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Abstract 

Simulation platforms play an important role in helping intelligent vehicle research, especially for the research of 
cooperative driving due to the high cost and risk of the real experiments. In order to ease and bring more 
convenience for cooperative driving tests, we introduce an intelligent vehicle simulation platform, called 
CyberTORCS, for the research in cooperative driving. Details of the simulator modules including vehicle body 
control, vehicle visualization modeling and track visualization modeling are presented. Two simulation examples 
are given to validate the feasibility and effectiveness of the proposed simulation platform. 
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1. Introduction 

The development of autonomous vehicles has inspired a 
great trend to research of cooperative driving. Intelligent 
cooperative driving aims to increase the road capacity, 
and improve the safety for driving; accordingly, it helps 
to reduce car accidents and traffic jams. Notice that 
driver safety and comfort becomes more and more 
important1, cooperative driving also improves driver 
experience. Despite some advanced sensor technologies 
and control strategies have been applied for the single 
vehicle system, cooperative driving requires many other 
technologies which may significantly increase the road 
capacity, and improve the safety for driving, therefore 
avoid accidents and traffic jam. Despite the same sensor 
technology and control strategy as applied for individual 
vehicle, cooperative driving requires many other 
technologies such as wireless communication, vehicle 

detection, self-organization, swarm intelligence2 and so 
on. 
 
In the last few years, multivehicle platforms have been 
developed at several universities and research labs. 
Some of the platforms involve unmanned ground 
vehicles and unmanned aerial vehicles, such as MIT’s 
multivehicle testbed and University of Pennsylvania’s 
multiple autonomous robots (MARS) testbed. Cornell 
University’s RoboFlag testbed includes several small 
robots with local control loops that work cooperatively 
to achieve a common goal. 
 
However the actual tests for cooperative driving require 
multi fully equipped vehicles, which a single laboratory 
may not possess. On the other hand, as many vehicles 
are involved, the risks and complexities of carrying out 
such experiments are significantly increased. Therefore, 
it is difficult to efficiently implement and evaluate our 
algorithms for cooperative driving research. These years 
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the simulation platforms also have been developed not 
only in research field but also in industry. Some 
commercial simulation platforms are quite successful 
(for example, Carsim from Mechanical Simulation 
Corporation, Prescan from TNO). For research purpose, 
this kind of platforms is too expensive. In this paper, an 
open source intelligent vehicle simulation platform for 
the research of cooperative driving is proposed to 
address this issue. CyberTORCS, the simulation 
platform is designed to simulate both sensor behaviors 
and surrounding vehicle environments. Moreover, the 
simulation platform is capable of providing variety of 
information to help implementing and evaluating the 
developed algorithms. Simulation platform modules 
including vehicle body control, vehicle visualization 
modeling and track visualization modeling are discussed 
in detail. In order to demonstrate the capability and 
feasibility of the simulation platform, analysis on two 
simulation examples conducted based on CyberTORCS 
are shown.  
 
The rest of the paper is organized as follows. Section II 
introduces system architecture and some modules of 
CyberTORCS. In Section III and Section IV, we present 
and discuss two experimental examples conducted 
based on CyberTORCS. Finally, Section V summarizes 
this paper with our future work. 

2. System Architecture 

CyberTORCS is developed based on the software 
TORCS (The Open Racing Car Simulator), which is an 
open source software for car racing. Players could drive 
their cars by keyboard or joystick. Also, it is very 
convenient to implement and test different control 

algorithms and driving strategies in this simulation 
platform. The software is written in C++, and could run 
on different operation system platforms.  
 
