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Abstract

Data driven rank ordering refers to the rank ordering of new data items based on the ordering inherent in
existing data items. This is a challenging problem, which has received increasing attention in recent years
in the machine learning community. Its applications include product recommendation, information re-
trieval, financial portfolio construction, and robotics. It is common to construct ordering functions based
on binary pairwise preferences. The level of dominance within pairs has been modelled in approaches
based on statistical models, where strong assumptions about the distributions of the data are present. For
learning pairwise preferences from the data we introduce a distribution-independent framework incorpo-
rating the level of dominance. We compare our approach with learning to rank order based on binary
pairwise preferences through experiments using large margin classifiers.
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1. Introduction

Rankings are very useful sources of information;
in fact people often rely on rankings while mak-
ing decisions in their everyday lives. For example,
in sports tournaments participants may be ranked
based on their performance, in trading products may
be ranked based on their qualities or customer opin-
ions.

Rankings have been extensively studied in
economics, psychology, operations research, and
other human-centred disciplines, usually under the
term “preference” 1. In recent years rankings
have found applications in many areas of artifi-
cial intelligence, including recommender systems,
e-commerce, multi-agent systems, planning and
scheduling, intelligent financial data analysis and
fuzzy number-based multicriteria decision making

1,2.

Rankings provide potentially more powerful in-
formation about data than, for example, class mem-
bership of data. Many researchers agree that rank-
ings based on pairwise preferences are more infor-
mative than performance measures for single in-
stances 3. For example, information about the to-
tal number of goals scored and conceded during a
football tournament by each team is considered less
relevant in performance ranking than the set of game
results between the teams.

In the study of rankings the central problem is:
given some instances, how should they be ranked in
a rational way? In existing studies, it is usually as-
sumed that the pairwise preferences are provided by,
for example experts, and the aim is to find a ranking
that agrees maximally with the given preferences.
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However in some cases such preferences are not di-
rectly available, so they need to be learned. The im-
portance of preference learning has been highlighted
in 4,1.

In this paper we present our methodology for cre-
ating a ranking based on pairwise preferences. We
derive the preference function from the historical
data and do not rely on any ranking experts or side
information. Our preference function not only pro-
vides information on which of two given instances
is preferred over the other one (we will refer to such
information as binary preference, because it has bi-
nary output), but unlike other well-studied binary
problems 5,6 it also provides the level (strength) of
such dominance.

Our hypothesis is that with the use of the
same (or similar) machine learning methodologies,
trained preferences with level of dominance lead
to better rank orderings than trained binary prefer-
ences. It reduces the number of ties in rankings, re-
duces ranking error and performs significantly better
than binary preferences for highly unbalanced data,
when one domain dominates the other one, there-
fore instances from one dataset are usually (however
not always) preferred than instances from the other
dataset. We reformulate the problem from binary
classification into regression and aim at building a
structure and distribution-independent model.

This paper is organised as follows: Section 2 pro-
vides background for the problem of rank ordering
based on pairwise preferences. In Section 3 we dis-
cuss the problem of preference learning, compare
approaches based on binary preference with prefer-
ence incorporating level of dominance and address
the key issues and differences. Section 4 provides
experimental results and description of data used in
our experiments. In Section 5 we conclude this work
and discuss future challenges.

2. Preference-based rank ordering —
background

The notion of ranking is used in various areas of re-
search as well as everyday life. It is a subject of
study in decision making, as well as in artificial in-
telligence and data mining.

Early research work addressing the subject of
rank ordering based on preference judgements was
reported by Hans Buhlmann and Peter Huber. In 7

the problem of choosing the best ranking for a given
preference matrix is discussed. Since the instances
to be rank ordered are participants in a tournament
whose scores are known, the availability of prefer-
ence judgements can be assumed as they are based
on the score of each game in the tournament.

William Cohen studied the problem of rank or-
dering based on pairwise comparisons. In 8 he and
his co-workers addressed these issues with the use
of preference judgements which provide informa-
tion about priority between each of two given in-
stances. In this study the availability of ”primitive
preference functions” for a set of instances to be
rank ordered is assumed, i.e. the presence of some
”ranking experts”. The preference training involves
the search for the optimal weighting of such experts,
or more precisely their judgements regarding prefer-
ences among instances.

