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Abstract 

The Minkowski distance is a distance measure that generalizes a wide range of distances such as the Hamming and 
the Euclidean distance. In this paper, we develop a generalization of the Minkowski distance by using the induced 
ordered weighted averaging (IOWA) operator. We call it the induced Minkowski OWA distance (IMOWAD) or 
induced generalized OWA distance (IGOWAD) operator. Then, we are able to obtain a wide range of distance 
measures that includes the Minkowski distance, the Minkowski OWA distance (MOWAD), and the induced OWA 
distance (IOWAD). We also present a further generalization by using quasi-arithmetic means. We end the paper 
with a numerical example of the new approach. 
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1. Introduction 

The Minkowski distance is one of the main distance 
measures because it generalizes a wide range of other 
distances such as the Hamming distance and the 
Euclidean distance. Often, when calculating distances, 
we want an average result of all the individual distances. 
We call this the normalization process. In the literature, 
we find mainly three types of normalized distances. The 
first one is when we use the arithmetic mean and it is 
known as the normalized Minkowski distance (NMD). 
The second one is when we use the weighted average 
(WA) and it is known as the weighted Minkowski 
distance (WMD). The third one is when we use the 
ordered weighted averaging (OWA) operator1-24 and it is 
known as the Minkowski ordered weighted averaging 
distance (MOWAD) operator.8,11 Note that the 
MOWAD includes the NMD and the WMD as special 
cases. 

Sometimes, when normalizing the Minkowski 
distance with the OWA operator, it would be interesting 
to consider a more general formulation of the reordering 
process. A very useful technique for doing so is the 
induced OWA (IOWA) operator.17,21 The IOWA 
operator provides a parameterized family of aggregation 
operators such as the maximum, the minimum, the 
average and the OWA operator. Thus, we are able to use 
complex reordering processes in the aggregation step of 
the IOWA operator. This can be useful in a lot of 
situations such as in decision making problems25-28 
where we may consider complex attitudinal characters 
of the decision maker instead of simply considering the 
degree of optimism or pessimism. Recently, Merigó and 
Gil-Lafuente12 suggested a more general formulation of 
the IOWA operator by using generalized and quasi-
arithmetic means. They called these new aggregation 
operators, the induced generalized OWA (IGOWA) 
operator and the induced Quasi-OWA (Quasi-IOWA) 
operator. They generalize a wide range of aggregation 
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operators including the IOWA operator, the OWA 
operator, the average and the weighted average. 

In this paper, we suggest a new type of distance 
measure consisting in normalizing the Minkowski 
distance by using the IOWA operator. Then, the 
normalization developed will be able to reflect complex 
attitudinal characters. We will call this generalization as 
the induced Minkowski OWA distance (IMOWAD) 
operator. The main advantage of this operator is that it 
generalizes a wide range of distances such as the NMD, 
the WMD, the MOWAD, the induced OWA distance 
(IOWAD), the induced Euclidean OWA distance 
(IEOWAD) and a lot of other particular cases. Another 
advantage of the IMOWAD operator is that it is able to 
deal with complex attitudinal characters (or complex 
degrees of orness) in the aggregation process. 
Therefore, we are able to deal with more complex 
situations more close to the real world.  

We further generalize the IMOWAD operator by 
using quasi-arithmetic means. As a result, we get the 
Quasi-IOWAD operator. It is a more complete 
generalization because it includes the IMOWAD 
operator and a lot of other situations. We also develop 
an application of the new approach in a decision making 
problem about selection of investments. We see that 
depending on the particular type of IMOWAD operator 
used, the results may lead to different decisions. 

This paper is organized as follows. In Section 2, we 
briefly review some basic concepts about the 
Minkowski distance, the IOWA and the IGOWA 
operator. In Section 3 we present the IMOWAD 
operator. Section 4 analyzes different families of 
IMOWAD operators. In Section 5 we present the Quasi-
IOWAD operator. Section 6 analyzes the applicability 
of the new approach and Section 7 develops a numerical 
example of the new generalization. Finally, in Section 8 
we summarize the main conclusions of the paper. 

2. Preliminaries 

In this Section, we briefly review the Minkowski 
distance, the IOWA operator and the IGOWA operator. 

2.1.  Normalized Minkowski Distance 

The normalized Minkowski distance is a distance 
measure29-34 that generalizes a wide range of distances 
such as the normalized Hamming distance and the 
normalized Euclidean distance. In fuzzy set theory, it 
can be useful, for example, for the calculation of 

distances between fuzzy sets, interval-valued fuzzy sets, 
intuitionistic fuzzy sets, etc.  

