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Abstract 

The Multi-Period Multi-Product (MPMP) production planning, as a well known problem in literature, attempts to 
match production rates of individual products with fluctuated market demand over planning horizon. This study, 
demonstrates how the conventional MPMP Linear Programming (LP) model may fail to utilize available capacity of 
machines, and also a novel Multi Objective Linear Programming (MOLP) model is developed to simultaneously 
minimize net present value of production costs and maximize machine utilization. The proposed model consists of 
production constraints such as available labor, inventory, maximum subcontracting levels and also forecasted 
demands. The proposed MOLP model is further converted to a Fuzzy Multi Objective Linear Programming (FMOLP) 
model utilizing piecewise linear membership functions. The model, accommodates the Decision Maker (DM) with a 
more systematic decision making approach enabling the DM to adjust the search direction during the solving 
procedure to achieve the most satisfactory result. 

 

Keywords: Multi-Period Multi-Product production planning; Aggregate production planning; Fuzzy Multi-Objective 
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1. Introduction 

The standard MPMP problem in production planning 
environment attempts to determine production rates of 
individual products in each period and have been 
increasingly focused by both practitioners and 
academicians (Hanssmann & Hess1; Bakir & Byrne2; 
Wang & Liang3; Feylizadeh et al.4). 
In a competitive market, products’ demand may fluctuate 
significantly due to seasonal/periodical reasons. In such 
an environment, existence of a reliable and stable 
production planning system is crucial in order to adjust 
production rates to available resources and market 

demand. An appropriate production planning system 
besides determining the production volumes should also 
provides the DM with proper strategies of absorbing 
demand fluctuations. General strategies for absorbing 
demand fluctuations may be noted as follows5: 
 

i. Variable level of work force results in changing 
rate of production, although excessive use of 
hiring and dismissing may be limited by union 
regulations, 

ii. Varying production rates by introduction of 
outside subcontracting, 

iii. Accumulating seasonal inventories, 
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iv. Allowing backorder planning. 

Any individual or combination of mentioned policies 
may be used to absorb fluctuations in demand rates. 
Besides, proper utilization of available machine 
capacities can substantially affect the quantity of 
production as well as production costs by reducing 
backordering and backlogging costs. 
In most practical production planning cases, different 
conflicting objectives may be arisen including 
minimizing total production costs, inventory investment, 
changes in production rates, changes in work force levels 
as well as maximizing profit, customer satisfaction, and 
utilization of plant and equipments6. These conflicting 
objectives are required to be optimized through a 
simultaneous analyzing system where DM’s judgments 
regarding priority and importance of each objective can 
be considered.  
Moreover, environmental coefficients and related 
parameters such as market demand and available 
resources are normally assigned by experts. In most real 
situations, experts have an imprecise or ambiguous 
insight of such parameters. Thus, it would be more 
appropriate to represent these parameters using fuzzy 
numbers. 
This work represents a novel multi objective 
mathematical model for solving the MPMP production 
planning problem where operational sequence of 
individual products has been also considered. We 
discuss, although considering production routes may 
show a significant impact on utilization of machines 
available capacities, this issue hasn’t been previously 
taken into consideration in the conventional MPMP 
models. The original MOLP model attempts to 
simultaneously minimize net present value of total 
production, carrying and backordering costs, rate of 
changes in labor levels, and maximizes machine 
utilization subject to available inventory capacity, 
resource levels. Furthermore, the proposed model is 
converted into an FMOLP model, where piecewise linear 
membership functions are introduced to indicate the 
satisfaction degree of DM from different values of 
objective functions. Moreover, triangular fuzzy numbers 
are utilized to deal with imprecision of DM’s judgments 
about market demand and available machine capacity. 
The remainder of this work is organized as follows: 
Section 2 reviews the literature for related topics. Section 
3 describes fallaciousness of the conventional MPMP 

formulations in utilizing available machine capacities 
and how considering production routes can affect 
production capacity and costs. Section 4 presents the 
model formulation and provides a method to convert 
FMOLP formulation to a simple single objective linear 
model. Additionally, Sec.5 suggests an interactive 
procedure to embed the DM’s judgments in planning 
process. Section 6 includes a numerical example, 
sensitivity and comparative analyses. Finally, 
conclusions are drawn in Sec.7.  