The construction of the ranking from the set of
pairwise preference judgements requires formalisa-
tion of the notion of agreement between a ranking
and the preference function. In 8 the agreement
is measured as a sum of values of the preference
function for those pairs of instances for which the
preference function and the ordering agree, i.e. if
the preference function indicates that a should be
ranked ahead of b, the ordering reflects this pref-
erence. It is proved in 8 that finding the ordering
whose agreement with preference function exceeds
some rational number is NP-complete. A “greedy
algorithm” for the search of quasi-optimal ordering
is then introduced to address this issue. It is further
proved in 8 that the greedy algorithm finds an order-
ing whose extent of agreement with a given function
is not smaller than half the value of the agreement of
the optimal ordering.

An improvement of the greedy algorithm can be
found in 9. The greedy algorithm treats the instances
as nodes of a graph and weights of directed edges
between those nodes are derived from preference
judgements. Improvement of the algorithm involves
dividing the initial graph into subgraphs referred to
as strongly connected components. The ordering for
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each of the subgraphs is conducted with the use of
the greedy algorithm.

According to 3 pairwise preferences are very use-
ful information for ranking creation, as they are sim-
ple and potentially sharper than other approaches.
The search for optimal ranking based on pairwise
preferences involves maximisation of the probability
of full agreement between an ordering and pairwise
preferences. Pairwise preferences are based on the
estimated probability of one instance outperforming
another.

There are also several approaches for ranking
creation based on preferences which utilise infor-
mation about historical data and do not employ any
ranking experts. In 6 Chu and Ghahramani propose a
probabilistic kernel approach to preference learning
based on a Gaussian process. This assumes the exis-
tence of latent function values associated with each
instance to be rank ordered, which preserves pair-
wise dependencies. The values of such functions
are assumed to be realisations of random variables
in a zero-mean Gaussian process. Such assump-
tion weakens the applicability of the methodology
for ranking instances derived from different domains
with different distributions.

In 10 the problem of ranking of labels for given
instances is addressed. The main point is to de-
sign a methodology which ranks the labels (from a
given fixed set). It is then compared with classifi-
cation methodology, where only one label is associ-
ated with each instance. The problem of rank order-
ing is approached from the pairwise preference an-
gle. For each pair of class labels a separate model is
created, based on training instances for which pref-
erences among labels are known. The models are
trained with the use of the decision tree learner C4.5.
The proposed solution does not take into account the
strength of preference between two labels. It has a
binary output of a form ”label li is preferred over l j
or label li is not preferred over l j”, which may lead to
omission of some important information. The rank-
ing in this case is obtained by a voting scenario: each
time a label is preferred over another one it gets one
vote: the more votes it has, the higher the rank it
gets. All experimental results are based on artificial
data.

In 5 a methodology based on pairwise prefer-
ences for ordinal regression is proposed. Ordinal re-
gression is a problem which lies between multi-class
classification and regression — there is a fixed num-
ber of rank labels which are to be associated with
each instance, and there is an ordering among these
labels, i.e. misclassifying an instance into an adja-
cent class is less harmful than into a remote one. The
proposed framework based on Support Vector Ma-
chine classification methodology is (unlike statisti-
cal models) distribution independent. For a pair of
instances a preference is obtained via large margin
classifier, i.e. one class contains pairs whose first
member is preferred over the second one and the
other class contains pairs where the second instance
should be ranked ahead of the first one. Similar to
the approach in 10 the methodology does not take
into account the strength of preference. The theory
is tested on artificial data and also applied into In-
formation retrieval problem.

There are several applications of a learning to
rank order methodology. One of them is the area of
feature selection. In the real world availability of a
vast variety of features does not necessarily provide
better outcomes 11. Feature ranking can be regarded
as one of the feature selection methods 12. This tech-
nique can be applied in learning in Bayesian net-
works to reduce its computational complexity. The
method proposed in 12 using a feature ranking al-
gorithm improves the learning of a Bayesian net-
work classifier from data. An algorithm for learning
the structure and conditional probability distribution
of directed probabilistic models based on ordering-
search for Bayesian networks is proposed in 13.
According to experimental findings in 14 ordering-
search performed on a space of orderings is at least
as good as (and more time efficient) than structure-
search for learning Bayesian networks. The algo-
rithm in 13 incorporates these results and performs
ordering-search for directed probabilistic models.
The optimal ordering is searched with the use of
relational regression trees which predict the gain in
likelihood of a training dataset. An industrial appli-
cation of rankings is presented in 15 where the prob-
lem of creating a global ranking of products based
on partial rankings is addressed. The partial rank-
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ings illustrate different aspects of the performance
of various products and a technique to merge such a
set of rankings into a global one is introduced.

