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Abstract 

The probability distribution of duration is a critical input for predicting the potential impact of traffic incidents. 
Most of the previous duration prediction models are discrete, which divide duration into several intervals. However, 
sometimes the continuous probability distribution is needed. Therefore a continuous model based on latent 
Gaussian naive Bayesian (LGNB) classifier is developed in this paper, assuming duration fits a lognormal 
distribution. The model is calibrated and tested by incident records from the Georgia Department of Transportation. 
The results show that LGNB can describe the continuous probability distribution of duration well. According to the 
evidence sensitivity analysis of LGNB, the four classes of incidents classified by LGNB can be interpreted by the 
level of severity and complexity. 
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1. Introduction 

Highway incidents are a major cause of traffic 
congestion and delay. Some studies have estimated that 
around 60% of all traffic congestion on highways is 
caused by incidents 1. There are several methods for 
estimating traffic delay caused by incidents in the 
literature. The deterministic queuing model 2,3 and 
traffic shock wave theory 4,5 are two major methods 
used in the delay estimation and prediction.  
It should be noted that all of the aforementioned models 
need incident duration as a critical input. Previous study 
based on dynamic traffic assignment also shows that the 
network wide incident delay is sensitive to the incident 
duration 6. 
 Incident duration is the time period from the occurrence 
to the clearance of an incident, Based on the definition, 

it has three elements, i.e., detection, response, and 
clearance.  
Recent researches have applied a variety of techniques 
to analyze the incident duration. Many studies have 
been carried out to estimate the statistical distribution of 
incident durations. Golob (1987) analyzed the duration 
of incidents involving large trucks, and demonstrated 
that the accident duration fits a lognormal distribution 7. 
Giuliano (1989) organized the incidents to several 
categories and found that the distributions of incident 
duration of most incident categories are lognormal 
distributed. Some studies also developed models to 
predict incident duration 8.   Sullivan (1997) developed 
a model, IMPACT to predict the incident occurrence 
and the associated delays assuming that the incident 
duration fits a lognormal distribution 9. Some studies 
applied several variations of linear regression models by 
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treating characteristics such as incident type, weather 
condition, and number of vehicles and lanes involved as 
independent variables 10,11. Ozbay (1999) constructed 
decision trees which do not require knowledge of all 
observable incident characteristics 1212. Nam (2000) 
used hazard-based models which provide information 
not only on the total incident duration, but also on the 
probability that an incident will be cleared in the next 
small time interval, known to have already existed for a 
certain period of time 13.  Smith (2002) also suggested 
using the nonparametric regression, and estimated 
incident duration based on similar incidents in the past 14.  
It should be noted that almost all incident duration 
prediction models except decision trees, require 
complete knowledge of incident characteristics that 
chosen for duration prediction. However, this 
knowledge is often incomplete in practice. Techniques 
exist to solve this problem based on interpolated values 
of unknown independent variables 15, but this reduces 
accuracy and complicates the prediction process. 
Decision tree models do not suffer from this limitation, 
but these models are deterministic and do not give the 
reliability of prediction. So some researchers developed 
some probabilistic models for duration prediction based 
on Bayesian inference 15, 16. However, most of the 
prediction models only output one probable value or one 
interval of duration, rather than the continuous 
probability distribution in the feasible region, which will 
be more useful in delay uncertainty analysis and travel 
time reliability analysis on the real time.  
The primary objective of this study is to develop a 
continuous model based on latent Gaussian naive 
Bayesian (LGNB) classifier, using data from incident 
logs maintained by the Georgia Department of 
Transportation.  

2. Methodology 

Formally, a Bayesian network for a set of random 
variables U= {X1,…, Xn}. is a pair  ,B G  . The first 
component, G, is a directed acyclic graph whose 
vertices correspond to the random variables X1, …, Xn, 
and whose edges represent direct dependencies between 
the variables. The graph G encodes independence 
assumption: each variable Xi is independent of its 
nondescendants given its parents in G. The second 
component of the pair, namely, represents the set of 
parameters that quantifies the network. It contains a 
parameter | ( | )

i x ii
X B i XP x     for each possible value xi 

of Xi, and 
ix of 

iX , where 
iX denotes the set of 

parents of Xi in G. A Bayesian network B defines a 
unique joint probability distribution over U given by 

1 |
1 1

( ,..., ) ( | )
i i Xi

n n

B n B i X X
i i

P X X P X  
 

     (1) 

When we use Bayesian networks as classifiers, and the 
class variable is C, the other attribute variables are A1… 
An. The aim is to find the most likely value of C, given 
the information about attribute variables, that is 

*
1arg max ( | ,... )i ni P C c A A     (2) 

Bayesian networks have been widely used in different 
fields because of the ability of uncertain inference 17. As 
a special instance of Bayesian networks, LGNB 
classifier for duration prediction can be shown in Fig. 1. 