In order to define the Minkowski distance, first, we 
define a distance measure. Essentially, a distance 
measure has to accomplish the following properties. 

 
1) Non-negativity: D(A1, A2) ≥ 0. 
2) Commutativity: D(A1, A2) = D(A2, A1). 
3) Reflexivity: D(A1, A1) = 0. 
4) Triangle inequality: D(A1, A2) + D(A2, A3) ≥ 

D(A1, A3). 
 
The normalized Minkowski distance can be 

formulated for two sets A and B as follows. 
 

Definition 1. A normalized Minkowski distance of 
dimension n is a mapping dm: Rn × Rn 

→ R such that: 
 

    dm(A, B) = 
λ

λ
/1
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where ai and bi are the ith arguments of the sets A and B 
and λ is a parameter such that λ ∈ (−∞, ∞).  

If we give different values to the parameter λ, we 
can obtain a wide range of special cases. For example, if 
λ = 1, we obtain the normalized Hamming distance 
(NHD). If λ = 2, the normalized Euclidean distance 
(NED). 

Sometimes, when normalizing the Minkowski 
distance, we prefer to give different weights to each 
individual distance. Thus, the distance is known as the 
weighted Minkowski distance. It can be defined as 
follows. 
 
Definition 2. A weighted Minkowski distance of 
dimension n is a mapping dwm: Rn × Rn 

→ R that has an 
associated weighting vector W of dimension n with 

∑ ==
n
j jw1 1  and wj ∈ [0, 1], such that: 
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where ai and bi are the ith arguments of the sets A and B 
and λ is a parameter such that λ ∈ (−∞, ∞).  

In this case, we can also obtain a wide range of 
special cases by using different values in the parameter 
λ. For example, if λ = 1, we obtain the weighted 
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Hamming distance (WHD). If λ = 2, the weighted 
Euclidean distance (WED). 

2.2. Induced OWA Operator 

The IOWA operator was introduced by Yager and 
Filev21 and it is an extension of the OWA operator. Its 
main difference is that the reordering step is not 
developed with the values of the arguments. In this case, 
the reordering step is developed with order inducing 
variables. It can be defined as follows. 
 
Definition 3. An IOWA operator of dimension n is a 
mapping f: Rn → R that has an associated weighting 
vector W of dimension n with ∑ ==

n
j jw1 1  and wj ∈ [0, 1], 

such that: 
  

  f(〈u1, a1〉, 〈u2, a2〉, …, 〈un, an〉) =  ∑
=

n

j
jj bw

1
           (3) 

 
where bj is the ai value of the IOWA pair 〈ui, ai〉 having 
the jth largest ui, ui is the order inducing variable and ai 
is the argument variable. 

The IOWA operator includes the OWA operator as a 
particular case and a lot of other situations such as the 
maximum, the minimum and the average. Note that it is 
possible to distinguish between the descending IOWA 
(DIOWA) operator and the ascending IOWA (AIOWA) 
operator. 

2.3. Induced Generalized OWA Operator 

The IGOWA operator was introduced in Ref. 12 and it 
represents a generalization of the IOWA operator by 
using generalized means. Therefore, it is possible to 
include in the same formulation, different types of 
induced aggregation operators such as the IOWA 
operator or the induced OWG (IOWG) operator. It can 
be defined as follows.  

 
Definition 4. An IGOWA operator of dimension n is a 
mapping IGOWA: Rn × Rn → R that has an associated 
weighting vector W of dimension n such that wj ∈ [0, 1] 
and ∑ ==

n
j jw1 1, then:  
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where bj is the ai value of the IGOWA pair 〈ui, ai〉 
having the jth largest ui, ui is the order inducing 
variable, ai is the argument variable and λ is a 
parameter such that λ ∈ (−∞, ∞).  

As we can see, if λ = 1, we get the IOWA operator. 
If λ = 0, the IOWG operator and if λ = 2, the IOWQA 
operator. Note that it is possible to further generalize the 
IGOWA operator by using quasi-arithmetic means. The 
result is the Quasi-IOWA operator. For further reading 
on the IGOWA and the Quasi-IOWA, refer to Ref. 12. 

