
Prototype of a Supporting Tool to Generate Testing Communication Diagram

Tetsuro Katayama*, Seiya Urata*, Yohei Ogata*, Yoshihiro Kita†,
Hisaaki Yamaba*, Kentaro Aburada‡ and Naonobu Okazaki*

*University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan
†Kanagawa Institute of Technology, 1030 Shimo-ogino, Kanagawa, 243-0292 Japan

‡Oita National College of Technology, 1666 Maki, Oita, 870-0152 Japan
E-mail: kat@cs.miyazaki-u.ac.jp, urata@earth.cs.miyazaki-u.ac.jp, ogata@earth.cs.miyazaki-u.ac.jp,

y.kita@ccy.kanagawa-it.ac.jp, yamaba@cs.miyazaki-u.ac.jp, aburada@oita-ct.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

This research has implemented a prototype of a supporting tool to generate testing communication diagram. The
testing communication diagram helps a developer to understand where the software system is tested by a large
quantity of test cases written in text, and it is generated by adding the information of test cases to communication
diagram in UML (Unified Modeling Language). The implemented prototype can detect more efficiently deficiency
and/or contradiction in communication diagram and/or test cases.

Keywords: Software development, Software testing, Test cases, Visualization, UML(Unified Modeling Language)

1. Introduction

In recent years, test cases used in software testing have
become a larger scale as a software system becomes a
larger. It is difficult to understand where the software
system is tested by a large quantity of test cases written
in text. Moreover, test cases or models to describe a
software system with UML (Unified Modeling
Language)1 may have deficiency and/or contradiction
because the work to design the test cases and to model
the system is performed manually. It causes a situation
that defects included in the system are not detected,
leads to system failure after its operation, and gives
users a great trouble.

The testing communication diagram has been
proposed already.2 It visualizes messages, which are
written in a part of test cases, between objects in
software system. It helps a developer to understand
where the software system is tested by test cases written
in text.

The testing communication diagram is generated by
comparing test cases with communication diagram in
UML and then adding the information of the test cases
to the communication diagram. After the generation, a
developer confirms whether or not deficiency and/or
contradiction exist in communication diagram and/or
test cases. Here, this process was gone manually.

In drawing testing communication diagram
manually, one of problems is troublesome points to
draw it and to confirm that the drawn diagram does not
have any mistake. In confirming existence of deficiency
and/or contradiction manually, one of problems is
troublesome points to check it and to the checking
process become more difficult as testing communication
diagram becomes larger and more complex.

This research has implemented the prototype which
can support to reduce the burden to generate testing
communication diagram and to detect deficiency and/or
contradiction in communication diagram and/or test
cases. Because the prototype generates testing

Journal of Robotics, Networking and Artificial Life, Vol. 2, No. 1 (June 2015), 9-12

Published by Atlantis Press
Copyright: the authors

9

communication diagram automatically, it can reduce the
burden to draw the diagram and it can rid the work to
confirm that the drawn diagram does not have any
mistake. And also, because highlight displays in a table
of test cases and testing communication diagram are
implemented as a function of the prototype, it can
reduce the burden to detect deficiency and/or
contradiction in communication diagram and/or test
cases. Here, test cases are need to write in a template, a
file format for test cases is CSV (Comma Separated
Values), and a test suite means a collection of test cases.

2. Testing Communication Diagram

We explain steps to generate testing communication
diagram.

(i) Select one of the test cases that are not yet in

comparison with communication diagram.
(ii) Compare precondition with “participant name of

sending side.”
(iii) Compare input with “message name.”
(iv) Compare precondition with “participant name of

receiving side.”
(v) When these agree, enclose the part represented an

arrow of message in the diagram with a solid line.
And, add a test case ID to inside the solid line.

(vi) If you have a test case that not yet compared, return
to (i). Otherwise, testing communication diagram is
completed.