2. Literature Review 

Since this research applies both Aggregate Production 
Planning (APP) and MPMP notions as an integrated 
model, a comprehensive review of both mentioned topics 
is presented below. 
The conventional LP formulation of the MPMP problem 
focuses on matching production rates of multi products 
with fluctuated market demand over planning horizon. 
The standard form of the MPMP model, (see Refs. 7 and 
8 for more details) considers minimizing total production 
related costs including variable production, inventory, 
and shortages costs as objective function. 
Bakir & Byrne2 pointed out uncertainties in discrete 
manufacturing systems can affect the feasibility of 
solution to a large extent, and developed a stochastic 
linear programming model dealing with uncertain 
demands. Later, Byrne & Bakir9 presented a hybrid 
simulation-analytical approach to cope with complex 
behavior of resource consumption in a real-world 
manufacturing system. Then, Kim & Kim10 identified the 
actual work load of jobs and utilization of resources in 
each simulation run and passed the information to the 
linear programming model in order to provide the 
optimal production plan with minimum total costs. They 
also compared their approach with Byrne & Bakir9 
approach and showed that their approach takes less 
iteration to find a better solution. Byrne & Hossain11 
extended models proposed by Byrne & Bakir9 and Kim 
& Kim10, considering unit load notion of a Just In Time 
(JIT) production system. They attempted to improve the 
planning model by reducing the level of semi-products 
and total flow time. 
Brandimarte12 proposed a multi-stage stochastic 
programming approach for multi-item capacitated lot 
sizing problem, considering uncertain demand. Noori et 
al.13 discussed, machine utilization in the MPMP 
production planning problem can be improved by 
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converting the problem into a project scheduling problem 
and assigning resources to activities and consequently 
leveling the resource profiles. Concurrently, Feylizadeh 
et al.4 developed an approach incorporating cost-time 
trade off models in MPMP production problem. They 
attempted to crash total completion time by applying 
three objectives including minimization of total cost and 
total time as well as maximization of quality levels. 
Bagherpour et al.14 implemented the earned value 
analysis as a project control mechanism, through an 
MPMP production problem. They modeled the 
uncertainty associated with activities durations using 
triangular fuzzy numbers and utilized forecasting 
features of earned value analysis method to predict 
completion time of individual products. 
Kazemi Zanjani et al.15 also developed a multi-stage 
stochastic programming model to solve the MPMP 
production problem in presence of uncertainty in the 
quality of raw material and consequently in processes 
yields, and uncertainties in products demand. Kazemi 
Zanjani et al.16  highlighted the superiority of robust 
optimization compared with stochastic programming in 
uncertain environment by applying robust optimization 
approach to determine production plans with robust 
customer service level. 
Many researchers have combined notions of the MPMP 
problem with features of the APP production planning 
problems. In this respect, they developed more reliable 
mathematical formulation that not only indicates 
optimized production rates but also adopts policies 
regarding issues such as hiring, dismissing, planning 
backorder, subcontracting and inventory (Lai & 
Hwang17; Shi & Haase18; Wang & Liang19). 
Fuzzy sets theory is a type of imprecision which has no 
well-defined boundaries for its description.20 Fuzzy sets 
theory is highly applicable in the problems involving 
human judgments, evaluations, and decisions.21 Inclusion 
of fuzzy sets theory in optimization problems results in 
reduction of information costs and circumvention of 
unrealistic modeling.22  
Zimmermann23 first applied fuzzy set theory into 
conventional LP problems by considering fuzzy 
objectives and fuzzy constraints. Then, proposed an 
approach using fuzzy min-operator to transform FMOLP 
models into single objective LP models.24 Rinks25 
utilized fuzzy linguistic relational assignment rules for 
APP production planning problems. Nakamura26 
proposed an approach to solve FMOLP models with 

quasiconcave membership functions. Nakamura’s 
approach divides the original problem into 

n
ii 1

v
2  sub-

problems, where vi represents the number of intersections 
between concave functions and convex functions. 
Zimmermann27 introduced an approach based on Fuzzy 
Linear Programming (FLP) and approximate reasoning 
to solve APP scheduling problems in flexible 
manufacturing systems. Yang et al.28 developed an 
approach to solve quasiconcave FMOLP models using   

additional zero-one variables. Gen et al.29 
attempted to solve APP problems with fuzzy parameters 
through an interactive solving procedure. Wang and 
Fang30 proposed a model to minimize total quadratic 
costs of production and linear inventory costs, 
considering fuzzy demands and capacities. Li and Yu31 
proposed a method for solving FMOLP problems with 
quasiconcave membership functions and fuzzy 
coefficients. Their method, first represents a piecewise 
linear membership function as the summation of absolute 
terms and then, searches for the interval where the 
optimal solution is allocated.  
Wang and Liang32 suggested a novel interactive FMOLP 
model to minimize total production costs, carrying and 
backordering costs and costs of changes in labor levels. 
Fengjie et al.33 provided an approximate algorithm for 
solving FMOLP problems considering fuzzy parameters 
in any form of membership functions in both objective 
functions and constrains. Jamalnia and Soukhakian34 

proposed an FMOLP model with different goal priorities 
using linguistic variables and trapezoidal fuzzy numbers. 
Additional references regarding FMOLP models and 
production planning problems include Refs. 35-38.   
Liang and Cheng39 utilized piecewise linear membership 
functions and fuzzy min operator to optimize a multi 
objective production and distribution planning problem. 
Liang40 applied FMOLP models in production and 
distribution planning decisions using linear membership 
functions.   
This study addresses production planning of multiple 
products over multi period planning horizon, where 
aspiration levels of objectives and parameters are not 
precisely known and depend on expert judgments. 
Piecewise linear membership functions are utilized to 
deal with fuzzy conflicting objectives. Triangular fuzzy 
numbers are utilized to deal with imprecision of 
environmental parameters, which is mainly due to 
incomplete or unobtainable information.   

n

ii 1
v


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3. Importance of Considering Production Route 
in the MPMP Production Planning 

The traditional MPMP model conventionally ignores 
production route of individual products. The classical 
MPMP model, normally, considers equal production 
rates for each process or it is assumed process routes of 
all products to be the same. In this section, we will 
discuss how the traditional MPMP model may fail to 
utilize the potential available capacity of machines. 

N

njt nt jtn 1
M Q MC       j,t


    

  
(1) 

 

Eq. (1) represents the typical machine capacity constraint 
of the conventional MPMP model (see Refs. 2, 3, 16, and 
34 for more details) in which Mnjt represents processing 
time of nth product on jth machine in period t, Qnt 
indicates total production volume of nth product in 
period t, and MCjt is the maximum available capacity of 
jth machine center in period t.    

 
 
 
 
 
Now, Considering Fig. 1 which depicts a single-product 
production system, according to Eq. (1) the           
optimal production rate is equal to

 *
1 1 j j J JQ Min MC M ,...,MC M ,...,MC M , in which MCj is the 

total available capacity of jth machine center and Mj is 
the processing time on jth machine. Thus, conventional 
MPMP formulation considers the system’s production 
capacity to be equal to minimum production capacity of 
all machine centers; however in a multi period 
production system the extra available machine capacities 
can be utilized to produce semi-products. 
Similarly, in a multi-product production system (Fig. 2) 

total production unit of a part on each machine center is 

equal to  * * * *
n n1 n1 nj nj nJ nJQ Min MC M ,...,MC M ,...,MC M , 

in which MC*
nj is the available capacity of jth machine to 

produce nth product in period t. 
  