 
Fig. 1.  The structure of LGNB classifier. 

In this Bayesian network, C is a latent class variable. 
The possible values of C represent the classes that an 
incident belongs to. The count of classes can be learned 
from the data. It is assumed that incidents duration fits a 
lognormal distribution, so Ln(Duration) fits a Gaussian 
distribution, and it can be represented as a continuous 
node such as node B in Fig.1). There is not a conditional 
probability table as the discrete models, but conditional 
Gaussian distribution of B for each possible value of C, 
that is 

( | ) ( , )i i iL B C c N        (3) 

With this form of Bayesian networks, we can get the 
possible distribution of each incident. Then we can also 
get the information about the probability of an incident, 
known to have already existed for a certain period of 
time 18. If ln( )Duration is ( , )N   with density 
function noted as ( )f x , the probability distribution 
function (PDF) of the incident duration when the 
incident already exists T0 can be obtained by applying 
Bayesian theory: 

' ( ) ( ) ( )f x k L x f x       (4) 

Where 0
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k is a constant defined as follows: 

10ln( )
[1 ( )]

T
k





 

                                               (5) 
There are many algorithms can be deployed to learn the 
parameters of discrete Bayesian networks, such as MLE 
algorithm and EM algorithm. However, it is  not a easy 
thing to learn the parameters of a continuous Bayesian 
network. In this paper, an approximate method is 
proposed to learn the parameters of LGNB classifier: At 
first, the continuous variable is discreted with small 
interval, and the LGNB classifier is transformed to a NB 
classifier. Using MLE algorithm or EM algorithm, the 
parameters of this NB classifier can be determined. At 
last, the CPT of  discreted continuous vartiable can be 
fitted into Gaussian distribution.  
 

Table 1. Summary of incidents used to calibrate and 
validate models. 

3. Data Discription 

The data we used in this study was also used by (Boyles 
et al. 2007). The incidents logs were maintained by the 
Georgia Department of Transportation. These logs 
contain a list of incidents occurring in the Atlanta 
metropolitan area, including the type, start and end 
times, the number of various types of vehicles involved, 

the affected lanes, the geographic location, and flags to 
indicate the presence of assorted types of damage.  
 

Table 2. Description of variables. 

 Calibration Set Validation Set 

Number of incidents 1470 1503 

Median duration 
 (minutes) 

52 47 

Standard deviation of 
duration (minutes) 

161 142 

Incidents less than 30 
minutes 

0.32 0.30 

Incidents at least 30 
minutes, but less than 
60 minutes 

0.26 0.28 

Incidents at least 60 
minutes, but less than 
90 minutes 

0.13 0.17 

Incidents at least 90 
minutes, but less than 
120 minutes 

0.12 0.09 

Incidents at least 120 
minutes 

0.17 0.16 

ID Variable Name Description 

1 WeekDay 1=Weekday; 2=Weekend 

2 Day 1=Day; 2= Night 

3 IncidentType 
1=Accident; 2=Stall;3=Debris; 
4=Other 

4 DetectionType 
1=Call Report; 2=Operator 
detected;3=Other; 4=Unknown 

5 LocationType 
1=Freeway; 2=Ramp;3=Intersection; 
4=Arterial; 5=Other 

6 AffectedLaneType 
1=Lanes; 2=Off road;3=Shoulder; 
4=Core area; 5= None 

7 NumLanesAffected
1=None; 2=One lane;3=More than 
two lanes 

8 FirePresence 1=Not; 2=Presence 

9 HazMatPresence 1=Presence; 2=Not 

10 InjuryCount 
1=None; 2=One; 3=Two; 
4=Three;5=More than four 

11 FatalCount 1=None; 2=More than one 

12 NeedPolice 1=No; 2=Yes 

13 NeedHero 1=No; 2=Yes 

14 NeedTruckWrecker 1=No; 2=Yes 

15 SignalDamage 1=No; 2=Yes 

16 GuardRailDamage 1=No; 2=Yes 

17 AutomobileCount 
1=None; 2=One; 3=Two; 4=Three; 
5=More than four 

18 MotorcycleCount 1=None;2=More than one 

19 PickupVanCount 1=None;2=More than one 

20
MotorhomeBusCou

nt 
1=None;2=More than one 

21 LightTruckCount 1=None;2=More than one 

22 TractorTrailerCount 1=None;2=More than one 

24 Ln(Duration) Continuous variable 

25 C Latent class variable in LGNB 
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minutes. Based on this, it is assumed that all incidents  

 
 

Fig. 2. The structure of LGNB classifier for duration prediction. 
 
 

 
Fig. 3. The distribution of Duration for each class. 