The completed testing communication diagram supports
to detect deficiency and/or contradiction in
communication diagram and/or test cases by confirming
whether arrows of messages is encircled, or whether
each test case ID exists.

3. Prototype of a Supporting Tool to Generate
Testing Communication Diagram

The implemented prototype has two major
characteristics to reduce the burden to find deficiency
and/or contradiction in communication diagram and/or
test cases.

• Highlight display in a table of test cases.

Background color of a cell in a table of test cases is
highlighted red from white based on a comparison

result between communication diagram and a CSV
file in which test cases are written.

• Highlight display in testing communication
diagram.
Based on the comparison result, test case IDs are
added each of message name in the communication
diagram as “message name : test case ID”, and their
color is highlighted red from black.

Fig. 1 shows structure of the prototype. The prototype
consists of five parts: diagram drawing part,
communication diagram generating part, test cases
analyzing part, test case table displaying part, and
testing communication diagram generating part.

The diagram drawing part has two panels: mode
panel and paint panel, and supports a user to draw
communication diagram. In the mode panel, the user
can choose any objects the user want to draw. The paint
panel send data to the communication diagram
generating part. The data is both a type of the object
generated by the user and the coordinates of the place
clicked by the user.

The communication diagram generating part
generates communication diagram by receiving the
user’s drawing requests through the diagram drawing
part. It is regarded as communication diagram is

Fig. 1. Structure of the implemented prototype

Published by Atlantis Press
Copyright: the authors

10

completed when a request to generate objects from the
diagram drawing part disappears.

The test cases analyzing part generates test case
analysis data. This part reads information by using
java.io.FileReader class3 and java.io.BufferedReader
class3 each line from the CSV file in which test cases
are written along a form “test case ID, pre-condition,
operation, post-condition”. And then, it gets test case
analysis data from the information by using split method
of java.lang.String class3. The test case analysis data are
generated by storing each string to arrays in order of test
case ID, pre-condition, operation, and post-condition

The test case table displaying part generates a table
of test cases. This part adds the array outputted from the
test case analyzing part as one line of a table on the
window. After finishing to add all elements of the array,
this part compares test case IDs which is one of data
stored to cells in the table with all test case IDs of each
message object on the testing communication diagram.
Here, a message object means one to express a message.
The background color of cells is managed per a line of
the table. The background color of the line where a
comparison result is accorded is highlighted red from
white. When all test case IDs are compared, this part
displays a table of test cases.

The testing communication diagram generating part
generates testing communication diagram. This part
compares pre-conditions, operations, and post-
conditions in the array stored test case analysis data
with each attribute data of message objects in
communication diagram. If all of them match after
comparison, the font color of message name of its
message object is highlighted red from black. In
addition, its test case ID is added to the test case ID list
which is an attribute of the message object. And then,
this part generates testing communication diagram by
redrawing each object on the window and highlighting
message names and test case IDs. Here, the message
name of the message object which has a test case ID is
drawn as a form “message name : test case ID”.

4. Overview of the Prototype

Fig. 2 shows an overview of the implemented prototype.
The window consists has four parts: “File menu”,

“Mode panel”, “Paint panel”, and “Table of test cases”.
Each part is described as follows.

• File menu

It is placed in the upper left corner of the window.
If “open” is selected, a file dialog is displayed.

• Mode panel
It is placed in the left of the window. In drawing
communication diagram, each mode can be
changed by user’s click. At present, we have
implemented seven modes: “Put lifeline”, “Draw
link”, “Draw message”, “Put name”, “Resize”,
“Move”, and “Delete”.

• Paint panel
It is placed in the middle of the window. It displays
elements in communication diagram and testing
communication diagram.

• Table of test cases
It is placed in the right of the window. It is a table
which displays test cases list.

We applied the prototype to some examples and
confirmed that it worked properly. Elements which a
comparison result is accorded in a table of test cases and
testing communication diagram are highlighted red
correctly. Moreover, elements which do not accorded do
not highlighted.