 
  
 

 
 

 

 
Thus, the standard MPMP mathematical model may 
circumscribe the feasible region. In other words, 
utilization of extra production capacity to produce semi-
products has not been previously taken into consideration 
in the conventional MPMP models, however, by 
considering production route of individual products, 
production of semi-products can be planned and it would 
be possible to lower backordering and backlogging 
levels. 

4. Mathematical Formulation 

The original MOLP model proposed in this paper deals 
with minimizing net present value of production related 
costs and maximizing machine utilization 
simultaneously. Production related costs include 
production, inventory, shortage, subcontracting costs and 
those associated with hiring/dismissing man-hour. Here, 
the two objective functions are fuzzy and piecewise 
linear membership functions are introduced to denote the 
DM’s satisfaction degrees with obtained objective 
values. The minimum operator of Hannan41 and 
Zimmermann24 is utilized, to aggregate all fuzzy sets. 
Moreover, because of simplicity and flexibility of fuzzy 
triangular arithmetic operations, computational 
efficiency as well as facilitate data acquisition triangular 
fuzzy numbers are utilized to deal with uncertainty 
associated with market demand and available machine 
capacity.42 Following notations are used in the proposed 
model: 
   Index sets 

n index for product, n=1, 2,…,N 
i index for process, i=1,2,…,Pn 
t,k index for planning time period, t and k=1,2,…,T 
j index for machine center, j=1,2,…,J 
g index for objective, g=1,2,…,G. 
 
   Objective functions 

Z1 Total Costs ($) 
Z2 Total machine Utilization  
 

Fig. 1. Single-Product production system 

MC1 MC2 MCJ-1 MCJ 

MC1 MC2 MCj MCJ-1 MCJ 

Fig. 2. Multi-Product production system 
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 Parameter definition  Decision variables 

Qnitt The total production volume of the ith process 
of nth product in period t (unit) 

Qnitk The quantity of nth product which has 
completed its ith process in period t and will be 
stored to be used in period k where k >t (unit) 

nnP tkQ  The quantity of backordered demand of 
product n in period t that will be fulfilled in 
period k where k<t (unit) 

Sunit subcontracted volume for ith process of nth 
product in period t (unit) 

Ht workers hired in period t (man-hour) 
Ft workers laid off in period t (man-hour) 
BCnt binary variable to indicate whether demand of 

finished product of type n in period t is 
backordered or not 

Innt binary variable to indicate whether inventory 
of finished product of type n in period t is 
planned or not 

 
The decision variable Q involves two indices of time 
periods. In this regard, the first index indicates 
production period and second one represents the period 
of usage. For instance, Qnitt represents production volume 
of ith process of part type n, Qnitk represents inventory 
levels of semi-products of type n in period t to be used in 
period k (where t<k), and Qn,Pn,tk indicates the quantity of 
demand of finished products of type n which have been 
backordered in period t to be fulfilled in period k (where 
t>k). 

4.1. Fuzzy multi-objective linear programming 
model 

4.1.1 Objective functions 

As earlier pointed out, this study develops multiple 
objectives for solving the MPMP production planning 
problem. Several objectives for the MPMP problem have 
been reported in literature including minimizing total 
cost/ maximizing total profit, minimizing variations in 
material and labor levels (quantitative objectives), and 
maximizing customer satisfaction (qualitative objective) 
(see Refs. 2,3, and 34 for more details). However, 
maximizing machine utilization has not been taken into 
account in any of existing research. Here, machine 
utilization is formulated as an additional objective due to 
its significant impact on subcontracting, backordering, 

Dnk forecasted demand for nth product in period 
k (unit) 

Cni operation cost of ith process of nth product 
in first period ($/unit) 

ec escalation factor for regular production cost 
(%) 

Mcjt maximum capacity of machine center  j in 
period t (machine-hour) 

Csni inventory carrying cost per unit of nth 
product which has completed its ith process 
in first period ($/unit) 

es escalation factor for inventory carrying cost 
(%) 

Cbn backorder cost for unit of nth product in 
first period ($/unit) 

eb escalation factor for planning backorder 
cost (%) 

Csuni subcontracting cost of  ith process of nth 
product in first period ($/unit)  

esu escalation factor for subcontracting cost 
(%) 

Ch cost of hiring man-hour in first period 
($/man-hour) 

eh escalation factor for cost of hiring labors 
(%)  

Cf cost of dismissing (fire) man-hour in first 
period ($/man-hour) 

ef escalation factor for cost of dismissing 
labors (%) 

Mijn processing time of ith process of product n 
in period t on jth machine (machine-
hour/unit) 

Pmni man-hour usage for  processing ith process 
of product n (man-hour/unit) 

Pini warehouse space per unit for nth product 
which has completed its ith process 
(ft2/unit) 

Imaxt maximum inventory space available in 
period t for finished goods (ft2) 

WIPmaxt maximum inventory space available in 
period t for work-in-process inventories 
(ft2) 

Wmaxt maximum man-hour available in period t 
(man-hour) 

Smaxt maximum subcontracted volume available 
in period t (unit). 