 
As shown in Fig. 1, the simulation platform contains 
several modules. Each vehicle in the simulator has its 
own identity, sensor module, vehicle dynamics module, 
vehicle control module, etc. Basic features of these 
modules are included in TORCS, and users may edit 
each module for their own purposes. Based on the data 
received from sensor perception module or 
communication module, the cooperation algorithm 
module generates behavioral intentions for all vehicles, 
and then sends to the vehicle control module. The 
vehicle control module works out the control parameters 
for vehicle dynamic models, and the dynamic module 
outputs the vehicles position and orientation information 
for 3D display module. The data recorder module could 
record all the information such as the driving 
trajectories, vehicle speed, and some other information 
in terms of txt file or animation file. Since, in the paper, 
the simulation platform is developed for cooperation 
algorithm test and evaluation, some close related 
modules will be discussed in more detail both in the 
following module introduction and simulation examples. 
Unfortunately, some other modules are not introduced 
although we did mention in the system architecture. 

2.1. Vehicle body control module 

Similar to the real car driving, vehicles in CyberTORCS 
are controlled by four parameters: steer, gear, accelerate 
and brake. The control algorithm sends some control 
information (e.g. desired acceleration, global orientation) 

 
Fig.1. System Architecture 
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to the vehicle control module. The function of vehicle 
control module works out these four parameters and 
sends it to the vehicle dynamic mo9del. In this paper, 
we introduce two control examples: steering control and 
automatic cruise control. 
 
In some simulation, the algorithm focuses on the 
longitudinal control. In this kind of situation, the 
steering method is to follow the middle line of the road. 
The steering angle (between PI and –PI) is calculated as: 
 

. /angle carPositiontoMiddle currentTrackWidth=  
 
Where carPosition.toMiddle is length of the car’s 
position to the middle line, and currentTrackWidth is 
the current track width. With this method, the car could 
follow the middle line of the road. More difficult 
steering movement such as lane changing could also use 
this simple method by changing the value of 
carPosition.toMiddle. 
 
Many applications require maintaining a desired vehicle 
speed during the simulation. The simple automatic 
cruise control approach is utilized proportion control for 
controlling the accelerator. The input is the deviation 
between the current speed and the desired speed. Brake 
command is applied if the deviation is positive and vice 
versa. The gear is related to the engine RPM 
(revolutions per minute), in that, different speed range 
corresponds to different gear level. 
 

2.2.  Vehicle appearance module 

The appearance modeling is an important part in 
simulation process, not only because it brings a better 
visual performance, but also accurately shows the 
information of each part of a vehicle, thus makes it 
possible to verify sensor navigation algorithms or other 
control strategies, or access some important position and 
orientation information precisely before the actual 
experiment. CyberTORCS simulator allows users to 
define a car’s appearances, colors, materials and so on. 
It also provides some interfaces with other modeling 
software.  
 
In this paper, we take the CyberC3 vehicle platform3 
depicted in Fig. 2(a) as the simulation target. The 
correspondent CyberC3 vehicle model in CyberTORCS 
is shown in Fig. 2(b) after the visualization modeling. 
As seen from Fig. 2, the vehicle visualization modeling 
model is able to build a very precise vehicle model. 
 

 
(a) CyberC3 vehicle 

 

 
(b) CyberC3 model 

Fig.2. Comparison between the actual vehicle and the model 
 

2.3. Track modeling 

Track modeling or road modeling is usually more 
important. Sometimes intelligent vehicles would 
demonstrate in a particular region. If the track model in 
that region is precise enough, researcher could verify 
the algorithm in the lab and predict the performance 
accurately. CyberTORCS stores track information in 
XML form, and it provides an edit tool called track 
editor, which allows users to build and edit their own 
tracks. However, manually editing leads to errors. This 
paper presents a method for track modeling based on the 
road border GPS information with negligible errors. 
In track editor, a track is considered as the connection of 
several sections. And sections are defined as two main 
types: straight ones and arc ones. A straight section is 
determined by its start point and its length, and an arc 
section is determined by its start point, radius and angel. 
It is common to use clothoids to construct roads in 
reality, however, when track editor builds clothoids, the 
errors would significantly increase. So we choose to use 
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only straight line and arcs to match real GPS points 
more accurately. Given a series GPS points, the method 
is to fit them to several straight sections and circle arc 
sections end to end to minimize the error.  
The main idea is to divide the points into groups. Points 
in each group could be fitted as a straight line or a circle 
arc. There, thus, should be a start points, an end point 
and a direction. The steps of dividing points into groups 
are as follows: 
 
