

CyberTORCS: An Intelligent Vehicles Simulation Platform for Cooperative Driving

Ming YANG, Nianfeng WAN, Bing WANG
Department of Automation, Shanghai Jiao Tong University, and

Key Laboratory of System Control and Information Processing, Ministry of Education of China,
Shanghai, 200240, China

Chunxiang WANG*
Research Institute of Robotics, Shanghai Jiao Tong University

Shanghai, 200240, China

Jianping XIE
INRIA Rocquencourt,

78153 Le Chesnay Cedex, France

Abstract

Simulation platforms play an important role in helping intelligent vehicle research, especially for the research of
cooperative driving due to the high cost and risk of the real experiments. In order to ease and bring more
convenience for cooperative driving tests, we introduce an intelligent vehicle simulation platform, called
CyberTORCS, for the research in cooperative driving. Details of the simulator modules including vehicle body
control, vehicle visualization modeling and track visualization modeling are presented. Two simulation examples
are given to validate the feasibility and effectiveness of the proposed simulation platform.

Keywords: Simulation platform, cooperative driving, intelligent vehicles

*Corresponding Author: wangcx@sjtu.edu.cn

1. Introduction

The development of autonomous vehicles has inspired a
great trend to research of cooperative driving. Intelligent
cooperative driving aims to increase the road capacity,
and improve the safety for driving; accordingly, it helps
to reduce car accidents and traffic jams. Notice that
driver safety and comfort becomes more and more
important1, cooperative driving also improves driver
experience. Despite some advanced sensor technologies
and control strategies have been applied for the single
vehicle system, cooperative driving requires many other
technologies which may significantly increase the road
capacity, and improve the safety for driving, therefore
avoid accidents and traffic jam. Despite the same sensor
technology and control strategy as applied for individual
vehicle, cooperative driving requires many other
technologies such as wireless communication, vehicle

detection, self-organization, swarm intelligence2 and so
on.

In the last few years, multivehicle platforms have been
developed at several universities and research labs.
Some of the platforms involve unmanned ground
vehicles and unmanned aerial vehicles, such as MIT’s
multivehicle testbed and University of Pennsylvania’s
multiple autonomous robots (MARS) testbed. Cornell
University’s RoboFlag testbed includes several small
robots with local control loops that work cooperatively
to achieve a common goal.

However the actual tests for cooperative driving require
multi fully equipped vehicles, which a single laboratory
may not possess. On the other hand, as many vehicles
are involved, the risks and complexities of carrying out
such experiments are significantly increased. Therefore,
it is difficult to efficiently implement and evaluate our
algorithms for cooperative driving research. These years

International Journal of Computational Intelligence Systems, Vol.4, No. 3 (May, 2011).

Published by Atlantis Press
 Copyright: the authors
 378

mailto:wangcx@sjtu.edu.cn
zegerkarssen
Texte tapé à la machine
Received: 10-03-2011; Accepted: 19-04-2011

M YANG et. al.

the simulation platforms also have been developed not
only in research field but also in industry. Some
commercial simulation platforms are quite successful
(for example, Carsim from Mechanical Simulation
Corporation, Prescan from TNO). For research purpose,
this kind of platforms is too expensive. In this paper, an
open source intelligent vehicle simulation platform for
the research of cooperative driving is proposed to
address this issue. CyberTORCS, the simulation
platform is designed to simulate both sensor behaviors
and surrounding vehicle environments. Moreover, the
simulation platform is capable of providing variety of
information to help implementing and evaluating the
developed algorithms. Simulation platform modules
including vehicle body control, vehicle visualization
modeling and track visualization modeling are discussed
in detail. In order to demonstrate the capability and
feasibility of the simulation platform, analysis on two
simulation examples conducted based on CyberTORCS
are shown.

The rest of the paper is organized as follows. Section II
introduces system architecture and some modules of
CyberTORCS. In Section III and Section IV, we present
and discuss two experimental examples conducted
based on CyberTORCS. Finally, Section V summarizes
this paper with our future work.