R an arbitrary positive large variable. 
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backlogging levels, and associated costs as well as 
indirect costs regarding to idle time of machines.   
 Minimize total costs 

 

 
 
 
 
 

(2) 
 
 Maximize total machine utilization 

 

(3)

 
The symbol ‘  ’ is expressing equivalency under fuzzy 
conditions and refers to the fuzzification of the aspiration 
levels. In real-world MPMP applications, Eq. (2) and (3) 
are often involved with variations in DM’s judgment, 
thus piecewise linear membership functions are 
introduced to embed DM’s judgments about different 
values of objective functions within planning process. 
The impact of time value of money also is considered on 
each cost category, in this regard, the time value of 
money in each period is compared with first period. 
The first term of Eq. (2) represents production related 
costs which may encompass machine costs, raw material, 
etc. Inventory carrying costs represented by the second 
term, involves holding periods of both semi-products and 
finished products. Backlogging costs as the third term, 
takes into account the interval time between demand and 
fulfillment (shortage periods). Finally, the fourth and 
fifth terms represent the cost associated with 
subcontracting and hiring/dismissing workforce, 
respectively. 
Eq. (3) attempts to maximize total machine utilization, in 
this regard total production time of machines is divided 
with total available capacity of machines. 

4.1.2 Constraints 

 

 Machine center capacity constraints  

nPN

nitt ijn jt
n 1 i 1

Q M Mc                       t , j.
 

      (4) 

Eq. (4) ensures total utilization of each machine center in 
each period (left hand side) does not exceed the total 
available capacity of machine center (right hand side), 
which in most practical cases is often fuzzy/imprecise. 
The proposed machine capacity constraint utilizes 
required quantity of process on each machine in each 
period (Qnitt) to calculate processing time of each 
machine, despite, the conventional constraint focuses on 
required volume of finished products (Qnt) to be 
produced in each period. The number of required 
processes to be undertaken is mainly determined based 
on material balance constraints. 
 
 Material balance constraints 

nikk nik

n,i 1,tk n ,i 1,kt n ,i 1,k
t k t k

Q Su

Q Q Su    i 2, n, k.  
 

 

      
 (5) 

 

n n n n

n

T T

nP tk nP tk nP kt nP k
t k t k t k

nk nP kt
t k

Q Q Q Su

D Q                      n, k.

  



   

  

  


 

(6) 
In a production system, generally, material flow at each 
period should be balanced from two points of views: (1) 
inventory/shortage and subcontracting levels should be 
equal to those from previous periods, production 
quantity, and demand. (2) The total number of parts at 
each process is restricted to the total number of available 
parts which have completed the previous processes 
beforehand. In this respect, Eq. (5) is proposed here to 
make sure that total number of produced and 
subcontracted parts in each process does not exceed the 
total production and inventory of the previous process 
(denoted by the first term in the right hand side), and the 
number of parts stored for future periods (given by the 
second term in the right hand side), plus the 
subcontracted parts of the previous process (given by the 
third term in the right hand side). 
Similar explanation can be made for Eq. (6), where the 
total produced and subcontracted parts and inventory of 
the finished parts should be equal to the forecasted 
demand of each product and inventory level for future 
periods. The market demand in right hand side of Eq. (5) 

n

n

n

n

PN T
t

1 nitt ni c
n 1 i 1 t 1

PN T T
t

nitk ni s
n 1 i 1 t 1 k t

N T
t

nP tk n b
n 1 k 1 t k

PN T
t

nit ni su
n 1 i 1 t 1

min z Q C ( 1 e )

             ( k t ) Q Cs ( 1 e )

            ( t k ) Q Cb ( 1 e )

            Su Csu (1 e )

 

  

   

  

  

    

     

     

   








T

t t
t h t f

t 1

           ( H Ch ( 1 e ) F Cf ( 1 e ) ).


      

 nPN T J

nitt ijn
n 1 i 1 t 1 j 1

2 J T

jt
j 1 t 1

Q M
max z .

Mc

   

 

   


 
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is often fuzzy/ imprecise due to the uncertainty of 
demand, and supply of competitors in market. 
  

n nnP tk nP kt
t k t k

Q Q 0                              n, k.
 

      (7) 
 

Eq. (7), developed in this model, to prevent concurrent 
planning of holding inventories and backorders. 
 
 Maximum inventory space constraints 

N

nitk ni k n
n 1 t k k k

Q Pi Imax               i P , k
  

      (8) 

nP 1N

nitk ni k
n 1 i 1 t k k ' k

Q Pi WIP max         k .



   

    

 
(9)  

 
In this study production and storage of semi-products are 
considered to represent features of real world cases. 
Constraints (8) and (9) are formulated to assure that total 
inventory of finished and semi-products would not 
exceed the maximum available space of finished and 
semi-product warehouses.  
 
 Workforce constraints  

nPN

nitt ni t
n 1 i 1

Q Pm Wmax                        t
 

    (10) 

n

n

PN

nitt ni
n 1 i 1

PN

ni ,t 1,t 1 ni t t
n 1 i 1

Q Pm

Q Pm H F    t.

 

 
 

 

   




 

(11) 
Eq. (10) ensures that the maximum available workforce 
will not be exceeded and Eq. (11) balances the labor 
levels between periods. 
 
 Subcontracting constraints 

nPN

nit t
n 1 i 1

Su Smax                                   t.
 

   (12) 

Due to managerial policies of subcontracting, Eq. (12) 
makes sure that total number of subcontracted items in 
each period would not exceed the allowed level. 
 
 Linearization 

The proposed Fuzzy Multi Objective Nonlinear 
Programming (FMONLP) formulation encompasses Eq. 
(2) through (12). However, the FMONLP model can be 

converted to an FMOLP model by introducing following 
equations: 

n

T

nk nP tk
t k

R Bc Q                           n, k


     (13)  

n

T

nk nP kt
t k

R In Q                           n, k


     (14)

nk nkBc In 1                            n, k.     
 

(15)

Finally, by replacing Eq. (13-15) instead of Eq. (6) the 
proposed FMONLP model is converted to an FMOLP. In 
this regard, R in Eq. (13) and (14) represents a large 
positive number and Eq. (15) eliminates simultaneous 
occurrence of carrying inventory and planning 
backorder.  