Step 1: find the first point, and make it as point A; 
Step 2: connect point A, point A+i (i = 2 at first), name 
this line L; 
Step 3: calculate the sum of squares of the distance from 
the points between A and A+i to the line L; 
Step 4: if the sum is large than a constant C (determined 
by users), the straight line group is from point A to point 
A+i, else i+1 and go back to Step 2.  
Step 5: if a straight line group is generated, points A+i 
should then be the end points of the straight line, use the 
method of generating straight line to generate a line. 
Step 6:  make point A+i as the start point of the next 
circle arc, use the method of generating arc to calculate 
which points should be in the next circle arc group. For 
instance, the group contains points from A+i to A+j. 
Step 7: use the method of generating arc to calculate the 
arc radius and angle. 
Step 8: go back to step 2 until all points are divided into 
groups. 
 
Following the method above, points are divided into 
groups, and lines are worked out from those straight 
lines groups. Here then the track is filled with several 
separated lines. The next step is to connect those lines 
with circle arcs. The method of generating circle arcs 
between the lines is as follows: 
 

 
Fig.3. Method of Generating Circle Arcs 

 
As it is shown in figure 3, 1 1( , )x y is the end point of 

1L , 2 2( , )x y  is the start point of 2L . The steps of the 
method are as follows: 
 

Step 1: calculate the intersection point o of the public 
vertical lines of 1L and 2L . 

Step 2: calculate the distance between o and 1 1( , )x y , 

which is named 1R , and calculate the distance between o 

and 2 2( , )x y , which is named 2R . Compare 1R  and 2R . 

Here may wish to set 1 2R R< (if not, just exchange 

1L and 2L )  

Step 3: calculate the angle of 1L and 2L , which is 

namedθ . 
Step 4: move o on the vertical line of 2L , to the point o’, 

which has the same distance to 1L and 2L . 

Step 5: calculate the distance from the point 2 2( , )x y  

to line 1L , which is named 3R , thus from the figure,  

 
( )
( )

3 1 2

1 2 3

cos
cos

R R R
R

R R R
θ

θ
−

=
− +

  （1） 

Step 6: based on o’ and R , work out the point ( , )x y , 

replace 1 1( , )x y  with ( , )x y . 
 
Here the angle θ  and the radius R  are worked out, and 
it is easy to identify the circle arc needed. With all 
parameters required are worked out, the track could be 
defined in CyberTORCS. The paper takes the road in 
Oriental Land, Shanghai, China as an example1. The 
following figures show that the track model generated 
by using the method while the error standard variation is 
4cm. Figure 4 indicates the GPS map and the track 
model generated. It is shown that the result has high 
accuracy and little errors. 

 
Fig.4. Comparison of the Model and GPS map 
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3. Overtaking Simulation Example 

Overtaking issue is a typical cooperative driving 
scenario. The overtaking experiment requires high 
steering accuracy and stable communication between 
vehicles4,5. 
Moreover, the vehicles’ driving trajectories should be 
recorded for analysis6. In this example, CyberTORCS 
shows its abilities in such aspects.  
In general, the overtaking process includes three steps: 1. 
changes lane to the adjacent lane; 2. passes the 
overtaken vehicle; 3. returns to the original lane.  

σσ

σ

σ

 
Fig.5. Vehicle overtaking 

 

In the paper7, the author proposes an overtaking control 
method based on the estimation of the conflict 
probability. In the process of overtaking, the 
longitudinal and lateral position errors of both the 
overtaking vehicle and the overtaken vehicle are 
normally distributed with zero means and covariances 
that have eigenvectors in the along-track and cross-track 
directions. The position-error covariances can be 
estimated by intelligent vehicles in online or offline way. 
Refer to Fig. 5, vehicle 1 is the overtaken vehicle and 
vehicle 2 is the overtaking vehicle. The ellipses around 
vehicles are the position-error ellipses and the 
maximum axes of these ellipses are aligned with the x 
axes of the vehicle bodies. The rectangular region 
around the overtaken vehicle is the predefined conflict 
area. The position-errors of the overtaking vehicle and 
the overtaken vehicle are independent. In the vehicle-
fixed coordinate, the position-error covariance matrix of 
the overtaken vehicle is 