3. The Induced Minkowski OWA Distance 

The IMOWAD operator is a distance measure that uses 
the IOWA operator in the normalization process of the 
Minkowski distance. Then, the reordering of the indivi-
dual distances is developed with order inducing 
variables. For two sets X = {x1, …, xn} and Y = {y1, …, 
yn}, it can be defined as follows. 
 
Definition 5. An IMOWAD operator is a mapping f: Rn 
× Rn × Rn → R that has an associated weighting vector 
W with wj ∈ [0, 1] and ∑ ==

n
j jw1 1 , such that: 

 

f(〈u1, x1, y1〉, …,〈un, xn, yn〉) =
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where bj is the |xi − yi| value of the IMOWAD triplet 〈ui, 
xi, yi〉 having the jth largest ui, ui is the order inducing 
variable, |xi − yi| is the argument variable represented in 
the form of individual distances and λ is a parameter 
such that λ ∈ (−∞, ∞). 
 
Example 1. Assume two sets A = (0.2, 0.4, 0.7, 0.3) and 
B = (0.9, 0.4, 0.7, 0.2), and λ = 1. Assume that both sets 
have the same order-inducing variables U = (6, 8, 3, 7). 
And assume the following weighting vector W = (0.3, 
0.3, 0.2, 0.2). Then, the IMOWAD can be calculated as 
follows. 
 

IMOWAD triplets 
〈6, 0.2, 0.9〉 = 〈6, 0.7〉 
〈8, 0.4, 0.4〉 = 〈8, 0〉 
〈3, 0.7, 0.7〉 = 〈3, 0〉 
〈7, 0.3, 0.2〉 = 〈7, 0.1〉 

 
f = 0.3 × 0 + 0.3 × 0.1 + 0.2 × 0.7 + 0.2 × 0 = 0.17. 

 
Note that sometimes, as in fuzzy set theory, it is 

better to use in the definition, a mapping f: [0, 1]n × [0, 
1]n → [0, 1]. 
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A further interesting aspect to consider is the 
reordering process of the information.35 Usually, we 
reorder the IMOWAD according to the values of the ui, 
but it is also possible to adapt them to the initial 
positions of the arguments. That is: 
 

 f (〈u1,a1〉, 〈u2,a2〉…, 〈un,an〉) = 
λ

λ
/1
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where wi is the ith weight wj reordered according to the 
positions of the |xi − yi| and using order-inducing 
variables ui. 

The IOWAD operator is commutative, monotonic, 
bounded and idempotent. These properties can be 
proved with the following theorems. 
 
Theorem 1 (Commutativity). Assume f is the IMOWAD 
operator, then: 
 
f (〈u1, x1, y1〉, …, 〈un, xn, yn〉) = 

   =  f (〈u1, c1, d1〉, …, 〈un, cn, dn〉          (7) 
 
where (〈u1, x1, y1〉, …, 〈un, xn, yn〉) is any permutation of 
the arguments (〈u1, c1, d1〉, …, 〈un, cn, dn〉). 
 
Proof. It is straightforward and thus omitted.                □ 
 
Theorem 2 (Monotonicity). Assume f is the IMOWAD 
operator, if |xi − yi| ≥ |ci − di|, for all i, then: 
 
f (〈u1, x1, y1〉, …, 〈un, xn, yn〉) ≥  

≥  f (〈u1, c1, d1〉, …, 〈un, cn, dn〉)                (8) 
 
Proof. It is straightforward and thus omitted.                □ 
 
Theorem 3 (Bounded). Assume f is the IMOWAD 
operator, then: 
 
min{|xi − yi|} ≤ f (〈u1, x1, y1〉, …, 〈un, xn, yn〉) ≤  

≤max{|xi − yi|}     (9) 
 
Proof. It is straightforward and thus omitted.                □  
 
Theorem 4 (Idempotency). Assume f is the IMOWAD 
operator, if |xi − yi| = a, for all i, then: 
 

f (〈u1, x1, y1〉, …, 〈un, xn, yn〉) = a                       (10) 
 
Proof. It is straightforward and thus omitted.                □ 
 

Remark 1. Note that if xi = yi for all i ∈ [1, n], f(〈u1, x1, 
y1〉, …, 〈un, xn, yn〉) = 0. Note also that f(〈u1, x1, y1〉, …, 
〈un, xn, yn〉) =  f(〈u1, y1, x1〉, …, 〈un, yn, xn〉). 