5. Solution Strategy 

5.1. Treatment of the fuzzy constraints 

Here, triangular fuzzy numbers are adopted to cope with 
fuzziness/uncertainty of market demand and machine 
capacity. The main advantage of adopting triangular 
fuzzy numbers is ease of defining, simplicity and 
flexibility of fuzzy arithmetic operations, and simplistic 
data acquisition.16 and 43 In practice, the DM is almost 
familiar with defining the maximum negative and 
positive deviations of fuzzy numbers from their central 
value. Rommelfanger44 recommended utilizing triangular 
distribution, when knowledge of the distribution is 
limited.  
Practically, the triangular distribution can easily be 
constructed based on three prominent values (Fig. 3): 

i. The most likely value that definitely belongs to 
the set of available values (membership degree 
=1 if normalized).  

ii. The minimum accepted value in the range of 
available values which has a very low 
probability of occurrence (membership degree 
=0 if normalized)  

iii. The maximum accepted value in the range of 
available values which has a very low 
probability of occurrence (membership degree= 
0 if normalized). 

In this study, the weighted average method is utilized to 
convert fuzzy variables into crisp numbers.27, and 32 By 
introducing the minimum accepted membership degree α 
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for triangular fuzzy numbers, Eq. (3) and (5) can be 
represented as follows:  
 

nPN

nitt ijn
n 1 i 1

P m o
1 jt ,α 2 jt ,α 3 jt ,α

Q M

w Mc w Mc w Mc      t , j

 

 

   

  
(16) 

 

n n n n

n

T T

nP tk nP tk nP kt nP k
t k t k t k

p m o
1 nk ,α 2 nk ,α 3 nk ,α nP kt

t k

Q Q Q Su

w D w D w D Q   n, k.

  



   

    

  


 

(17) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2. Solving the fuzzy multi-objective linear 
programming problem 

Both fuzzy decision making concept introduced by 
Bellman and Zadeh52 and fuzzy goal programming 
method presented by Hannan41 have been utilized to 
solve proposed FMOLP model. In this respect, piecewise 
linear membership functions are adopted to represent all 
fuzzy objectives and the minimum operator is used to 
aggregate all fuzzy sets. Then, the auxiliary variable µ is 
introduced to convert the original model to a standard LP 
model which can be solved efficiently by simplex 
method. The auxiliary variable µ specifies the overall 
satisfaction degree of DM with objective values. 
Fallowing steps demonstrate the procedure of converting 
the FMOL model to an LP model.3 

 
Step1. Specify the degree of membership fg(zg) for 

several values for each of the objective 
functions zg, g=1,2,…, G. (Table 1) 

 

 
 
z1 >X10 X10 X11 …. X1b X1b+1 < X1b+1 

F1(z1) 0 0 q11 …. q1b q1b+1 q1b+1 

Z2 >X20 X20 X21 …. X2b X2b+1 < X2b+1 

F2(z2) 0 0 q21 …. q2b q2b+1 q2b+1 

 
Step2. Draw the piecewise linear membership 

functions for each objective based on data 
acquired in the first step. 

Step3. Assume grggrgg Sztzf )( to be linear 

function of each objectives segment

grgrg XzX 1, , in which grt  , and grS  are 

the slope and y-intercept of  linear section 
between  Xg,r-1 , and  Xg,r. 

Step4. Calculate ge g ,e 1 geα t t 2  ,

 gg g ,b 1 g1β t t 2  ,  gg g ,b 1 g1γ S S 2   

and convert the membership functions fg(zg) into 
the following form:  

gb

g g ge g ge g g g
e 1

f ( z ) α | z X | β z γ   g 1,2,...,G.


      (18) 

Expanding Eq. (18), Eq. (19) would be 
formulated as follows: 

g g g

g

g

g2 g1
g g g g

g3 g 2
g g2

g ,b 1 gP g ,b 1 g1

g gb g

g ,b 1 g1

g

t t
f ( z ) | z X |

2

t t
             | z X | ...

2

t t t t
             | z X | z

2 2

S S
                      g 1,2,...,G.    e 1,2,...,b .

2

 



 
    

 
 

   
 

    
        

   


 

 
(19)  

Where bg is the number of breakpoints of gth 
objective function. 
 

Step5. Introduce the non-negative divisional 
variables. 

g ge ge ge gz d d X   g 1,2,...,G, e 1,2,...,b .     
 

(20) 

Now Eq. (21) can easily formulated by 
substituting ( g gez X ) from Eq. (20) in Eq. 

(19). 

Table 1. Membership function of fi(zi) 

Note:0 ≤qmn≤1, qmn ≤ qmn+1 m=1,2  n=1,2,…,b. 

o
nkD ,

nk
D

nkD
~

o
nkDm

nkD
p
nkD

m
nkD ,

p
nkD ,

1 

  

Fig. 3. The distribution of triangular fuzzy number
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Fig. 4. Interactive procedure of solving FMOLP 
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(21) 

Step 6. By introducing the auxiliary variable µ 
(0≤µ≤1), as a minimum operator to aggregate 
fuzzy sets, the proposed FMOLP model can be 
converted to ordinary single objective LP 
model. 

 

 

 

g g

g g

g g

g2 g1
g1 g1

g,b 1 gbg3 g2
g2 g2

g,b 1 g1 g,b 1 g1

gb gb g

g de ge ge

Max μ

t t
s.t. μ - d d

2

t tt t
      d d ...

2 2

t t S S
      d d z , g

2 2

       z d d X                    g,e

    

 

 

  

 

 
   

 
  

          
  

     
 

   

nitt intk, nit t t

   Eqs. (4),(5),(8-15),16,17

Q ,Q Su ,H ,F 0

 
(22) 

 
 

5.3. Solution procedure 

 
Here, an interactive decision making procedure is 

presented in which the DM can adjust the search 
direction through each run until satisfactory results are 
obtained. In Fig. 4, the procedure of solving the FMOLP 
model is presented.