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σ  (2) 

where 
x1σ  and 

y1σ  are the standard deviations of the 
longitudinal and lateral position errors of the overtaken 
vehicle, respectively. Similarly, in the vehicle-fixed 
coordinate, the position-error covariance matrix of the 
overtaking vehicle is 
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where 
x2σ  and 

y2σ  are the standard deviations of the 
longitudinal and lateral position errors of the overtaking 
vehicle, respectively. By using coordinate 
transformation, the position-error covariance matrix of 
the overtaken vehicle can be converted to the coordinate 
that fixed on the overtaking vehicle, that is 

TRRCC 11 =′  (4) 
where  








 −
=

θθ
θθ

cossin
sincos

R    (5) 

θ is the azimuth angle of the overtaking vehicle.  

The position-error covariance of the overtaking vehicle 
and that of the overtaken vehicle can be combined in the 
coordinate that fixed on the overtaking vehicle, and the 
relative position-error covariance matrix can be 
presented by 

21 CCC +′=  (6) 
Assume that in a moment, the instantaneous relative 
longitudinal and lateral positions of the two vehicles are 
sx and sy in the coordinate fixed on the overtaking 
vehicle. Then the instantaneous conflict probability 
density function can be expressed as 

)}()(
2
1exp{

2
1),( 1

21 µµ
π

−−−= − XCX
C

ssf T
yx

 (7) 

where X=[sx, sy]T and μ=[0, 0]T. 

The conflict probability between the overtaking vehicle 
and the overtaken vehicle is the integral of the relative 
position-error probability density over the conflict area. 
Therefore the instantaneous conflict probability is 

∫∫=
G

yx dxdyssftP ),()(  (8) 

where G is the conflict area. 
For the overtaking intelligent vehicle, both current and 
future safety conditions should be considered in the 
process of overtaking, so the model predictive control 
can be applied in this process. The prediction model of 
the overtaking control is used to predict the future 
conflict probability corresponding to the possible 
control input. This model includes the relative position 
prediction model and the conflict probability prediction 
model. The conflict probability prediction model uses 
the estimated relative position to predict the future 
instantaneous conflict probability 
In order to evaluate the effectiveness, simulation tests 
are implemented on CyberTORCS8. The simulation 
platform provides a two-lane traffic situation, in which 
the high-speed vehicle may generate the overtaking 
intention when it detects the preceding low-speed 
vehicle. The sizes of the overtaking vehicle and the 
overtaken vehicle are 4.8 m×1.9 m and 5.0m× 2.0 m, 
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respectively. The initial intervehicle distances in all the 
tests are 32 m. 
Two different overtaking control methods have been 
compared in the same scenes. One is the proposed 
conflict-probability-estimation-based overtaking control 
method; the other method has been described in9. 
Corresponding to different situations, the speed of the 
overtaken vehicle is kept at 60 km/h and that of the 
overtaking vehicle is 80km/h, 85km/h, and 90km/h 
respectively.  
Firstly, the simulation platform recorded the overtaking 
trajectories, as shown in Fig.6. Here the predefined safe 
conflict probability is 1.0×10-4 and the conflict area is 
Ca=25m×5m in these tests. 
Secondly the platform illustrated the variation of the 
closest distance for several scenarios to find out the 
relationship between the distances and the parameters.  
 