 
Remark 2. Note that it is possible to distinguish 
between descending (DIMOWAD) and ascending 
(AIMOWAD) orders. The weights of these operators 
are related by wj = w*n+1−j, where wj is the jth weight of 
the DIMOWAD (or IMOWAD) operator and w*n+1−j the 
jth weight of the AIMOWAD operator. 
 
Remark 3. If B is a vector corresponding to the ordered 
arguments bj

λ, we shall call this the ordered argument 
vector and WT is the transpose of the weighting vector, 
then, the IMOWAD operator can be expressed as: 
 

    f(〈u1, x1, y1〉, …, 〈un, xn, yn〉) = ( ) λ/1
BWT           (11) 

 
Remark 4. Note that if the weighting vector is not 

normalized, i.e., W =∑ ≠=
n
j jw1 1, then, the IMOWAD 

operator can be expressed as: 
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Some other interesting generalizations can be 

developed following.36-39 Following,38 we can develop 
the function IMOWAD operator that uses a generating 
function r for the order inducing variables such that, r: I 
→ R, being I ⊂ R a closed interval I = [a, b]. Moreover, 
we use a more general representation by using also a 
generating function for the arguments such that, s: Rm 
→ R. Furthermore, we also use a weighting function f 
for the weighting vector. Thus, we obtain the function 
induced generalized mixture distance (IGMD) operator 
as follows. Note that in this definition we refer to the 
arguments as two sets X = {x1, x2, …, xn} and Y = {y1, 
y2, …, yn}. 
 
Definition 6. An IGMD operator of dimension n is a 
mapping IMD: Rn × Rn × Rn → R that has an associated 
a vector of weighting functions f, r: I → ]0, ∞[, is some 
positive continuous function, s: Rm → R, such that: 
 
IGMD (〈ro(u1), sp(x1), sq(y1)〉,…, 〈ro(un), sp(xn), sq(yn)〉) = 
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where sy(bj) is the |sp(xi) – sq(yi)| value of the IGMD 
triplet 〈ro(ui), sp(xi), sq(yi)〉) having the jth largest ro(ui), 
ui is the order-inducing variable, |sp(xi) – sq(yi)| is the 
argument variable represented in the form of individual 
distances; o, p and q indicates that each order-inducing 
variable and each argument is formed by using a 
different function and λ is a parameter such that λ ∈ 
(−∞, ∞).  

Following,12 we can obtain a wide range of 
particular cases of the IGMD operator. For example: 

 
• If λ = 1, we obtain the induced mixture distance 

(IMD) operator.  
• If  λ = 2, the induced quadratic mixture distance 

(IQMD) operator.  
• If  λ = 3, the induced cubic mixture distance 

(ICMD) operator.  
• If  λ → 0, the induced geometric mixture distance 

operator 
• If  λ = −1, the induced harmonic mixture distance 

(IHMD) operator. 
 

A further interesting extension consists in using 

infinitary aggregation operators.36 In this case, we 

assume that there are an unlimited number of arguments 

that appear in the aggregation process. Note that 

∑∞
= =1 1j jw . By using the IMOWAD operator we get the 

infinitary IMOWAD (∞-IMOWAD) operator as 

follows. 

 

f (〈u1, x1, y1〉,…, 〈un, xn, yn〉) = 
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However, note that the reordering process is much 

more complex due to the fact that we never know which 
argument should go in the first or in the last position 
because we have an unlimited number of arguments. 
This problem can be partially solved by using some 
kind of special instructions in the order inducing 
variables such that we aggregate the information 

partially in order to obtain partial results. Further 
reading for the usual OWA, see. 36  

Note that a similar extension could be developed by 
using the IGMD operator, obtaining the ∞-IGMD 
operator. 

A further interesting issue is the problem of ties in the 
reordering process of the order inducing variables. In 
order to solve this problem, we recommend to follow 
the policy explained in Ref. 21 about replacing the tied 
arguments by their average. Note that in this case, it 
would mean that we are replacing the tied arguments by 
their normalized Minkowski distance. 

Note that in the analysis of the order-inducing 
variables of the IMOWAD operator, we should note that 
the values used can be drawn from any space, with the 
only requirement of having a linear ordering. Therefore, 
it is possible to use different kinds of attributes for the 
order-inducing variables that permit us, for example, to 
mix numbers with words in the aggregations. 