 

 
Fig. 4.  Accuracy evaluation of LGNB classifier. 
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The incident database is quite extensive, but it has a 
limitation that there is no data-field that gives the exact 
occurrence time of the incident. We can only get the 
time-stamp that the operator first input an incident in the 
database. On the other hand, the average detection time 
as estimated by the Navigator system in the survey is 7 
occurred 7 minutes before the logged time. 
Incidents occurring in January and February 2004 were 
used in this research. In the original incident logs, any 
scheduled incidents such as construction-related 
closures were excluded from this analysis. The 
remaining incidents were randomly divided into two 
groups, the first group (Calibration Set) was used to train 
the GLNB classifier, and then tested on incidents in the 

second group(Validation Set). Table 1. contains selected 
descriptive statistics for the incidents found in these two 
sets. 

4. Model Development 

The structure of LGNB is given as Fig. 2. The variables 
contained in the classifiers are described in Table 2. The 
parameters can be learned from data using Kevin 
Murphy's Bayes Net Toolbox (BNT) for Matlab 19. 
Because the class node is latent, we need to determine 
its size (the number of possible values it can obtain). 
More possible values, more complicated the classifier 
will be. So we set its size equal 1 first, and then increase 

 
 

Class1: Ln(Duration) ~Gaussian (3.3149, 0.77582) 
 

Class2: Ln(Duration) ~Gaussian (4.3071, 1.20512) 

 

Class3: Ln(Duration) ~Gaussian (3.7470, 0.60432) 

 

 

Class4: Ln(Duration) ~Gaussian (4.6846, 0.74262) 

 
Fig. 5. Distributions fit test of LGNB. 
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it by 1, until the expected loglikelihood of the model 
doesn’t increase significantly. At last we set the size 
equal 4. When the probability distribution of 
Ln(Duration) is known, we can get the distribution of 
Duration for each class as shown in Fig. 3.  

5. Model Evaluation And Analysis 

5.1. Accuracy evaluation 

To evaluate the prediction accuracy of LGNB classifier, 
we compare it with NB classifier15. The models were 
run repeatedly on the incidents in the validation set, 
with varying amounts of data which was made available 
for the models. For example, in one run, only ten 
percent of the information of cases (randomly chosen) 
was used to classify the incidents; this corresponds to a 
real-world situation in which only a small amount of 
information is known about the incident. In order to 
compare accuracy with discrete models, the continuous 
variable Duration in LGNB classifier is divided to 5 
discrete intervals as the NB classifier. The CPT of 
duration is computed according to the continuous 
probability distribution shown in Figure 3. The 
frequency of correct classification is noted in Figure 4. 
We can see that when no information is available, both  
classifiers predict duration using the prior margin 
distribution, and consider the duration of every incident 
is less than 30min, which is the largest portion of the 
training set, and the accuracy is 30%. When more 
information is available, more incidents are classified 
correctly. It can be found that LGNB classifier has the 
same performance as NB classifier, which is proposed 
and compared to a standard linear regression by Boyles 
(2007) 15. However, the purpose of LGNB is to classify 
incidents according to the fitted continuous probability 
distribution but not the length of duration. Therefore, 
the distribution fit test is a more appropriate method to 
evaluate the performance of LGNB. 

5.2. Distribution fit test of LGNB 

In the following part of this paper, we will test the 
assumption that Ln(Duration) fits a Gaussian 
distribution and evaluate the classification performance 
of LGNB. With LGNB classifier we divided the 
Validation Set into 4 classes. Class 1 contains 482 cases, 
Class 2 contains 417 cases, Class 3 contains 411 cases, 
and Class 4 contains 193 cases. We do distribution fit 
test for each class, and Figure 5 shows the test result. It 

can be found that all of the four classes approximately 
fit the Gaussian distribution which calibrated in last 
section, though Class 2 and Class3 are rejected in the 
hypothesis tests when the confidence level is 0.05. 

