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Abstract 

The paper discusses the stability of workpiece-fixture system and quantitative optimization of clamping forces 
during precise machining. Based on the force screw theory and the minimum norm principle, a mathematical model 
is formulated to calculate the entire passive forces acting on the workpiece. Furthermore, a new methodology to 
optimizing clamping forces is put forward, on the criteria of keeping the stability of workpiece during cutting 
process. By this way, the intensity of clamping forces is decreased dramatically, which is the most beneficial in 
improving machining quality of thin-walled machined parts. Finally, a case study is made to support and validate 
the proposed model. 
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1. Introduction 

Clamping force has a critical influence on the stability 
of workpiece-fixture system and machining precision of 
thin-walled part. An excessive clamping force may 
cause workpiece-fixture system’s deflection and lower 
machining precision as a result, while small clamping 
force may result in workpiece’s slippage and lower 
machining precision as well. Perfect clamping force 
should keep the force acting on the workpiece by 
locators positive, and lead to smaller workpiece 

deformation. However, clamping force is roughly 
estimated based on operator’s experience in practice, 
creating random of force amplitude. Therefore, the 
quantitative optimization of clamping forces plays 
important role in the design of workpiece-fixture 
system9,10. 
The optimization of clamping force is one of the most 
important aspects in the field of machining technology. 
Edward from Pennsylvanian State University optimized 
the pre-clamping force from the point of the stiffness of 
workpiece-fixture system.1 B. Li optimized the 
clamping forces aimed at minimizing the virtual work of 
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clamping force acting on the workpiece and fixture 
system.2 In order to keep the flatness of face milling 
process, Ying Huang optimized the side clamping 
force.3  
In this paper, the work force screw theory and the 
minimum normal force theory are used to establish the 
mechanical model of the workpiece-fixture system. 
Later clamping force is optimized aiming at minimizing 
normal force acting on the workpiece and constraining 
the stability of workpiece fixture system. Finally, a case 
study is made to prove the method. 

2. Mechanical model of workpiece-fixture 
system 

2.1. Introduction of force screw for workpiece 

Three coordinate systems are used to analyze the force 
system of workpiece during cutting process, which are 
Global Coordinate System (GCS), Workpiece 
Coordinate System (WCS), and Locator Coordinate 
System (LCS). GCS is a fixed coordinate in three -
dimension space and used as a reference coordinate for 
others. Variable under this coordinate system is marked 
as G, on its up side right. WCS is fixed on the 
workpiece and is used to indicate the orientation of the 
workpiece. Variable under this coordinate system is 
marked as W, on its upside right. LCS is defined at 
every locating point. Variable under this coordinate 
system is marked as L, on its upside right. Coordinates 
transferring among three coordinate systems can be 
performed by certain transfer matrix. 
Any force screw is able to be decomposed in three 
coordinate’s axis.4,5 Given a force GF acting on the 
workpeice at point  G

z
G
y

G
x PPP ,,  (shown in Fig.1), the 

force screw caused by GF  in GCS axis is: 
 












































































G

z

G
y

G
x

G
x

G
y

G
x

G
z

G
y

G
z

G
z

G
y

G
x

G
z

G
y

G
x

F

F

F

PP

PP

PP

M

M

M

F

F

F

0

0

0

100

010

001

W          (1) 

 

Where W is the force screw. G
z

G
y

G
x ,F,FF are the 

decomposed forces. G
z

G
y

G
x ,M,MM are moments around 

three axis. 
According to the force screw theory,6 the sum of all 
force screw acting on any balanced rigid body should be 
zero in three-dimension space. Namely: 
 

  0W                                    (2) 

2.2. The establishment of mechanical model for 
workpiece -fixture system 

2.2.1. Contact mechanical model for workpiece 

(i) Contact mechanical model for point contact 
The contacts between workpiece and fixture can be 
dealt as point contact at larger, as shown in Fig.2. 
Actually, there are friction forces existing between the 
workpiece and locators (or clamp elements’ accessorial 
support).7 So, the contact forces under the LCS acting 
on the workpiece can be written as: 
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L
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L
ix FFF ][FL

i   ),,2,1( ni                (3) 

 
There: L

iF is contact force vector that the ith 
locator acting on the workpiece. L

izF  is the 
normal force of the ith locator acting on the 
workpiece; whereas L

ixF  and L
iyF  are the 

decomposed friction forces along the x and y 
axis and n  is the number of the locators. 
If the workpiece is in stability then there is no slippage 
between the workpiece and locators. Thus, the normal 
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Fig. 1.  Schematic of workpiece force screw 
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force and friction force should be in accord with 
Coulomb static friction theory: 
 

222 )()()( L
iz

L
iy

L
ix FFF                         (4) 

Where   is friction factor between the workpiece and 

the locator. Coulombs static friction theory is also 
applicable for the contact forces at clamping point on 
workpiece: 
 

),2,1()()()( 222 mjFFF L
jz

L
jy

L
jx       (5) 

There L
jzF  is normal clamping force, m is the number 

of clamp elements. So, by the transfer matrix they can 
be transferred into GCS: 
 

L
i

L
iG

G
i FTF 

                                 (6) 
 

Where G
iF  is the total acting force of the ith locator 

acting on the workpiece under GCS. L
iGT  is the transfer 

matrix from the ith LCS to GCS. 
 