Other factors that we can consider are the measures 
for characterizing a weighting vector and the type of 
aggregation it performs.8,15 The first measure α(W), the 
degree of orness, is defined as:  

 

α(W) = 

λλ /1
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Note that wj* is the wj weight of the IMOWAD 

aggregation ordered in descending order according to 
the values of the arguments |xi − yi|. It can be shown that 
α ∈ [0, 1]. The more weight is located near the top of 
W, the closer α is to 1, while the more weight is located 
toward the bottom of W, the closer α is to 0. Note also 
that we can use the dual, that is: Andness = 1 – Orness. 

The second measure15 is called the entropy of 
dispersion of the weighting vector W. It is defined as:  

 

H(W) = ∑
=

−
n

j
jj ww

1
)ln(                            (16) 

 
For example, if wj = 1 for some j, then H(W) = 0, 

and thus the least amount of information is used. 
The divergence of W measures the divergence of the 

weights against the degree of orness: 
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Div(W) = 
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The balance operator measures the balance of the 

weights against the orness or the andness: 
 

Bal(W) = ∑
=
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It can be shown that Bal(W) ∈ [−1, 1]. Note that for 

the optimistic criteria, Bal(W) = 1, and for the 
pessimistic criteria, Bal(W) = −1. 

4. Families of IMOWAD Operators 

In this Section, we analyze different particular cases of 
the IMOWAD operator. We distinguish between those 
families found in the parameter λ and those found in the 
weighting vector W. 

4.1. Analysing the parameter λ 

By looking to the parameter λ, we can find a wide range 
of distance measures such as the IOWAD, the 
EIOWAD, the induced ordered weighted geometric 
distance (IOWGD) operator, the induced ordered 
weighted harmonic averaging distance (IOWHAD) 
operator and a lot of other cases. 
 
Remark 5. When λ = 1, we get the IOWAD operator.  
 

  f(〈u1, x1, y1〉, …, 〈un, xn, yn〉) = ∑
=

n

j
jj bw

1
              (19) 

 
Note that if wj = 1/n, for all ai, we get the NHD. The 

WHD is obtained if ui > ui+1, for all i, and the OWAD 
operator is obtained if the ordered position of ui is the 
same than the ordered position of bj such that bj is the 
jth largest of |xi − yi|.  
 
Remark 6. When λ = 2, we get the IEOWAD operator. 
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If wj = 1/n, for all ai, we get the NED. If ui > ui+1, for 

all i, we get the WED and if the ordered position of ui is 

the same than the ordered position of bj such that bj is 
the jth largest of |xi − yi|

2, we get the EOWAD operator.  
 
Remark 7. When λ = 0, we get the IOWGD operator.  
 

f(〈u1, x1, y1〉, …, 〈un, xn, yn〉) = ∏
=

n

j

w
j

jb
1

             (21) 

 
Note that if wj = 1/n, for all ai, we get the 

normalized geometric distance and if ui > ui+1, for all i, 
the weighted geometric distance. If the ordered position 
of ui is the same than the ordered position of bj such that 
bj is the jth largest of |xi − yi|wj, we get the ordered 
weighted geometric distance operator (OWGD) 
operator.  
 
Remark 8. When λ = −1, we get the IOWHAD 
operator. 
 

f(〈u1, x1, y1〉, …, 〈un, xn, yn〉) = 

∑
=

n

j j

j

b

w

1

1
               (22) 

 
Note that if wj = 1/n, for all ai, we get the 

normalized harmonic distance. If ui > ui+1, for all i, we 
get the weighted harmonic distance. If the ordered 
position of ui is the same than the ordered position of bj 
such that bj is the jth largest of 1/(wj / |xi − yi|), we get 
the ordered weighted harmonic averaging distance 
operator (OWHAD) operator .  
 
Remark 9. When λ = 3, we get the induced ordered 
weighted cubic averaging distance (IOWCAD) operator. 
 

f(〈u1, x1, y1〉, …, 〈un, xn, yn〉) = 

3/1
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If wj = 1/n, for all ai, we get the normalized cubic 

distance (NCD). If ui > ui+1, for all i, we get the 
weighted cubic distance (WCD) and if the ordered 
position of ui is the same than the ordered position of bj 
such that bj is the jth largest of |xi − yi|

2, we get the 
ordered weighted cubic averaging distance (OWCAD) 
operator.  

Note that we could analyze other families by using 
different values in the parameter λ. Note also that it is 
possible to study these families individually in a similar 
way as it has been developed in Section 3. 
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4.2. Analysing the weighting vector W 

By choosing a different manifestation of the weighting 
vector in the IMOWAD operator, we are able to obtain 
different types of distance aggregation operators. For 
example, we can obtain the maximum distance, the 
minimum distance, the NMD, the WMD and the 
MOWAD operator. 
 