2. System Architecture

CyberTORCS is developed based on the software
TORCS (The Open Racing Car Simulator), which is an
open source software for car racing. Players could drive
their cars by keyboard or joystick. Also, it is very
convenient to implement and test different control

algorithms and driving strategies in this simulation
platform. The software is written in C++, and could run
on different operation system platforms.

As shown in Fig. 1, the simulation platform contains
several modules. Each vehicle in the simulator has its
own identity, sensor module, vehicle dynamics module,
vehicle control module, etc. Basic features of these
modules are included in TORCS, and users may edit
each module for their own purposes. Based on the data
received from sensor perception module or
communication module, the cooperation algorithm
module generates behavioral intentions for all vehicles,
and then sends to the vehicle control module. The
vehicle control module works out the control parameters
for vehicle dynamic models, and the dynamic module
outputs the vehicles position and orientation information
for 3D display module. The data recorder module could
record all the information such as the driving
trajectories, vehicle speed, and some other information
in terms of txt file or animation file. Since, in the paper,
the simulation platform is developed for cooperation
algorithm test and evaluation, some close related
modules will be discussed in more detail both in the
following module introduction and simulation examples.
Unfortunately, some other modules are not introduced
although we did mention in the system architecture.

2.1. Vehicle body control module

Similar to the real car driving, vehicles in CyberTORCS
are controlled by four parameters: steer, gear, accelerate
and brake. The control algorithm sends some control
information (e.g. desired acceleration, global orientation)

Fig.1. System Architecture

Published by Atlantis Press
 Copyright: the authors
 379

CyberTORCS: An Intelligent Vehicles

to the vehicle control module. The function of vehicle
control module works out these four parameters and
sends it to the vehicle dynamic mo9del. In this paper,
we introduce two control examples: steering control and
automatic cruise control.

In some simulation, the algorithm focuses on the
longitudinal control. In this kind of situation, the
steering method is to follow the middle line of the road.
The steering angle (between PI and –PI) is calculated as:

. /angle carPositiontoMiddle currentTrackWidth=

Where carPosition.toMiddle is length of the car’s
position to the middle line, and currentTrackWidth is
the current track width. With this method, the car could
follow the middle line of the road. More difficult
steering movement such as lane changing could also use
this simple method by changing the value of
carPosition.toMiddle.

Many applications require maintaining a desired vehicle
speed during the simulation. The simple automatic
cruise control approach is utilized proportion control for
controlling the accelerator. The input is the deviation
between the current speed and the desired speed. Brake
command is applied if the deviation is positive and vice
versa. The gear is related to the engine RPM
(revolutions per minute), in that, different speed range
corresponds to different gear level.

2.2. Vehicle appearance module

The appearance modeling is an important part in
simulation process, not only because it brings a better
visual performance, but also accurately shows the
information of each part of a vehicle, thus makes it
possible to verify sensor navigation algorithms or other
control strategies, or access some important position and
orientation information precisely before the actual
experiment. CyberTORCS simulator allows users to
define a car’s appearances, colors, materials and so on.
It also provides some interfaces with other modeling
software.

In this paper, we take the CyberC3 vehicle platform3
depicted in Fig. 2(a) as the simulation target. The
correspondent CyberC3 vehicle model in CyberTORCS
is shown in Fig. 2(b) after the visualization modeling.
As seen from Fig. 2, the vehicle visualization modeling
model is able to build a very precise vehicle model.

(a) CyberC3 vehicle

(b) CyberC3 model

Fig.2. Comparison between the actual vehicle and the model

2.3. Track modeling

Track modeling or road modeling is usually more
important. Sometimes intelligent vehicles would
demonstrate in a particular region. If the track model in
that region is precise enough, researcher could verify
the algorithm in the lab and predict the performance
accurately. CyberTORCS stores track information in
XML form, and it provides an edit tool called track
editor, which allows users to build and edit their own
tracks. However, manually editing leads to errors. This
paper presents a method for track modeling based on the
road border GPS information with negligible errors.
In track editor, a track is considered as the connection of
several sections. And sections are defined as two main
types: straight ones and arc ones. A straight section is
determined by its start point and its length, and an arc
section is determined by its start point, radius and angel.
It is common to use clothoids to construct roads in
reality, however, when track editor builds clothoids, the
errors would significantly increase. So we choose to use