(ii) Contact mechanical model for pin locator 
No friction force exists, when pin locator is used. Short 
pin locator is discussed here. In general short round pin 
and short diamond pin are used together. The following 
method is used to determine the force direction acting 
on the workpiece: 
The short round pin can provide two direction forces. 
The first called x is from the intersection point between 

the center line of the round pin and underside of the 
workpiece. It points to the intersection point between 
the center line of the diamond pin and underside of the 
workpiece. The second called y is on the same 
intersection point and perpendicular to the former (x, y 
are shown in fig.3). Direction of the forces for short 
diamond pin acting on the workpiece is parallel to y. So, 

L
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O

 

Fig. 2.  Contact force model between the locator and 
workpiece.  

 

Fig. 3.  Schematic of pin locator contact forces 
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the force from short round pin under the LCS can be 
written as : 
 

 TL
jF L

jy
L
jx FF  ),,2,1( mj           (7) 

 
And the force from short diamond pin under the LCS 
should be : 
 

L
jyFL

jF   ),,2,1( mj                         (8) 

 
They can be transferred to GCS by the transfer matrix 
respectively. 

2.2.2. Mechanical analysis for workpiece 

For general prism workpiece, there must be at least one 
clamping element and six locating elements to 
constraint its freedom and to keep the system in the 
stability. Given the friction is considered for m 
clamping elements and n locating elements, they will 
have )32( nm   passive forces acting on the workpiece 
at all clamping element and locating elements. As the 
number of passive forces will be more than 6, the 
workpiece will be statically undermined. The 
conventional methodology–static equilibrium equations 
cannot be used to calculate the intensities of the reaction 
forces imposing on the workpiece.  
According to the rigid body mechanics, the workpiece 
and fixture contact force problem can be resolved by 
employing the principle of minimum norm.8 This 
principle essentially states that for all possible 
equilibrium forces of a rigid body subjected to 
prescribed loading, the unique force solution compatible 
to the equilibrium renders a minimum force norm. As 
the force normal is the square of the forces, so the 
normal force theory is used to resolve the reaction force 
acting on the workpiece. 
During machining process, workpiece must be in the 
stability by the combined action of active force (usually 
known) and passive force (unknown), so the forces 
acting on the workpiece must be a balanced force 
system. The active force includes cutting force, 
clamping force and gravitation and these forces can be 
called external forces. Passive forces include normal 
forces from locating elements, friction forces between 
the workpiece and clamping elements, workpiece and 

locating elements and these forces can be called internal 
force. All the internal forces make up reaction forces. 
So, by invoking the minimum normal principle, the 
following mathematical model can be achieved to 
calculate the reaction forces acting on the workpiece: 
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The linear constraint of Eq. (10) describes the 
equilibrium state. The inequality constraints of Eq. (11) 
maintain that the workpiece fixture contacts are passive 
and unilateral, while Eqs. (12) and (13) define the 
tangential forces to obey Coulomb’s friction law. Thus, 
the contact force solution is represented by a quadratic 
minimization with equality and inequality constraints. 
A standard optimization routine may be used for the 
numerical solution of Eqs. (9) – (13) as a quadratic 
minimization with linear equality constraints and 
nonlinear inequality constraints, for example, the 
popular MATLAB system. For a typical case of practice, 
e.g., n=6 and m=1, it usually takes less than a few 
seconds to obtain a solution on a common PC. 