3. Learning to rank order based on pairwise
preference function

Many researchers agree that rankings based on pref-
erence judgements are potentially sharper than those
based on a performance measure of each single in-
stance to be rank ordered 3. In real world applica-
tions expert opinions about pairwise preferences are
usually not available. The lack of ready-to-use pref-
erence judgements can, however, be overcome with
the use of a preference function. Such a function can
be obtained if some training data are available.

3.1. Data and notation

Let us consider a number of sets S1, . . .Sm, each con-
taining instances deriving from different domains
and following different distributions,

Si = {(Xi1 ,Yi1), · · · ,(Xin ,Yin)}. (1)

Each Xit is a l-dimensional vector, we will refer
to it as an independent variable; Yit is a dependent
variable associated with each independent variable,
i.e. there exist functions fi : Rl → R, such that
Yit = fi(Xit ). The functions fi are not known.

Let

Pt = {(X1t ,Y1t ), . . . ,(Xmt ,Ymt )}, (2)

t 6 n be a set containing one representative instance
from each set Si. For each Pt we are looking for an
ordering of instances (Xit ,Yit ).

Let Λt be a model which rank orders pairs util-
ising information about Xit ’s only, i 6 m. Such a
model associates unique rank label ri

Λt
∈ {1, . . . ,m}

with each instance (Xit ,Yit ). By ri
t ∈ {1, . . . ,m} we

denote the (unique) actual rank label of the instance.
The vector of actual rank labels rt =< r1

t , . . . ,r
m
t >

satisfies the following constraint:

ri
t < r j

t ⇔ Yit > Yjt . (3)

We are looking for a model Λ∗t which minimises the
mean absolute error between the predicted and ac-
tual rankings:

E(rt ,rΛ∗t ) =
1
m

m

∑
i=1
|ri

t − ri
Λ∗t
|. (4)

3.2. Pairwise preference function

We approach the problem of learning to rank order
from the pairwise preference angle. Such prefer-
ences constitute the partial order of the data which
can be translated into the total order, e.g. with the
use of the greedy algorithm from 9.

In this work we concentrate on the problem of
deriving pairwise preferences from historical data.
Our hypothesis is that learning additional informa-
tion about the strength of such preferences (and not
only their direction) can reduce the mean absolute
error between predicted and actual rankings. Our
aim is to improve the formulation of the problem
based on binary classification methodology 10 and
define it as a regression problem. We also do not
want to impose any constraints regarding structure
and distribution of the data, i.e. we search for a flex-
ible and, unlike 6, distribution-independent model.

We define the preference function Pre f : Pt ×
Pt → R and impose the following constraints:

• if Pre f (Xit ,X jt ) > 0, Xit is preferred over X jt ;
• if Pre f (Xit ,X jt ) < 0, X jt is preferred over Xit ;
• if Pre f (Xit ,X jt ) = 0, there is no preference be-

tween Xit and X jt .

Therefore the sign of the function indicates
which of its arguments is preferred over the other
one, and the absolute value of the function repre-
sents the strength of the preference.

The graph on the left hand-side of Fig. 1 shows
binary preferences among five data items. Using the
voting (where an instance gets when it is preferred
over another instance) the following ranking is in-
duced by the given preferences: B→ C,D,E → A.
There is no distinction between instances C,D and
E.

Now let us assume that we obtained additional
information about strength of preferences. On the
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Figure 1: Pairwise dependencies: without (a) and with (b) the level of preference

graph on the right hand-side of Figure 1 these values
are represented as weights of directed edges. Given
the strong preference of instance A over B and weak
preference of the remaining instances over A, rank-
ing A in last place becomes questionable. (Note that
we do not impose any constraints on consistency of
preferences, therefore the preference relation is not
transitive.)

There are various techniques for turning partial
order into total order. In this work we use a greedy
algorithm from 9. The total order on the left hand-
side of Figure 1 is derived as: A,B,E,D,C. It should
be noted that employing the level of dominance in
the pairwise preference learning makes the occur-
rence of ties less likely.

3.3. Preference training

It should be noted that in our problem formulation
the instances to be rank ordered derive from dif-

ferent domains, therefore their preferences should
be modelled independently for each pair. Based on
training (historical data) we build regression models
for all m(m−1)/2 pairs from the m domains.