Published by Atlantis Press
 Copyright: the authors
 380

M YANG et. al.

only straight line and arcs to match real GPS points
more accurately. Given a series GPS points, the method
is to fit them to several straight sections and circle arc
sections end to end to minimize the error.
The main idea is to divide the points into groups. Points
in each group could be fitted as a straight line or a circle
arc. There, thus, should be a start points, an end point
and a direction. The steps of dividing points into groups
are as follows:

Step 1: find the first point, and make it as point A;
Step 2: connect point A, point A+i (i = 2 at first), name
this line L;
Step 3: calculate the sum of squares of the distance from
the points between A and A+i to the line L;
Step 4: if the sum is large than a constant C (determined
by users), the straight line group is from point A to point
A+i, else i+1 and go back to Step 2.
Step 5: if a straight line group is generated, points A+i
should then be the end points of the straight line, use the
method of generating straight line to generate a line.
Step 6: make point A+i as the start point of the next
circle arc, use the method of generating arc to calculate
which points should be in the next circle arc group. For
instance, the group contains points from A+i to A+j.
Step 7: use the method of generating arc to calculate the
arc radius and angle.
Step 8: go back to step 2 until all points are divided into
groups.

Following the method above, points are divided into
groups, and lines are worked out from those straight
lines groups. Here then the track is filled with several
separated lines. The next step is to connect those lines
with circle arcs. The method of generating circle arcs
between the lines is as follows:

Fig.3. Method of Generating Circle Arcs

As it is shown in figure 3, 1 1(,)x y is the end point of

1L , 2 2(,)x y is the start point of 2L . The steps of the
method are as follows:

Step 1: calculate the intersection point o of the public
vertical lines of 1L and 2L .

Step 2: calculate the distance between o and 1 1(,)x y ,

which is named 1R , and calculate the distance between o

and 2 2(,)x y , which is named 2R . Compare 1R and 2R .

Here may wish to set 1 2R R< (if not, just exchange

1L and 2L)

Step 3: calculate the angle of 1L and 2L , which is

namedθ .
Step 4: move o on the vertical line of 2L , to the point o’,

which has the same distance to 1L and 2L .

Step 5: calculate the distance from the point 2 2(,)x y

to line 1L , which is named 3R , thus from the figure,

()
()

3 1 2

1 2 3

cos
cos

R R R
R

R R R
θ

θ
−

=
− +

 （1）

Step 6: based on o’ and R , work out the point (,)x y ,

replace 1 1(,)x y with (,)x y .

Here the angle θ and the radius R are worked out, and
it is easy to identify the circle arc needed. With all
parameters required are worked out, the track could be
defined in CyberTORCS. The paper takes the road in
Oriental Land, Shanghai, China as an example1. The
following figures show that the track model generated
by using the method while the error standard variation is
4cm. Figure 4 indicates the GPS map and the track
model generated. It is shown that the result has high
accuracy and little errors.

Fig.4. Comparison of the Model and GPS map

Published by Atlantis Press
 Copyright: the authors
 381

CyberTORCS: An Intelligent Vehicles

3. Overtaking Simulation Example

Overtaking issue is a typical cooperative driving
scenario. The overtaking experiment requires high
steering accuracy and stable communication between
vehicles4,5.
Moreover, the vehicles’ driving trajectories should be
recorded for analysis6. In this example, CyberTORCS
shows its abilities in such aspects.
In general, the overtaking process includes three steps: 1.
changes lane to the adjacent lane; 2. passes the
overtaken vehicle; 3. returns to the original lane.

