49.65 49.65 5 49.30 49.55 49.65 0.17 0.21 

20 20×35 75.14 75.14 75.14 76.22 76.22 5 75.61 75.80 76.54 0.39 0.44 

21 20×35 58.07 57.61 5 56.48 57.54 58.15 0.54 1.09 

22 24×40 100 100 100 100 100 7 100.00 100.00 100.00 0.00 0.10 

23 24×40 85.1 85.1 85.11 85.11 85.11 7 85.11 85.11 85.11 0.00 0.11 

24 24×40 37.85 73.51 73.51 73.51 73.51 7 73.51 73.51 73.51 0.00 0.11 

25 24×40 20.42 43.27 51.81 51.97 51.97 9 49.04 50.09 51.87 0.87 2.82 

26 24×40 18.23 44.51 44.72 47.06 47.33 11 44.74 45.77 46.67 0.50 4.23 

27 24×40 17.61 41.67 44.17 44.87 44.87 10 41.25 42.67 43.75 0.78 4.06 

28 27×27 52.14 47.37 51 54.27 54.27 4 53.99 54.20 54.31 0.11 0.63 

29 28×46 33.01 32.86 40 44.62 45.31 10 44.40 44.83 45.56 0.38 4.35 

30 30×41 33.46 55.43 55.29 58.48 59.52 10 57.14 57.79 58.19 0.40 3.58 

31 30×50 46.06 56.32 58.7 59.66 60 12 55.08 56.12 58.43 1.14 4.43 

32 30×50 21.11 47.96 46.3 50.51 50.51 11 48.52 49.70 50.51 0.58 6.99 

33 36×90 32.73 39.41 40.05 42.12 44.59 12 39.39 41.05 42.34 0.87 10.76 

34 37×53 52.21 52.21 56.42 59.04 3 59.16 59.60 60.56 0.38 4.96 

35 40×100 83.92 83.92 83.66 84.03 84.03 10 84.03 84.03 84.03 0.00 3.19 
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5. Conclusion 

In this paper, an ant colony optimization algorithm is 
proposed for the machine-part cell formation problem. 
In the developed algorithm, solutions are constructed by 
a new procedure and Jaccard similarity coefficient is 
used as heuristic information. The algorithm not only 
improves the best known values of the grouping 
efficacy for 5 out of 35 problems from the literature but 
also shows an excellent performance in computation 
time. According to the very low diversity among 
solutions found in different runs, the robustness of the 
algorithm is remarkable. 
      In the proposed algorithm, in order to have a fair 
comparison with other methods, the number of cells for 
each test problem has been considered to be a 
predetermined number. Developing methods for 
determining machine cells and part families where the 
number of cells is not predetermined may cause 
improvement in the grouping efficacy. Furthermore, 
applying the proposed ACO algorithm with some 
modifications to other grouping and clustering 
problems is an attractive aspect for future research. 
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