 Fig.6. Overtaking tracks in different situations. 
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Fig.7. The variation of the closest distance (scenarios with different relative speed) 
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Fig.8. The variation of the closest distance (scenarios with different conflict area) 
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Fig.9. The variation of the closest distance (scenarios with different safe conflict probability) 
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The result from Fig. 7 shows that a higher relative speed 
corresponds to an earlier initiation of the overtaking, but 
the closest distance hasn’t varied greatly in different 
scenarios. The result from Fig. 8 shows that with the 
increase in the conflict area, the closest distance hasn’t 
decreased remarkably. Therefore the variation of 
conflict area in a certain scope doesn’t affect the 
overtaking safety significantly. The result from Fig. 9 
shows that the closest distance decreases with the 
increase in the safe conflict probability. Based on the 
accurate simulation results, the author’s conclusion is 
convincing. 
 

4. Platoon Simulation Example 

Platoon is another important cooperative driving 
scenario. A string of vehicles drives with constant 
velocity in a line may increase the capacity of the road. 
How to keep them with constant position and how to 
reduce position and velocity error is the main problem 
of this issue. Some research uses adaptive tracking 
control method for solving these problems9. 
In the thesis10, the author proposes a new spring damper 
control method for platoon control. This method 
considers that all vehicles in a platoon as a group of 
connected spring-damper systems, which indicates that 
only local but bidirectional information is used. The 
system of a platoon of vehicles can be represented as 
follows: 
 

 
Fig.10. Spring-damper system 

 
Then the author divides the whole system into several 
subsystems, each subsystem contains three vehicles. 
And overlapping decomposition method is used for 
building the new expanded system. Finally the LQ 
optimal control is used to work out the best coefficients 
for both the expanded system and the original one.  
We use CyberTORCS to compare the new method with 
classical algorithm.  
The simulation test selected an oval track for a length of 
1908.3 meters, road width of 25.0 meters. The platoon 
is composed of five cars, the expected speed is 40 km 
per hour, and the vehicle spacing is 10 meters. The 
simulation object is to examine whether the position and 
velocity errors of vehicles would propagate along the 
platoon when the first car has a sudden acceleration and 
deceleration. The platoon cruise speed is 40km/h. The 
leading car firstly accelerates to 60km/h with the 

acceleration of 10m/s2, and then decelerates to 40km/h 
with the acceleration of -10 m/s2. The experiment 
compares the present method with the classical PD 
control method and a fixed spring damper coefficient 
method11. 
The results are shown in Figure 11(a), 11(b) and 11(c). 
Figure 11(a) indicates the spacing error variation using 
PD control. It can be seen that the spacing error between 
the 4th and the 5th vehicle firstly reached -10 m in the 
first 4 seconds, that is, the collision occurred. Similarly, 
the 4th and the 3rd vehicle in the first 7 seconds also 
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(a) spacing error variation using PD control 
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(b) spacing error variation between 4th and 5th vehicle 
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(c) spacing error variation between 3rd and 4th vehicle 

Fig.11. Spacing Errors 
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collided. Figures 11(b) and 11(c) show the spacing error 
variation between the 4th and the 5th vehicle and 
between the 3rd and the 4th vehicle respectively, with the 
application of the fixed spring damper coefficient 
method and the present method. It is shown that both 
systems are convergent, while the method proposed in 
this paper presents a small offset, and the stabilization 
time is short, also the error will not propagate along the 
platoon. And the results show the convenience of the 
platform CyberTORCS compared with others12,13. 

5. Conclusion 

The current simulation platform CyberTORCS utilizes 
several ways to obtain high accuracy in multi vehicle 
experiments. According to examples, with benefits in 
reducing cost and maintaining safety, such platform 
with high accuracy would play a more important role in 
the research of cooperative driving in the future. 
Researchers could use this platform to test their 
algorithms and revise them without huge expense. In 
fact, the platform has been used to test several 
algorithms for vehicle cooperation and other aspects. 
In addition, the following aspects have been taken into 
account in future works. 
1) The data would be analyzed after the experiment is 
done. The next step is to create a real-time data display 
module, which may help researchers to monitor each 
parameter in time. 
2) Several sensor models are developing, which is not 
mentioned in this paper. And interface development 
with other simulation platform is also a good direction. 
3) The hardware-in-the-loop module would help the 
platform enlarge the ability in testing and evaluating. 
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