σσ

σ

σ

Fig.5. Vehicle overtaking

In the paper7, the author proposes an overtaking control
method based on the estimation of the conflict
probability. In the process of overtaking, the
longitudinal and lateral position errors of both the
overtaking vehicle and the overtaken vehicle are
normally distributed with zero means and covariances
that have eigenvectors in the along-track and cross-track
directions. The position-error covariances can be
estimated by intelligent vehicles in online or offline way.
Refer to Fig. 5, vehicle 1 is the overtaken vehicle and
vehicle 2 is the overtaking vehicle. The ellipses around
vehicles are the position-error ellipses and the
maximum axes of these ellipses are aligned with the x
axes of the vehicle bodies. The rectangular region
around the overtaken vehicle is the predefined conflict
area. The position-errors of the overtaking vehicle and
the overtaken vehicle are independent. In the vehicle-
fixed coordinate, the position-error covariance matrix of
the overtaken vehicle is












= 2

1

2
1

1
y

xC
σ

σ (2)

where
x1σ and

y1σ are the standard deviations of the
longitudinal and lateral position errors of the overtaken
vehicle, respectively. Similarly, in the vehicle-fixed
coordinate, the position-error covariance matrix of the
overtaking vehicle is












= 2

2

2
2

2
y

xC
σ

σ (3)

where
x2σ and

y2σ are the standard deviations of the
longitudinal and lateral position errors of the overtaking
vehicle, respectively. By using coordinate
transformation, the position-error covariance matrix of
the overtaken vehicle can be converted to the coordinate
that fixed on the overtaking vehicle, that is

TRRCC 11 =′ (4)
where








 −
=

θθ
θθ

cossin
sincos

R (5)

θ is the azimuth angle of the overtaking vehicle.

The position-error covariance of the overtaking vehicle
and that of the overtaken vehicle can be combined in the
coordinate that fixed on the overtaking vehicle, and the
relative position-error covariance matrix can be
presented by

21 CCC +′= (6)
Assume that in a moment, the instantaneous relative
longitudinal and lateral positions of the two vehicles are
sx and sy in the coordinate fixed on the overtaking
vehicle. Then the instantaneous conflict probability
density function can be expressed as

)}()(
2
1exp{

2
1),(1

21 µµ
π

−−−= − XCX
C

ssf T
yx

 (7)

where X=[sx, sy]T and μ=[0, 0]T.

The conflict probability between the overtaking vehicle
and the overtaken vehicle is the integral of the relative
position-error probability density over the conflict area.
Therefore the instantaneous conflict probability is

∫∫=
G

yx dxdyssftP),()((8)

where G is the conflict area.
For the overtaking intelligent vehicle, both current and
future safety conditions should be considered in the
process of overtaking, so the model predictive control
can be applied in this process. The prediction model of
the overtaking control is used to predict the future
conflict probability corresponding to the possible
control input. This model includes the relative position
prediction model and the conflict probability prediction
model. The conflict probability prediction model uses
the estimated relative position to predict the future
instantaneous conflict probability
In order to evaluate the effectiveness, simulation tests
are implemented on CyberTORCS8. The simulation
platform provides a two-lane traffic situation, in which
the high-speed vehicle may generate the overtaking
intention when it detects the preceding low-speed
vehicle. The sizes of the overtaking vehicle and the
overtaken vehicle are 4.8 m×1.9 m and 5.0m× 2.0 m,

Published by Atlantis Press
 Copyright: the authors
 382

M YANG et. al.

respectively. The initial intervehicle distances in all the
tests are 32 m.
Two different overtaking control methods have been
compared in the same scenes. One is the proposed
conflict-probability-estimation-based overtaking control
method; the other method has been described in9.
Corresponding to different situations, the speed of the
overtaken vehicle is kept at 60 km/h and that of the
overtaking vehicle is 80km/h, 85km/h, and 90km/h
respectively.
Firstly, the simulation platform recorded the overtaking
trajectories, as shown in Fig.6. Here the predefined safe
conflict probability is 1.0×10-4 and the conflict area is
Ca=25m×5m in these tests.
Secondly the platform illustrated the variation of the
closest distance for several scenarios to find out the
relationship between the distances and the parameters.