• The maximum distance is obtained if wp = 1 and wj 

= 0, for all j ≠ p, and up = Max{|xi − yi|}. 
• The minimum distance is obtained if wp = 1 and wj = 

0, for all j ≠ p, and up = Min{|xi − yi|}. 
• More generally, if wk = 1 and wj = 0, for all j ≠ k, we 

are using the step-IMOWAD operator. 
• The NMD is found when wj = 1/n, for all i. 
• The WMD is obtained if ui > ui+1, for all i. 
• The MOWAD operator is obtained if the ordered 

position of ui is the same than the ordered position of 
bj such that bj is the jth largest of |xi − yi|. 

• Note that the IGOWA operator12 is also included as 
a particular case of IMOWAD operator. This 
situation appears when one of the sets of the 
IMOWAD operator is empty. 

 
Remark 10. Other families of IMOWAD operators 
could be used. For more information, see.8,16,19 For 
example, when wj = 1/m for k ≤ j ≤ k + m − 1 and wj = 0 
for j > k + m and j < k, we are using the window-
IMOWAD operator. Note that k and m must be positive 
integers such that k + m − 1 ≤ n.  
 
Remark 11. If w1 = wn = 0, and for all others wj = 1/(n − 
2), we are using the olympic-IMOWAD. Note that it is 
possible to present a general form of the olympic-
IMOWAD operator considering that wj = 0 for j = 1, 2, 
…, k, n, n − 1, …, n − k + 1; and for all others wj*  = 1/(n 
− 2k), where k < n/2.  Note that if k = 1, then, this 
general form becomes the usual olympic-IMOWAD. 
 
Remark 12. Note that the IMOWAD-median and the 
weighted IMOWAD-median can also be used as a 
particular case of the IMOWAD. For the IMOWAD 
median, if n is odd we assign w(n + 1)/2 = 1 and wj = 0 for 
all others, and this affects the argument ai with the [(n + 
1)/2]th largest ui. If n is even we assign for example, 
wn/2 = w(n/2) + 1 = 0.5, and this affects the arguments with 
the (n/2)th and [(n/2) + 1]th largest ui. For the weighted 
IMOWAD median, we select the argument ai that has 

the kth largest inducing variable ui, such that the sum of 
the weights from 1 to k is equal or higher than 0.5 and 
the sum of the weights from 1 to k − 1 is less than 0.5. 
Note that if the ordered position of ui is the same than 
the ordered position of bj such that bj is the jth largest of 
ai, then, we get the IMOWAD-median and the weighted 
IMOWAD-median, respectively. 
 
Remark 13. Another interesting family is the S-
IMOWAD operator. It can be divided in three classes, 
the “orlike”, the “andlike” and the generalized S-
IMOWAD operator. The generalized S-IMOWAD 
operator is obtained when  wp = (1/n)(1 − (α + β)) + α, 
with up = Max{ai}; wq = (1/n)(1 − (α + β)) + β, with uq 
= Min{ai}; and wj = (1/n)(1 − (α + β)) for all j ≠ p,q 
where α, β ∈ [0, 1] and α + β ≤ 1. Note that if α = 0, 
the generalized S-IMOWAD operator becomes the 
“andlike” S-IMOWAD operator and if β = 0, it becomes 
the “orlike” S-IMOWAD operator. 
 
Remark 14. A further interesting family that could be 
used is the centered-IMOWAD operator. An IMOWAD 
operator is a centered aggregation operator if it is 
symmetric, strongly decaying and inclusive. It is 
symmetric if wj = wj+n−1. It is strongly decaying when i 
< j ≤ (n + 1)/2 then wi < wj and when i > j ≥ (n + 1)/2 
then wi < wj. It is inclusive if wj > 0. Note that it is 
possible to consider a softening of the second condition 
by using wi ≤ wj instead of wi < wj. We shall refer to this 
as softly decaying centered-IMOWAD operator. 
Another particular situation of the centered-IMOWAD 
operator appears if we remove the third condition. We 
will refer to it as a non-inclusive centered-IMOWAD 
operator. 

5. The Induced Quasi-OWAD Operator 

The IMOWAD can be generalized by using quasi-
arithmetic means in a similar way as it was done in Ref. 
12. We call it the Quasi-IOWAD operator. It is defined 
as follows.  
 