 
6. An illustrative example 

6.1. Data description 

In order to implement the proposed FMOLP model, a 
production system including three products is generated. 
The system encompasses five machine centers and each 

product goes through four machine centers according to 
its own production sequence. Fig. 5 depicts operational 
sequence including machine processing time for each 
product. Tables (2-4) summarize problem parameters, in 
which Table (1) include production related data, and 
Tables (2, 3) encompass information about market 
demand over a three-week planning horizon and 
available machine capacity respectively which are 
presented using triangular fuzzy numbers. 
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Product 1 
 
Product 2 
 
Product 3 

MC1 MC4 

MC3 

MC2 
MC5 

Fig. 5. Machine order visit 

15’ 

7’ 6’ 

7’ 

10’ 18’

10’ 

10’ 

9’ 

4’

18’ 

15’ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Product Process Cni Csni Csuni Pmni Pini Cbn 

1 1 100 145 180 1.0 1.5  

 2 120 235 185 0.7 1.6  

 3 125 255 400 0.8 1.7  

 4 135 265 500 1.0 1.9 45 

2 1 150 115 130 1.0 1.8  

 2 150 235 200 0.7 2.0  

 3 150 255 185 0.8 2.4  

 4 165 265 200 1.0 2.5 65 

3 1 145 115 165 1.0 1.7  

 2 150 235 175 0.7 1.9  

 3 150 255 400 0.8 2.0  

 4 140 265 500 1.0 2.5 75 

 
 
 
 

p
rod

uct

Period 

1 2 3 

1 (85,106,115) (95,11,115) (150,164,190) 

2 (105,119,145) (85,90,95) (120,152,160) 

3 (100,104,120) (75,90,105) (115,146,160) 

 
Other complementary information is given as follows: 

i. Escalation factors assumed to be equal to zero. 
ii. The initial available labor level in period 1 is 

equal to 1000 and maximum level of workforce 
in each period is announced by production 
manager equal to 2000. 

iii. Costs associated with hiring and dismissing 
man-hour are equal to 20 and 30 ($/man-hour) 
respectively. 

 
 

M
C

 
Period 

1 2 3 

1 (2100,2520,2700) (2100,2520,2700) (2100,2520,2700) 

2 (2150,2510,2750) (2150,2510,2750) (2150,2510,2750) 

3 (1860,1991,2230) (1860,1991,2230) (1860,1991,2230) 

4 (2750,3015,3100) (2750,3015,3100) (2750,3015,3100) 

5 (2200,2410,2500) (2200,2400,2500) (2200,2410,2500) 

 
iv. There is no initial inventory available in period 

1; however production system requires 0, 5, and 
10 units of end inventory for products 1, 2, and 
3 respectively in the last period. 

v. The available space of finished product’s 
warehouse and work-in-process warehouse are 
equal to 200 and 100 ft2. 

vi. Based on subcontracting strategy plan, the 
maximum allowable number of subcontracting 
items in each period is equal to 400 units. 

6.2. Model implementation and sensitivity analysis 

Considering the aforementioned procedure, the proposed 
MPMP production planning problem can be solved as 
follows. First, fuzzy Eqs. (4) and (6) are converted to 
crisp ones using Eqs. (16) and (17) with α=0.5. Then, the 
initial optimum value of each objective function is 
obtained by solving single-objective LP problems. The 
results are z1= $667,195 and z2= 90.4%. Next, the degree 
of membership fg(Zg),g=1,2, for different values of 
objectives should be specified by DM, as listed in Table 
4. Figs. 6 and 7 depict the corresponding shapes of two 
piecewise linear membership functions.  

Table 2. Production data 

Table 3. Fuzzy market demand data 

Table 4. Fuzzy machine capacity data 
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0

0.2

0.4

0.6

0.8

1

$660,000 $680,000 $700,000 $720,000

f 1
(z

1
)

Total Cost ($)

0

0.2

0.4

0.6

0.8

1

84% 86% 88% 90% 92%

f 2
(z

2
)

Machine Utilization (%)

 
 
 
 
 
 
 
 
 
 
Consequently, by applying the auxiliary variable µ, 
which specifies the total satisfaction rate of the DM, the 
multi-objective MPMP problem can be converted to a 
single-objective LP model. The complete LP model can 
be formulated as follows: 

6 6
11 11 12 12

6 5
13 13 1

21 21 22 22

23 23 2

Max  μ

s.t. μ 3.24635 10 ( d d ) 3.24635 10 ( d d )

    3.24635 10 ( d d ) 1.62318 10 ( z ) 12.12975

    μ 14.5833 ( d d ) 2.0833 ( d d )

    2.0833 ( d d ) 27.0833 ( z ) 22

     

   

   

 

       

     

       

    

1 11 11

1 12 12

1 13 13

2 21 21

2 22 22

2 23 23

.8833

    z d d 713400.7

    z d d 697998.8

    z d d 682596.9

    z d d 0.868

    z d d 0.88

    z d d 0.892

Eqs.( 3 ),( 4 ),(6 15 ),  and  (16 ),  (17 )

 

 

 

 

 

 

  

  

  

  

  

  



 