5.3. Sensitivity analysis of LGNB 

The LGNB has divided all the incidents into four 
classes, in this part we will analyzed the characters of 
incidents in each class. By conducting an evidences 
sensitivity analysis, the effect of the information about 
other variables on the latent class variable can be 
measured.  
Evidence sensitivity analysis may, for instance, give 
answers to questions like what are the minimum and 
maximum beliefs produced by observing a variable, 
which evidence acts in favor of or against a hypothesis, 
which evidence discriminates one hypothesis from an 
alternative hypothesis, and what if a certain observed 
variable had been observed to a value different from the 
actual value? Knowing the answers to these and similar 
questions may help to explain and understand the 
conclusions reached by the model as a result of 
probabilistic inference. It will also help to understand 
the impact of subsets of the evidence on a certain 
hypothesis and alternative hypotheses. 
 The sensitivity analysis report of LGNB classifier is 
shown in Table 3. This table shows the maximum and 
the minimum posterior probability of the latent class 
node due to certain evidences, which are entered in the 
network. For instance, the post probability table of C 
will be updated when each probable value of 
IncidentType is entered as an evidence. when the value 
“1” is entered as an evidence,  the likelihood that this 
incident belongs to Class 3 will increase greatest with 
29% (the meaning of “+29” in Table 3), which results in 
a posterior probability of 62%. When for the variable 
IncidentType the value “3” is entered as an evidence, the 
likelihood that this incident belongs to Class 3 will 
decrease greatest with 26% (the meaning of “-29” in 
Table 3). Table 3 only shows the variables affect the 
class variable significantly (increase or decrease the 
probability more than 1 percent), and the others are 
ommited. 
We can find from the sensitivity analysis that only half 
of the variables affect the class variable significantly. 
We also can get some other findings from sensitivity 
analysis.  

Published by Atlantis Press 
    Copyright: the authors 
                  350



The type of incident is the major factor that affects the 
classifier of incidents. A stall incident has a large 
probability belongs to Class 1, and if the type of an 
incident is “others”, the probability that it belongs to 
Class 2 will increase. An accident most likely belongs to 
Class 3 or Class 4. 
Location Type is also an important factor that affects 
the classifier of incidents. An incident occurring on the 
highway more likely belongs to Class 3 or Class 4. If an 
incident occurs on the arterial, the probability that it 
belongs to Class 1 or Class 2 will increase.  

The incidents cause facility damage more likely belong 
to Class 2 or Class 4. We can see that, if an incident 
causes signal damage, the probability that it belongs to 

Class 2 will increase with 66%; oppositely, the 
probability it belongs to Class 1 will decrease with 33%, 
and the probability it belongs to Class 3 will decrease 
with 26%. If an incident causes guardrail damage, the 
probability that it belongs to Class 4 will increase with 
30%, the probability that it belongs to Class1 will 
decrease with 33%. 
The incidents which are serious accidents more likely 
belong to Class 3. We can see that if more than 4 
automobiles involve in an incident, the probability that 
this incident belongs to Class 3 will increase with 52%.  

According to the analysis above and the probability 
distributions, we assume that the four classes can be 
interpreted as follow: Class 1 is a set of incidents not 

 

Table 3. Sensitivity Analysis of LGNB  

 
VarID 3 4 5 6 15 16 17 18 19 20 21 

Class 1 

Min(%) -32 -24 -33 -33 -33 -33 -27 -20 -2 -1 -1 

value min 4 4 5 2 2 2 5 2 1 1 1 

Max(%) +67 +17 +18 +46 +1 +1 +27 +1 +29 +1 +10

value max 2 1 1 4 1 1 2 1 2 2 2 

Class 2 

Min(%) -28 -27 -28 -28 -1 -6 -28 -28 -28 -28 -28

value min 2 3 5 4 1 2 2 2 2 2 2 

Max(%) +70 +17 +66 +47 +66 +1 +22 +1 +3 +1 +1 

value max 4 2 4 2 2 1 1 1 1 1 1 

Class 3 

Min(%) -26 -12 -26 -25 -26 -1 -18 -1 -1 -3 -1 

value min 3 2 5 1 2 1 1 1 2 2 1 

Max(%) +29 +21 +40 +2 +1 +10 +52 +10 +1 +1 +7 

value max 1 3 4 5 1 2 5 2 1 1 2 

Class 4 

Min(%) -12 -10 -12 -12 -6 -1 -2 -1 -1 -1 -1 

value min 2 3 3 2 2 1 1 1 1 1 1 

Max(%) +13 +24 +17 +1 +1 +30 +5 +25 +1 +31 +11

value max 1 4 1 1 1 2 4 2 2 2 2 
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serious or complicated; Class 2 is a set of incidents not 
serious but complicated; Class3 is a set of incidents 
serious but not complicated; Class4 is a set of incidents 
serious and complicated. 

6. Conclusion 

A continuous model for incident duration prediction is 
developed based on LGNB classifier, assuming that the 
duration of incidents with similar attributions fits a 
lognormal distribution. This assumption is tested using 
statistic diagrams and hypothesis tests, and it is found 
that this assumption is appropriate. According to the 
evidence sensitivity analysis of LGNB, the four classes 
of incidents classified by LGNB can be interpreted with 
different levels of severity and complexity.  
LGNB classifier, as the simplest hybrid Bayesian 
networks, is used to predict the continuous probability 
distribution of duration, and the accuracy is not satisfied 
because of the unrealistic assumption. In the future, we 
will try more realistic models, and apply them in 
incident impact analysis and severity estimation. 
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