2.2.3. Validation of the Method 

The numerical solution using the rigid body model 
approach is carried out for a workpiece-fixture system. 
The fixture consists of a one face and two short pins 
localization scheme for a rectangular work-piece as 
shown in Fig.4, with locators L1 to L5 and clamps C1 
and C2. Two hydraulic clamps are used to apply equal 
clamping force simultaneously.  
The clamping forces at C1 and C2 are changing and a 
normal force F=100N is imposed on the side face of the 
workpiece. Table 1 shows a comparison of the normal 
forces for each locator-workpiece contact between the 
predicted value and measurement value. The prediction 
of our model is quite agreeable with the measured data. 
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Fig. 4.  The simplified workpiece-fixture system 

 

Fig. 5.  Friction cone and locating stability 

 

Fig. 6.  The setup of workpiece-fixture system 

Table 1 Comparison of locator normal contact forces 

Locator 

C1=C2=500N C1=1000N,C2=1500N C1=C2=1000N C1=C2=1500N 

Measured Predicted Measured Predicted Measured Predicted Measured Predicted 

（N） （N） （N） (N) （N） (N) （N） (N) 

L1 427.74  398.27  799.15  760.56 855.53  840.45 1283.30  1300.35  

L2 329.67  340.54  840.14  860.12 659.53  700.35 989.40  930.68  

L3 242.58  230.32  860.71  880.96 484.93  476.23 727.30  759.36  

 

Published by Atlantis Press 
    Copyright: the authors 
                  406



Lu Jiping et al. 
 

 

 

3. The optimization of Clamping Forces 

If the workpiece-fixture system is under stability, all 
clamping forces acting on the workpiece should make 
any contact force between the workpiece and any 
locating element falls within the friction cone at the 
contact point (shown in Fig.5), according to the 
condition for a point in contact with a surface. 
In the Fig. 5, ‘a’ is friction cone angle. There are three 
forces exerted onto the surface at the contact point. F1 
falls within the friction cone (shaded area), it will 
remain in contact with the surface. F2 falls outside the 
cone but still points towards the inside of the surface, 
which will cause slippage; F3 points towards outside of 
the surface, and it will cause the separation from the 
surface. 
The friction cone is defined by the maximum friction 
force limitation: 
 

 )(tg                                （14） 

 
Where   is the static friction coefficient. 
For convenience, the contact force is decomposed as 
normal force and friction force. Therefore, the normal 
force and friction force should obey Coulomb’s friction 
law. During cutting process, the workpiece can be 
considered in stability state if any normal force and 
friction force obey Coulomb’s friction law at any 
locating point. So that, considering the above force 
analysis for workpiece, the clamping force optimum is 
represented as the following: 
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This is a usual constrained quadratic optimization 
problem, so a standard optimization Matlab toolbox is 
used to resolve the question. It takes a few minutes to 
get the optimized clamping force by using Matlab in a 
normal PC. 

4. An illustrative example 

A thin walled workpiece and a fixture system have been 
employed to support the model. The setup of the 
workpiece–fixture system is shown in fig.6. The scheme 
of 3-2-1 locating has been used, in which L1 to L6 are 
locating points, C1 to C2 are clamping points. The 
initial clamping forces are: NFNF cc 300,500 21  . 
The top surface in fig.6 is the machining surface with 
length 800 mm and width 300mm. Face milling is 
conducted from right side to left side of the workpiece. 
The cutting parameters are shown in table 2. 
After the simulation of the cutting process, cutting 
forces acting on the workpiece at any time can be 

Table 2 cutting parameters  

Cut Diameter 
mm 

tooth  
number 

feed/ 
(mm/tooth) 

Spindle 
speed/
（r/min） 

Cutting  
depth 
mm 

Cutter 
material 

Workpiece  
material 

Approach 
angle/0C 

300 8 0.15 458 1 alloy ZL702A 67 

 

Published by Atlantis Press 
    Copyright: the authors 
                  407



Lu Jiping et al. 
 

 

recorded. After that the above clamping force optimum 
model can be used. Finally in order to keep the 
workpiece fixture system in stability, the minimum 
needed clamping force curve of C1 and C2 clamping 
point can be gotten as shown in Fig.7. The abscissa is 
the cutting time represented as machining step.  

From the fig.7 we can see that, in different step the 
needed clamping forces at C1 and C2 points are not 
constant. The maximum clamping force at C1 point is 
400N(safety factor is 1.2). A decrease of 25% has been 
achieved compared with initial value 500N.The 
maximum needed clamping force at C2 point is 300N, 
and it is under 250N generally. 

5. Conclusion 

The contact force model of workpiece-fixture system 
for different locating scheme has been established. 
Based on the rigid body model and the force screw 
theory, the contact force of workpiece-fixture has been 
predicted by invoking the minimum norm principle, 
which solves the overall model as a constraint quadratic 
optimization routine. The unique solution of the contact 

force is yielded if the equilibrium exists. Furthermore 
clamping force optimum model has been established, so 
that the oversized clamping force can be reduced and at 
the same time keep the workpiece-fixture system in 
stable state. This is very useful for the thin-walled parts. 
The proposed model and solution procedure are simple 

and more efficient than a model based on elastic contact 
properties of the workpiece-fixture system. It is 
particularly useful in the early stages of fixture design 
for fixture performance evaluation of alternative 
locating and clamping schemes. 
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