In Fig. 2, test case ID A1 and A3 are highlighted
and ID A2 is not highlighted.

Fig. 2. An overview of the implemented prototype

Published by Atlantis Press
Copyright: the authors

11

5. Discussion

In this chapter, we discuss the usefulness of the
implemented prototype.

We confirm the usefulness of our tool by
experiments using examinees. The examinees draw
testing communication diagram in hand by giving a
communication diagram and test suits. For this work, it
took an average of 232 seconds. In contrast, the time
when the tool uses the same diagram and test suits as an
input was an average of 5.2 seconds. Hence, the
prototype can reduce 92% of the burden to generate
testing communication diagram. Moreover, in chapter 4,
we showed that our prototype generated testing
communication diagram properly. Works to confirm
that the generated testing communication diagram is not
included human errors are not necessary because using
our prototype prevents the human errors in generating
testing communication diagram.

In addition, by the function of highlight display in a
table of test cases and testing communication diagram,
users can find deficiency and/or contradiction in them at
glance. Hence, our tool can reduce the burden to detect
deficiency and/or contradiction in communication
diagram and/or test cases.

Some studies have been reported visualization of
test results (e.g. Refs. 4) and some tools have functions
of visualization of test results (e.g. Refs. 5). Also,
research to automatically generate test cases from
communication diagrams has been reported.6 In contrast,
our research attempts to visualize test cases which are
usually described in text.

6. Conclusion

This research has implemented the prototype which can
support to reduce the burden to generate testing
communication diagram and to detect deficiency and/or
contradiction in communication diagram and/or test
cases. Because the prototype generates testing
communication diagram automatically, it can reduce the
burden to draw the diagram and it can rid the work to
confirm that the drawn diagram does not have any
mistake. And also, because highlight displays in a table
of test cases and testing communication diagram are
implemented as a function of the prototype, it can
reduce the burden to detect deficiency and/or

contradiction in communication diagram and/or test
cases. It contributes to improve the software reliability.

Future issues as follows.

• Improvement in inputting communication diagram.
To generate testing communication diagram with
our prototype, users need to draw communication
diagram on the prototype. To improvement of
convenience of the users, the prototype will be
accept diagram drawn on other tools.

• Improvement in displaying message names.
In implementation of our tool, only one arrow in
message is drawn. Because of this, plural message
names are displayed parallel to the up of the arrow.
We consider improvement to be easy to see the
message name.

• Adaptation extension of comparable elements of
communication diagram.
At present, our prototype does not support
communication diagram which has messages
including loop condition. To support them, a part of
the method to generate testing communication
diagram will be reconstructed.

• Extension of a table of test cases.
Test cases in this paper does not have expected
outputs. We need to add a field to a table to
describe the expected outputs.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Number 24500044.

References

1. UML Resource Page, http://uml.org/
2. S. Urata and T. Katayama, Proposal of testing diagrams

for visualizing test cases, Proc. 6th Int'l Conf. on
Software Testing, Verification and Validation
(ICST2013) (2013).

3. Java™ Platform, Standard Edition 8 API Specification,
http://docs.oracle.com/javase/8/docs/api/

4. J. A. Jones, Fault localization using visualization of test
information, Proc. 26th Int’l Conf. on Software Eng.
(ICSE 2004) (2004) 54-56.

5. Hertland.Data Inc., Dynamic Test tool DT10,
http://hldc.co.jp/english/products/dt10/

6. P. Samuel, R. Mall, and P. Kanth, Automatic test case
generation from UML communication diagrams,
Information and Software Technology, ScienceDirect,
49(2) (2007) 158-171.

Published by Atlantis Press
Copyright: the authors

12

	1. Introduction
	2. Testing Communication Diagram
	3. Prototype of a Supporting Tool to Generate Testing Communication Diagram
	4. Overview of the Prototype
	5. Discussion
	6. Conclusion
	Acknowledgements
	References