Definition 7. A Quasi-IOWAD operator is a mapping f: 
Rn × Rn × Rn → R that has an associated weighting 
vector W with wj ∈ [0, 1] and ∑ ==

n
j jw1 1 , such that: 

 

f(〈u1, x1, y1〉,…,〈un, xn, yn〉) = ( )( )








∑
=

− n

j
jj bgwg

1

1     (24) 
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where bj is the |xi − yi| value of the QIOWAD triplet 〈ui, 
xi, yi〉 having the jth largest ui, ui is the order inducing 
variable, |xi − yi| is the argument variable represented in 
the form of individual distances, and g is the strictly 
continuous monotonic function. 

As we can see, when g(b) = bλ, then, the Quasi-
IOWAD becomes the IMOWAD operator. Note that it 
is also possible to distinguish between descending 
(Quasi-DIOWAD) and ascending (Quasi-AIOWAD) 
orders. 

Note that all the properties and particular cases 
commented in the IMOWAD operator are also 
applicable in the Quasi-IOWAD operator. 

For example, we could mention the trigonometric 
IOWAD operator, the exponential IOWAD operator and 
the radical IOWAD operator. 

The trigonometric IOWAD is obtained when g1(t) = 
sin((π/2) t), g2(t) = cos((π/2) t) and g3(t) = tan((π/2) t) 
are the generating functions. Thus, the trigonometric 
IOWAD functions are: 

 
f (〈u1, x1, y1〉,…,〈un, xn, yn〉) =  

= 





















∑
=

n

j
jj bw

1 2
sinarcsin

2 π
π

 (25) 

 
f (〈u1, x1, y1〉,…,〈un, xn, yn〉) = 

 = 





















∑
=

n

j
jj bw

1 2
cosarccos

2 π
π

 (26) 

 
f (〈u1, x1, y1〉,…,〈un, xn, yn〉) = 

 = 





















∑
=

n

j
jj bw

1 2
tanarctan

2 π
π

 (27) 

 
The exponential IOWAD is formed when g(t) = γt , 

if γ ≠ 1, and g(t) = t, if γ = 1. Thus, the exponential 

IOWAD operator is: 




∑ =

n
j

b
j

jw1log γγ , if γ ≠ 1, and 

the IOWAD if γ = 1. 

The radical IOWAD is found if γ > 0, γ ≠ 1, and the 
generating function is g(t) = γ1/t. Thus, the radical 
IOWAD operator is: 

 
f (〈u1, x1, y1〉,…,〈un, xn, yn〉) =  

= 

1

1

/1
log

−

= 


























∑
n

j

b
j

jw γγ   (28) 

 
Another interesting particular type of Quasi-

IOWAD operator is the Quasi-weighted averaging 
distance (Quasi-WAD). It is found when ui > ui+1, for all 
i. It can be defined as follows. 
 
Definition 8. A Quasi-WAD operator is a mapping f: Rn 
× Rn → R that has an associated weighting vector W 
with wj ∈ [0, 1] and ∑ ==

n
j jw1 1 , such that: 

 

f(〈x1, y1〉,…,〈xn, yn〉) = ( )( )








∑
=

− n

j
jj bgwg

1

1            (29) 

 
where bj is the |xi − yi| value of the QWAD tuple 〈xi, yi〉 
having the jth largest ui, ui is the order inducing 
variable, |xi − yi| is the argument variable represented in 
the form of individual distances, and g is the strictly 
continuous monotonic function. 

Note that if wj = 1/n, for all i., then, the Quasi-WAD 
becomes the Quasi-normalized averaging distance 
(Quasi-NAD). 

Note that all the properties studied in the IMOWAD 
and in the Quasi-IOWAD can also be studied with the 
Quasi-WAD operator. 

6. Numerical Example 

The IMOWAD operator can be applied in a wide range 
of problems including statistics, economics and 
engineering. In the following, we are going to develop a 
simple illustrative example in order to see the results 
obtained in the aggregation by using different types of 
IMOWAD operators. We develop an application in a 
decision making problem concerning the selection of 
investments where an enterprise is looking for the best 
strategy according to his interests. 

Assume that an enterprise that operates in Europe 
and North America wants to invest some money the 
next year. In order to do so, the board of directors, after 
careful analysis with the group of experts of the 
company, has established five possible investments Si 
that the enterprise could develop in the future.  
 