In our training scheme the actual preferences for
each training pair {(Xit ,Yit ),(X jt ,Yjt )} are obtained
as follows:

F((Xit ,Yit ),(X jt ,Yjt )) = Yit −Yjt . (5)

We obtain m(m − 1) models for predicting
the preference Pre fi j(Xit ,X jt ) for unseen instances
whose dependant variables Yit , Yjt are not (yet)
known.

Pairwise preferences obtained with the trained
models constitute a partial order of instances. The
total order (ranking) is then obtained with the use of
the greedy algorithm proposed by William Cohen in
9. Models are evaluated with the use of mean abso-
lute error as in (4).
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Figure 2: Histograms of dependant variables for artificial datasets used for experimental evaluation
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4. Experimental results

In this section we present initial results of our studies
on employing the stregth of preference into ranking
construction model.

4.1. Data deriving from different domains

In this section we present results of applying our
methodology on data deriving from different do-
mains. The experiments were conducted on artficial
data and on stock market data (Dow Jones Industrial
Average index components).

4.1.1. Artificial data

We generated the experimental data artificially. It
consists of eight datasets, each containing 750
instances, whose independent variables Xit =<
xit1

, . . .xit4
>∈R4 are 4-dimensional vectors with xitk

randomly generated from U(0,1). Dependant vari-
ables fi(Xit ) have different ranges and follow differ-
ent distributions for different sets. We used the fol-
lowing functions to generate dependant variables:

1. f1(X1t ) = x1t1
+ x1t2

+ x1t3
+ x1t4

2. f2(X2t ) =
2× x2t1

× x2t2

x2t3
× x2t4

+0.00001
−1

3. f3(X3t ) =


4× x3t2

, x3t1
6 0.33

4× x3t3
, 0.33 < x3t1

6 0.67
4× x3t4

, 0.67 < x3t1

4. f4(X4t ) = 4
√x4t1

+ 4
√x4t2

+ 4
√x4t3

+ 4
√x4t4

5. f5(X5t )=



0.5× (x5t1
+ x5t2

+ x5t3
−1),

x5t4
6 0.25

0.5× (x5t1
+ x5t2

+ x5t3
+1),

0.25 < x5t4
6 0.5

0.5× (x5t1
+ x5t2

+ x5t3
+3),

0.5 < x5t4
6 0.75

0.5× (x5t1
+ x5t2

+ x5t3
+5),

0.75 < x5t4

6. f6(X6t ) =
{

x6t1
+ x6t3

, x6t2
6 0.5

x6t3
+ x6t4

+2, 0.5 < x6t2

7. f7(X7t ) =



x7t4
−0.3,

x7t1
6 0.25

x7t4
+ x7t3

−0.3,

0.25 < x7t1
6 0.5

x7t4
+ x7t3

+ x7t2
−0.3,

0.5 < x7t1
6 0.75

x7t4
+ x7t3

+ x7t2
x7t1
−0.3,

0.75 < x7t1

8. f8(X8t ) =


0.25× x8t2

, x8t1
6 0.4

x8t3
, 0.4 < x8t1

6 0.6
4× x8t1

, 0.6 < x8t1

We tested the response to increasing noise of our
methodology compared with learning to rank order
based on binary preferences. We constructed five
experimental scenatios, where different amount of
noise was added to dependant variables. The noise
follows uniform distribution U(−νσi,νσi), i 6 m
where σi is the standard deviation of the values gen-
erated by the related dependant variable in the set
Si, and ν < 1 is a common factor for all sets. We
repeated experiments with the following values of
ν corresponding to 10%, 20% and 30%. Figure 2
shows histograms of dependant variables for each
dataset with 10% noise. Our aim was to design sets
with different characteristics and behaviours.

4.1.2. Stock market data

Similar experiments have been conducted for the
stock market data. Thirty DOW index components
have been used in the experiment. Five three-year-
long experimental periods have been taken into con-
sideration, where the first two years have been used
for training and the last year for testing. The first
experimental period was from 1 January 2004 un-
til 31 December 2006, the successive periods begin-
ning four months later (1 April 2004, 1 July 2004,
etc.) On each trading day the ranking of stocks was
created based on pairwise preferences between vec-
tors of five technical indicators:

1. si1(t) — Relative Strength Index (RSI),

RSI = 100− 100
1+RS

, (RS = relative strength)
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SUPPORT VECTOR with level of binary with level of binary
CLASSIFIER dominance (RBFK) preference (RBFK) dominance (NPK) preference (NPK)