 Fig.6. Overtaking tracks in different situations.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

1

2

3

time (sec)

th
e

cl
os

es
t

 d
is

ta
nc

e
(m

et
er

s)

ΔV=20km/h
ΔV=25km/h
ΔV=30km/h

Fig.7. The variation of the closest distance (scenarios with different relative speed)

3.5 4 4.5 5 5.5 6 6.5 7

1

2

3

time (sec)

th
e

cl
os

es
t

di
st

an
ce

 (m
et

er
s)

Ca=25m×5m
Ca=30m×5m
Ca=35m×5m

Fig.8. The variation of the closest distance (scenarios with different conflict area)

3.5 4 4.5 5 5.5 6 6.5 7

1

2

3

time (sec)

th
e

cl
os

es
t

di
st

an
ce

 (m
et

er
s)

Pcs=0.0001
Pcs=0.0005
Pcs=0.001

Fig.9. The variation of the closest distance (scenarios with different safe conflict probability)

Published by Atlantis Press
 Copyright: the authors
 383

CyberTORCS: An Intelligent Vehicles

The result from Fig. 7 shows that a higher relative speed
corresponds to an earlier initiation of the overtaking, but
the closest distance hasn’t varied greatly in different
scenarios. The result from Fig. 8 shows that with the
increase in the conflict area, the closest distance hasn’t
decreased remarkably. Therefore the variation of
conflict area in a certain scope doesn’t affect the
overtaking safety significantly. The result from Fig. 9
shows that the closest distance decreases with the
increase in the safe conflict probability. Based on the
accurate simulation results, the author’s conclusion is
convincing.

4. Platoon Simulation Example

Platoon is another important cooperative driving
scenario. A string of vehicles drives with constant
velocity in a line may increase the capacity of the road.
How to keep them with constant position and how to
reduce position and velocity error is the main problem
of this issue. Some research uses adaptive tracking
control method for solving these problems9.
In the thesis10, the author proposes a new spring damper
control method for platoon control. This method
considers that all vehicles in a platoon as a group of
connected spring-damper systems, which indicates that
only local but bidirectional information is used. The
system of a platoon of vehicles can be represented as
follows:

Fig.10. Spring-damper system

Then the author divides the whole system into several
subsystems, each subsystem contains three vehicles.
And overlapping decomposition method is used for
building the new expanded system. Finally the LQ
optimal control is used to work out the best coefficients
for both the expanded system and the original one.
We use CyberTORCS to compare the new method with
classical algorithm.
The simulation test selected an oval track for a length of
1908.3 meters, road width of 25.0 meters. The platoon
is composed of five cars, the expected speed is 40 km
per hour, and the vehicle spacing is 10 meters. The
simulation object is to examine whether the position and
velocity errors of vehicles would propagate along the
platoon when the first car has a sudden acceleration and
deceleration. The platoon cruise speed is 40km/h. The
leading car firstly accelerates to 60km/h with the

acceleration of 10m/s2, and then decelerates to 40km/h
with the acceleration of -10 m/s2. The experiment
compares the present method with the classical PD
control method and a fixed spring damper coefficient
method11.
The results are shown in Figure 11(a), 11(b) and 11(c).
Figure 11(a) indicates the spacing error variation using
PD control. It can be seen that the spacing error between
the 4th and the 5th vehicle firstly reached -10 m in the
first 4 seconds, that is, the collision occurred. Similarly,
the 4th and the 3rd vehicle in the first 7 seconds also

0 2 4 6 8 10-15

-10

-5

0

5

10

15

Time s

Sp
ac

e
Er

ro
r m

d12
d23
d34
d45

(a) spacing error variation using PD control

0 20 40 60 80-10

-5

0

5

10

15

20

Time s

Sp
ac

e
Er

ro
r m

SD system with same c&k
new SD system

(b) spacing error variation between 4th and 5th vehicle

0 20 40 60 80
-10

-5

0

5

10

15

20

25

Time s

Sp
ac

e
Er

ro
r m

SD system with same c&k
new SD system

(c) spacing error variation between 3rd and 4th vehicle

Fig.11. Spacing Errors

Published by Atlantis Press
 Copyright: the authors
 384

M YANG et. al.

collided. Figures 11(b) and 11(c) show the spacing error
variation between the 4th and the 5th vehicle and
between the 3rd and the 4th vehicle respectively, with the
application of the fixed spring damper coefficient
method and the present method. It is shown that both
systems are convergent, while the method proposed in
this paper presents a small offset, and the stabilization
time is short, also the error will not propagate along the
platoon. And the results show the convenience of the
platform CyberTORCS compared with others12,13.