 
Where 

ged  and 
ged denote the deviational variables at 

the eth point, g=1,2, e=1,2,3. Finally the crisp single 
objective LP model is solved with LINGO® 8.0, and 
optimum values, z1= $ 681,850.06, and z2= 88.37%, 
were obtained. The overall satisfaction of the DM is 
equal to 90.05%. By utilizing the proposed procedure, 
the DM can adjust parameters such as w1, w2, w3, and α 
interactively to reach the most satisfactory result. Table 
6 presents the optimal solution of the problem. For 

instance, 69 units of second product’s first process is 
planned to be produced in first period and 51 units of its 
demand is planned to be subcontracted (Q2111=69 and 
Su211=51). Thus, 120 units of second product continue 
their production sequence on second process 
(Q2211=120). Since machine center three is critical at 
first period and also considering the subcontracting 
price of each product, (CSu13=400, CSu23=200, 
Csu33=400) 120 units of product 2 are planned to be 
subcontracted (Su231=120). Finally, 120 units of second 
product are planned to complete their forth process in 
the first period. 
The proposed FMOLP model utilizes piecewise linear 
membership functions, presented by Hannan41, in order 
to deal with imprecise judgment of DM about objective 
values. In this respect, DM elicit satisfactory degrees 
for several objective values and the piecewise linear 
membership enable the DM to approximate satisfaction 
degree of intermediate points. In this approach, 
satisfactory degrees change with different rates 
according to different values of objectives. Hence, this 
method provides the DM with a flexible approach to 
embed his/her judgment in decision making process. 
Several methods of constructing membership functions 
have been suggested in literature (see Refs. 24, and 32 
for more details). Table 7 demonstrates a comparison 
between adopting piecewise linear membership 
functions and linear ones.  
 

z1 >$728,802.6 $728,802.6 $ 713,400.7 $ 697,998.8 $ 682,596.9 $ 667,195 $ 667,195 

f1(z1) 0 0 0.4 0.7 0.9 1.0 1.0 

z2 < 0.856 0.856 0.868 0.88 0.892 0.904 0.904 

f2(z2) 0 0 0.55 0.75 0.9 1.0 1.0 

Table 5. Piecewise linear membership functions  

Fig. 6. Piecewise linear membership function (z1,f1(z1)) Fig. 7. Piecewise linear membership function (z2,f2(z2))
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Z1($) $681,850.6 Z2(%) 88.37% 

P
ro

d
u

ct
io

n
 q

u
an

ti
ti

es
 

Q1,1,1,1=105,Q1,2,1,1=105,Q1,3,1,1=105, 

Q1,4,1,1=105, Q2,1,1,1=69, Q2,2,1,1=120, Q2,3,1,1=0, 

Q2,4,1,1=120, Q3,1,1,1=51, Q3,2,1,1=105, Q3,3,1,1=95, 

Q3,4,1,1=105 ,Q1,1,2,2=133,Q1,2,2,2=133, 

Q1,3,2,2=133, Q1,4,2,2=133, Q2,1,2,2=0, Q2,2,2,2=90, 

Q2,3,2,2=0, Q2,4,2,2=90, Q3,1,2,2=28, Q3,2,2,2=142, 

Q3,3,2,2=67, Q3,4,2,2=142, Q1,1,3,3=142, 

Q1,2,3,3=142, Q1,3,3,3=142, Q1,4,3,3=142, 

Q2,1,3,3=38, Q2,2,3,3=155, Q2,3,3,3=0, Q2,4,3,3=155, 

Q3,1,3,3=20, Q3,2,3,3=103, Q3,3,3,3=58, Q3,4,3,3=103 

In
ve

n
to

ri
es

 

Q1,1,1,2=0, Q1,1,1,3=0, Q1,2,1,2= 0, Q1,2,1,3=0, 

Q1,3,1,2=0, Q1,3,1,3=0, Q1,4,1,2=0, Q1,4,1,3=0, 

Q2,1,1,2=0, Q2,1,1,3=0, Q2,2,1,2= 0, Q2,2,1,3=0, 

Q2,3,1,2=0, Q2,3,1,3=0, Q2,4,1,2=0, Q2,4,1,3=0, 

Q3,1,1,2=0, Q3,1,1,3=0, Q3,2,1,2= 0, Q3,2,1,3=0, 

Q3,3,1,2=0, Q3,3,1,3=0, Q3,4,1,2=0, Q3,4,1,3=0, 

Q1,1,2,3=0, Q1,2,2,3=0, Q1,3,2,3= 0, Q1,4,2,3=23, 

Q2,1,2,3=0, Q2,2,2,3=0, Q2,3,2,3=0, Q2,4,2,3=0, 

Q3,1,2,3=0, Q3,2,2,3=0, Q3,3,2,3= 0, Q3,4,2,3=52  

B
ac

k
or

d
er

s Q1,4,2,1=0, Q1,4,3,1=0, Q2,4,2,1=0, Q2,4,3,1=0, 

Q3,4,2,1=0, Q3,4,3,1=0, Q1,4,3,2=0, Q2,4,3,2=0, 

Q3,4,3,2=0, 

S
u

b
co

n
tr

ac
ts

 

SU1,1,1=0, SU1,2,1=0, SU1,3,1=0, SU1,4,1=0, 

SU2,1,1=51, SU2,2,1=0, SU2,3,1=120, SU2,4,1=0, 

SU3,1,1=54, SU3,2,1=0, SU3,3,1=10, SU3,4,1=0, 

SU1,1,2=0, SU1,2,2=0, SU1,3,2=0, SU1,4,2=0, 

SU2,1,2=90, SU2,2,2=0, SU2,3,2=90, SU2,4,2=0, 

SU3,1,2=114, SU3,2,2=0, SU3,3,2=75, SU3,4,2=0, 

SU1,1,3=0, SU1,2,3=0, SU1,3,3=0, SU1,4,3=0, 

SU2,1,3=117, SU2,2,3=0, SU2,3,3=0, SU2,4,3=0, 

SU3,1,3=83, SU3,2,3=0, SU3,3,3=45, SU3,4,3=0 

hiring and 

dismissing 

H1=0, H2=0.65, H3=103.65, F1=0.391, F2=0, 

F3=0 

 

 
 

 
 In real-world production planning problems, cost 
categories are normally affected by interest rate, thus 
the time impact of money should be taken into 
consideration in decision making process. In this 
respect, the first period is specified as a basis of 
calculations in case of considering time value impact of 
money. Table 8 represents trend of DM’s overall 
satisfaction degree in regard with production costs and 
machine utilization and Fig. 8 demonstrates the trend. 
Although, production plan and machine utilization 
represent almost linear increasing and decreasing trend, 
overall satisfaction of DM decreases with a nonlinear 
pattern which is due to adoption of piecewise linear 
membership functions. 
Table 9, compares features of current MPMP 
optimization models with the proposed model. In this 
respect, several significant features of the proposed 
model can be summarized as follows: 

 The proposed model applies several practical 
strategies to absorb fluctuations of market 
demand over planning horizon. 