10% noise 1.127 1.528 1.111 1.528
20% noise 1.190 1.547 1.198 1.547
30% noise 1.221 1.557 1.266 1.557
40% noise 1.238 1.569 1.297 1.569
50% noise 1.264 1.572 1.333 1.572

DOW 9.93 9.98 9.95 9.98

Table 1: Preference with level of dominance vs. binary preference — mean absolute error with support vector
classifier with Radial Basis Function Kernel (RBFK) and Normalised PolyKernel (NPK)

RS =
average gain in previous x trading days
average loss in previous x trading days

2. si2(t) — Money Flow Index (MFI),

MFI = 100− 100
1+MR

, (MR = money ratio)

MR =
positive money flow
negative money flow

,

money flow =
high+ low+ close

3
×volume

3. si3(t) — Fast Stochastic Oscillator (%K)

%K =
close− lowest in past x days

highest in past x days− lowest in past x days

4. si4(t) — Bollinger Band (%b)

%b =
close− lowerBB

upper BB− lower BB

5. si5(t) — Bollinger Band Width (BBW),

BBW =
upper BB− lower BB

middle BB
Detailed discussion on technical indicators can be
found in 16,17,19.

The predicted ranking was compared with the ac-
tual ranking based on one day returns.

4.1.3. Results

Due to the high range of preference function values
for some pairs, the actual preference defined in (5)
has been reformulated into:

F∗((Xit ,Yit ),(X jt ,Yjt )) = sgn(Yit −Yjt )
√
|Yit −Yjt |.

to improve regression training.
All the experiments were performed with the use

of Weka 3.6.1, datamining software 18, with three-
fold cross validation. We used different machine
learning methodologies for classification and regres-
sion to compare rankings based on binary prefer-
ences with these based on preferences with level of
dominance. Configurations of classification and re-
gression functions can be found in Appendix A.

It should be noted, that the expected value of
mean absolute error for randomly assigned rank la-
bels for m objects is

Em = E(E(r,rΛ∗)) =
1

m2 ×
m

∑
k=1

(
m−k

∑
i=0

i+
k−1

∑
i=0

i). (6)

Derivation of the formula can be found in Appendix
B. Hence in our experiments E5 = 1.6. (The maxi-
mum absolute mean error for ranking of five objects
is Emax,5 = 2.4.)

Experiments were performed with the use of sup-
port vector classifier with Radial Basis Function
Kernel and Normalised PolyKernel for both the bi-
nary preference approach and that using preference
with a level of dominance. Table 1 contains mean er-
rors as defined in (4). Results obtained with the use
of Radial Basis Function Kernel are marked (RBFK)
and (NPK) refers to experiments with the use of
Normalised PolyKernel. In all experimental cases
our methodology yields better results, specifically
smaller mean rank label error as in (4), for the data
with and without the noise.
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4.1.4. Unbalanced preferences

It should be noted that error in identifying the di-
rection of preference for one pair only can influence
the total order substantially. Therefore it is crucial to
minimise the number of pairs for which the direction
has been misclassified.

Binary classification algorithms often struggle
with unbalanced data, i.e. when in terms of size
one class substantially dominates the other (e.g.
when one class contains over 90% of all training in-
stances). In such cases when every unseen instance
is classified as a member of the larger class high ac-
curacy is likely.

For example this is the case for the preference be-
tween sets S4 and S7. As is clear from Figure 2, S4
should dominate over S7 for the vast majority of in-
stances. Preferences learned with binary classifiers
assigned preference of an instance from S4 over one
from S7 for every single training pair.

When the model learns the strength of prefer-
ence in addition to the binary pairwise preference,
it is more likely that it preserves correct direction of
preference for members of the smaller class, and our
experiments support this claim.

4.2. Data deriving from one domain

Additional experiments have been performed on nu-
meric regression datasets. When all data derive from
the same domain, only one preference function has
to be trained. In our experiments we used only
datasets with continous attributes and without miss-
ing values (all entries with missing values were re-
moved). For each set 10 independent experiments
were conducted, where a random third of instanced
were used for testing, and all remaining instances
were used for training.

Table 2 contains mean errors for results ob-
tained with the use of Radial Basis Function Ker-
nel (marked RBFK) and Normalised PolyKernel
(marked NPK). In the majority of cases, the ap-
proach utilising the level of preference yields better
results.

5. Conclusions and future work

We proposed a methodology for learning to rank or-
der based on pairwise preferences with a level of
dominance. We evaluated this methodology against
the approach based on binary preferences with the
use of Support Vector Machines. We conducted our
experiments on artificially generated datasets which
followed different distributions, and also where un-
balanced preferences over domains were present.
Additional experiments were conducted on stock
market data as well as numeric regression datasets.