5. Conclusion

The current simulation platform CyberTORCS utilizes
several ways to obtain high accuracy in multi vehicle
experiments. According to examples, with benefits in
reducing cost and maintaining safety, such platform
with high accuracy would play a more important role in
the research of cooperative driving in the future.
Researchers could use this platform to test their
algorithms and revise them without huge expense. In
fact, the platform has been used to test several
algorithms for vehicle cooperation and other aspects.
In addition, the following aspects have been taken into
account in future works.
1) The data would be analyzed after the experiment is
done. The next step is to create a real-time data display
module, which may help researchers to monitor each
parameter in time.
2) Several sensor models are developing, which is not
mentioned in this paper. And interface development
with other simulation platform is also a good direction.
3) The hardware-in-the-loop module would help the
platform enlarge the ability in testing and evaluating.

Acknowledgements

The work was supported by the Shanghai Science and
Technology Action Program for World Expo
(10dz0581100). The authors would also like to thank all
scientists who build and update TORCS, their examples
and documentations on the website help this work a lot
(http://torcs.sourceforge.net/).

References

1. W.H. Wang, F.G Huo, H.C.Tan, H. Bubb, “A Framework
for Function Allocation in Intelligent Driver Interface
Design for Comfort and Safety”. International Journal of
Computational Intelligence Systems. 3(5) (2010)531-541.

2. Y.X.Shen, G.Y.Wang, C.M.Tao, “Particle swarm
optimization with novel processing strategy and its
application”. International Journal of Computational
Intelligence Systems. 4(1) (2011)100-111.

3. T. Xia, M. Yang, and R. Yang, “CyberC3: A Prototype
Cybernetic Transportation System for Urban

Applications” IEEE Trans. on Intelligent Transportation
Systems VOL. 11, 142-152, 2010

4. G. Hegeman, R. Horst, K. A. Brookhuis, and S. P.
Hoogendoorn, “Functioning and acceptance of
overtaking assistant design tested in 332driving simulator
experiment,” Trans. Res. Rec., vol. 2018, pp. 45–52,
2007.

5. J. Guldner, V. I, Utkin, and J. Ackermann, “A Sliding
Mode Control Approach to Automatic car Steering,” in
Proc. American Control Conf., Baltimore, MD, Jun. 1994,
pp. 1969-1973.

6. Doug Orrin, “Simulation Development” Vehicle
Dynamics International, Issue 1, 2009.

7. F Wang, M Yang, R Yang. “Conflict-probability-
estimation-based overtaking for intelligent vehicles”
IEEE Transactions on Intelligent Transportation System:
VOL. 10, 366-370, 2009.

8. Fenghui Wang, “Study on Multi Vehicle Cooperation for
the local intelligent transporation system”, Phd degree
thesis, Shanghai Jiaotong University,2009.

9. Mou Chen, Bin Jiang, Jie Zou, Xing Feng. “Robust
Adaptive Tracking Control of the Underwater Robot with
Input Nonlinearity Using Neural Networks” International
Journal of Computational Intelligence Systems, Vol.3,
No. 5 (October, 2010), 646-655

10. Nianfeng Wan, “Study on Cooperation Algorithm for
Multi-intelligent Vehicles”, Master degree thesis ,
Shanghai Jiaotong University,2009

11. Soo-Yeong Yi, Kil-To Chong. “Impedance control for a
vehicle platoon system”. Mechatronics 15 627–638, 2005

12. Doug Orrin, “Vehicle Dynamics Software-Today and
Tomorrow” Vehicle Dynamics International magazine
2006

13. B. Guvenc, E. Kural, “Adaptive Cruise Control
Simulator” IEEE Control System Magazine 42-55, June
2006

Published by Atlantis Press
 Copyright: the authors
 385

http://torcs.sourceforge.net/