 It also include more convenient general 
managerial decision making aspects of 
production planning such as issues related to 
labor levels. 

 The impact of economical issues, as an 
important feature of today’s unstable market 
situations, has been considered and formulated 
in the proposed model. 

 

Item LP-1 LP-2 Linear Membership Function** The proposed FMOLP 

Objective function Min z1 Min z2 Max µ Max µ 

µ 100% 100% 88.8 % 90.48 % 

z1 ($) $667,195* $728,802.6 $674,087.1     $681,850.6  

z2 (%) 85.6% 90.4%* 89.8%       88.4% 

Item Run1 Run2 Run3 Run4 Run5 

Escalation 

factor 

0% 1% 2% 5% 8% 

L 99.1% 89.8% 80.3% 50.9% 20.3% 

z1 ($) 668430 682833.8 697478.3 742685 789918 

z2 (%) 87.8% 87.5% 87.3% 86.7% 86% 

*Obtained by solving single objective LP model 
**The interval values of linear membership functions f1(z1) and f2(z2) are (667195,728802.6) and (85.6,90.4), respectively 

Table 6. Optimal solution obtained by solving the proposed 
FMOLP model  

Table 7. Comparative analysis

Table 8. Results of the sensitivity analysis in terms of 

changes in escalation factor 
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Features Byrne & Bakir 

(1999) 

Jamalnia & 

Soukhakian (2008) 

Kazemi 

Zanjani et al. 

(2009) 

Proposed model 

No. of product Multiple Multiple Multiple Multiple 

No. of period Multiple Multiple Multiple Multiple 

Production route Not considered Not considered Not considered Considered 

Subcontracting Not considered Considered Not Considered Considered 

Labor hiring Not Allowed Allowed Not Considered Allowed 

Labor layoff Not Allowed Allowed Not Considered Allowed 

Backorder Not Allowed Not Allowed Allowed Allowed 

Objectives     

First objective Cost Cost Cost Net present value  

Additional 

objectives 

Not Considered MIN: Labor Changes 

Costs & Max: Customer 

Satisfaction 

Not Considered Max: Machine Utilization 

Method  Solution Type 
Number of sub-

problems 

Number of 

additional Zero-

One variables 

Membership 

function types 

Piecewise linear 

membership function 
Exact - - Concave 

Yang et al. (1991) Approximate - 
n

i
i 1

v

 * 

Quasiconcave 

Nakamura (1981) Exact 
n

i
i 1

v

2 
 * - Quasiconcave 

Li and Yu (2000) Approximate - - Quasiconcave 

Fig. 8. Sensitivity analyses on escalation variation 

Table 10. Comparative analysis on different approaches of solving FMOLP 

*vi represents the number of intersections between concave and convex functions. 

Table 9. Comparative analysis on features of different MPMP optimization 
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 Operational sequence or machine order visit 

has been considered in the proposed model to 
overcome fallacies of current MPMP 
optimization models. 

Moreover, different approaches of solving FMOLP 
models are summarized and compared in table 10. 
Table 10 reveals that: 
 The proposed solving method applies a convenient 

procedure to solve FMOLP models and provides an 
exact solution using a clear approach to express 
expert’s judgments. 

 The FMOLP model can be directly solved without 
additional zero-one variables or dividing the 
problem into sub-problems. 

 However, the proposed approach can be only 
applied in case of concave membership functions.  

7. Conclusion, Remark, and further 
recommendations 

In practical applications of conventional MPMP model, 
the following issues should be taken into 
considerations: 

1. The conventional MPMP models, normally, 
assume a same production route for all 
products, which leads to equal number of 
production volume at each process. This 
matter, consequently, may result in an 
unproductive utilization of machine capacity. 

2. Conflicting objectives often exist in a shop 
floor considering different priorities and 
aspiration levels due to expert’s judgments. 
There is, therefore, a need for optimizing such 
objectives through a simultaneous analyzing 
system. 

3. Real world MPMP cases, generally, include 
ambiguous inputs or parameters due to lack of 
information or incomplete data. 

Current study, initially, demonstrated the standard 
MPMP mathematical model may fail to utilize available 
capacity of machine centers. A novel MOLP model is 
thus developed considering individual production 
routes in order to simultaneously minimize present 
value of production costs and maximize machine 
utilization rate. Next, using piecewise linear 
membership functions and fuzzy minimum operator, 

aspiration levels of objectives have been aggregated 
throughout the proposed FMOLP model. Also, fuzzy 
triangular numbers were utilized to deal with 
fuzzy/imprecise parameters such as market demand and 
available machine capacity. Moreover, an interactive 
decision making procedure is then adopted to embed 
experts’ judgments during the planning procedure. 
Finally, a numerical example was successfully 
implemented through the proposed FMOLP model and 
sensitivity analysis in case of considering the time value 
of money also presented. 
Further studies can be focused on applying a control 
system after implementation of the proposed FMOLP 
model. Hereby, study on an integrated production 
planning–earned value management system, as a 
control mechanism, in such environment would be 
beneficial. The other potential future research may be 
carried out by applying stochastic modeling in case of 
the MPMP problem considering multi production 
routes.  
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