In the case of artificial data, our methodology al-
ways outperformed the one based on binary prefer-
ences for noisy data. In stock market experiment, the
method employing the strength of preference outper-
forms the binary one, however it should be noted
that results for both methods are very close to ran-
dom. Experiments on regression datasets confirm
advantages of utilising streght of preference in the
ranking process.

In the future we will perform additional exper-
iments with the use of additional machine learning
techniques for classification and regression. We will
also apply the methodology of learning to rank order
based on pairwise preferences with level of domi-
nance to financial portfolio construction and updat-
ing. Also the problem of computational compexity
will be addressed.

Appendix A

A.1. Experimental configurations in Weka
3.6.1

Support Vector Classifier (for classification) with
RBFK:
weka.classifiers.functions.SMO -C 1.0 -L
0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K
”weka.classifiers.functions.supportVector.RBFKernel
-C 250007 -G 0.01”

Support Vector Classifier (for regression) with
RBFK:
weka.classifiers.functions.SMOreg -C 1.0 -N 0 -I

∗http://www.cs.waikato.ac.nz/ml/weka/
†http://www.liaad.up.pt/ ltorgo/Regression/DataSets.html
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dataset with level of binary with level of binary
dominance (RBFK) preference (RBFK) dominance (NPK) preference (NPK)

autoPrice ∗ 4.63 4.53 4.53 4.53
baskball ∗ 7.1 7.21 7.37 7.22

bolts ∗ 2.43 2.98 2.14 2.98
gascons ∗ 0.96 2.27 0.58 2.27
pollution ∗ 2.87 3.45 3.17 3.45
pwLinear ∗ 6.06 7.21 6.72 7.21
vineyard ∗ 2.76 3.2 2.71 3.2
diabetes † 3.64 4.57 3.49 4.57
machine † 6.68 7.28 8.12 7.28

pyrim † 3.52 4.28 3.78 4.28

Table 2: Preference with level of dominance vs. binary preference — mean absolute error with support vector
classifier with Radial Basis Function Kernel (RBFK) and Normalised PolyKernel (NPK)

”weka.classifiers.functions.supportVector.RegSMO
Improved -L 0.0010 -W 1 -P 1.0E-12 -T 0.0010 -V”
-K ”weka.classifiers.functions.supportVector.
RBFKernel -C 250007 -G 0.01”

Support Vector Classifier (for classification) with
NPK:
weka.classifiers.functions.SMO -C 1.0 -L
0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K
”weka.classifiers.functions.supportVector.
NormalizedPolyKernel -C 250007 -E 2.0”

Support Vector Classifier (for regression) with
NPK:
weka.classifiers.functions.SMOreg -C 1.0 -N 0 -I
”weka.classifiers.functions.supportVector.RegSMO
Improved -L 0.0010 -W 1 -P 1.0E-12 -T 0.0010 -V”
-K ”weka.classifiers.functions.supportVector.
NormalizedPolyKernel -C 250007 -E 2.0”

A.2. Derivation of expected error formula

Let us assume (without the loss of generality) that
the actual rank order is r =< 1,2, . . . ,m >. Let
us take into consideration the k-th instance (k 6 m)
whose actual rank label rk = k. There are (m− 1)!
orderings (permutations) where the predicted rank
of a k-th instance rpred

k = 1, generating the error of
|k− 1|. Similarly there are (m− 1)! rank orderings
where the k-th instance has a predicted rank label
rpred

k = l, generating the error of |k− l|, where l 6

m. Hence for all possible permutations the k-th in-
stance generates the following mean absolute error:
1
m(m−1)!((k−1)+ . . .+1+0+1+ . . .+(m−k)).

Therefore the expected value of the mean abso-
lute error is:
Em =

1
m!
× 1

m
× (m−1)!

((
0+1+ . . .+(n−1)

)
+

+
(
1 + 0 + 1 + . . .+(n−2)

)
+ . . .+

(
(n−2)+ (n−

3)+ . . .+1+0+1
)
+
(
(n−1)+(n−2)+ . . .+1+

0
))

=
(m−1)!
m×m!

×
m

∑
k=1

(
m−k

∑
i=0

i+
k−1

∑
i=0

i)

=
1

m2 ×
m

∑
k=1

(
m−k

∑
i=0

i+
k−1

∑
i=0

i).
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