• A1: Invest in the Asian market. 
• A2: Invest in the South American market. 
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• A3: Invest in the African market. 
• A4: Do not develop any investment. 

 
After careful review of the information, the experts 

have given the following general information. They 
have summarized the information of the strategies in 
five main characteristics Ci with the following results.  
 

• C1: Risk of the investment. 
• C2: Benefits in the short term. 
• C3: Benefits in the long term. 
• C4: Difficulty of the investment. 
• C5: Other aspects. 

 
Note that the results are valuations between 0 and 1. 

 
Table 1. Available investments 

 C1 C2 C3 C4 C5 
A1 0.7 0.9 0.8 0.7 0.3 
A2 0.6 0.8 0.7 0.5 0.8 
A3 0.5 0.6 0.8 0.4 0.9 
A4 0.8 0.5 0.6 0.8 0.6 

 
According to the objectives and policies of the 

enterprise, the experts have established the ideal 
investment for the company independently of the 
investments available. They have established the 
following valuations for it. 
 

Table 2. Characteristics of the ideal investment 
 C1 C2 C3 C4 C5 
I 0.8 0.9 1 0.9 0.9 

 
In order to aggregate the information, the group of 

experts calculates the attitudinal character of the 
enterprise. Due to the fact that the attitudinal character 
depends upon the opinion of several members of the 
board of directors, it is very complex. Therefore, they 
need to use order inducing variables in the reordering 
process. The results are shown in Table 3. 
 

Table 3. Order inducing variables 
 C1 C2 C3 C4 C5 

A1 12 16 20 24 8 
A2 22 18 20 26 28 
A3 14 20 15 18 17 
A4 26 21 19 15 13 

 

With this information, it is possible to develop 
different methods for selecting an investment. In this 
example, we consider the NHD, the NED, the WHD, 
the WED, the OWAD, the IOWAD, the AIOWAD and 
the EIOWAD operator. Note that the weighting vector 
used is: W = (0.1, 0.2, 0.2, 0.2, 0.3). The aggregated 
results obtained by using the previous particular cases of 
IMOWAD operators are shown in Tables 4 and 5. 
 

Table 4. Aggregated results 1 
 NHD WHD OWAD IOWAD 

A1 0.22 0.27 0.16 0.26 
A2 0.22 0.21 0.19 0.22 
A3 0.26 0.23 0.21 0.26 
A4 0.24 0.27 0.2 0.27 

 
Table 5. Aggregated results 2 

 AIOWAD EIOWAD Median Olympic 
A1 0.18 0.349 0.2 0.1 
A2 0.22 0.249 0.2 0.3 
A3 0.26 0.306 0.3 0.233 
A4 0.21 0.305 0.3 0.3 

 
As we can see, depending on the distance 

aggregation operator used, the optimal choice is 
different. Note that the lowest value in each method is 
the optimal result. 

If we establish an ordering of the investments, a 
typical situation if we want to consider more than one 
alternative, we will get the following orders shown in 
Table 6. Note that the first alternative in each ordering 
is the optimal choice. 
 

Table 6. Ordering of the investments 
 Ordering 

NHD A3A4A1=A2 
WHD A1=A4A3A2 

OWAD A3A4A2A1 
IOWAD A4A1A3A2 

AIOWAD A3A2A4A1 
EIOWAD A1A3A4A2 

Median-IOWAD A3=A4A1=A2 
Olympic-IOWAD A2=A4A3A1 

 
As we can see, depending on the particular type of 

IMOWAD operator used, the results may lead to 
different decisions. 
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7. Conclusions 

We have presented the IMOWAD operator. It is a 
distance measure that uses the IOWA operator in the 
Minkowski distance. The main advantage of this 
operator is that it generalizes a wide range of distances 
such as the NMD, the WMD, the MOWAD, the 
IOWAD and the EIOWAD operator. We have studied 
some of its main properties. 

We have further generalized the IMOWAD operator 
by using quasi-arithmetic means. We have called it the 
Quasi-IOWAD operator. We have also studied the 
applicability of the IMOWAD and the Quasi-IOWAD 
operator. We have developed an application of the new 
approach in a decision making problem about selection 
of investments. We have seen that the main advantage 
of using the IMOWAD and the Quasi-IOWAD is that it 
gives a more complete view of the decision problem. 

In future research, we expect to develop further 
extensions of the IMOWAD and the Quasi-IOWAD 
operator by adding new characteristics in the problem, 
following the research developed in Ref. 8, and 
applying them to other fields. 
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