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Abstract

Based on the equivalence relation, we can partition a set U , formally, different equivalence relations
correspond to different partitions of U . In this paper, based on Yager’s works (Some Measure Relat-
ing Partitions Useful For Computational Intelligence, International Journal of Computational Intelligence
Systems. 1, 1-18 (2008)), we discuss how to compare the different partitions, moreover, we obtain some
indexes to select a better partition from given partitions. By an illustrative example, we show that our
proposed indexes can be used for selecting partitions, feature selection, and help us to gather more infor-
mation to decision making.
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1. Introduction

Our knowledge in daily life is inherently associated
with a way in which they are perceived, described,
and classified. More general, human beings use per-
ceptions of direction, speed, time and other features
of physical/mental objects to process information,
e.g., driving and cooking. Perceptions are granu-
lar (information granular), which are collections of
objects arranged together based on their similarity,
functional adjacency and indistinguishability 23,24,
information granulation exhibits different facets of
formalism and as such rely on the well established
theories of interval and interval calculus, fuzzy sets,
rough sets and alike 6,7,8,9,11. From the mathemat-
ical point of view, the fundamental of information
granulation is relations on the set of objects, objects
can be easily managed by these relations on the set
of objects 15,16,17,19. However in Data mining, we
are always faced with a great of data 5,10,13, in such
case, it needs sophisticated tools of computational

intelligence to manage objects by classifying a set
3,6,7,9,12,13,14,20,22,25. On the one hand, we use fea-
tures for classifying objects and obtaining partitions
of the set of objects. On the other hand, features in
complex systems are so different in describing local
knowledge that we have to analyze importance of
every feature and select important features for con-
structing knowledge-based systems 1,2,18.

In the reference 21, Yager provides an alternative
method for dealing with the above mentioned prob-
lem. The method handles the relation between par-
titions and the congruent about two partitions of the
same set, distinguishes partitions by measurements
related to partitions. In this paper, our discussions
concentrate on “How to select the best partition from
those different partitions of the same set”. In the
real world practice, the problem is associated with
knowledge extraction, feature selection, and deci-
sion making. Based on Yager’s works, we compare
with different partitions as well as select a better par-

International Journal of Computational Intelligence Systems, Vol.4, No. 2 (April, 2011).

Published by Atlantis Press 
    Copyright: the authors 
                    153

zegerkarssen
Texte tapé à la machine

zegerkarssen
Texte tapé à la machine
Received: 21-01-2010
Accepted: 10-02-2011



Xuezheng Zhang, Zheng Pei, Yong Liu

tition from given partitions. The main results are:

1. Providing a new method to calculate the de-
gree of congruence or similarity of two parti-
tions and indexes for selecting partitions;

2. Providing Stability Entropy, accuracy rate and
validity entropy to evaluate a partition.

The paper is organized as follows: In Section 2,
we review the congruence and partitions. In Sec-
tion 3, based on analyzing the relation of elements in
two partitions of the same set U , we propose a new
method to calculate the degree of congruence or sim-
ilarity of two partitions. In Section 4, we discuss in-
dexes for selecting partitions, and provide Stability
Entropy, accuracy rate and validity entropy to eval-
uate a partition. In Section 5, we give an illustra-
tive example to explain our method. We conclude in
Section 6.

2. The Congruence of Partitions

According to the paper 21, we review some concepts
of partitions as follow:

An equivalence relation E on U is a mapping
E : U×U −→ {0,1} such that

1. Identity: E(x,x) = 1;

2. Symmetry: E(x,y) = E(y,x);

3. Transitivity:E(x,z) > Miny[E(x,y),E(y,z)]

Condition 3 implies that if E(x,y) = 1 and
E(y,z) = 1, then E(x,z) = 1. Transitivity means that
if {A1,A2, · · · ,An} is a partition of U , then we can
obtain an equivalence relation E such that E(x,y) =
1 if x and y in the same class and E(x,y) = 0 if they
are in different classes. Hence, we can associate
with each x ∈ U an equivalence class Ax such that
y ∈ Ax if E(x,y) = 1.

Assume that P1 and P2 are two partitions of U ,
the mapping Cong : P1×P2 → [0,1] indicates the de-
gree of congruence or similarity of two partitions if
the following conditions are satisfied:

C1 : Cong(P1,P2) = Cong(P2,P1);

C2 : Cong(P1,P1) = 1 if P1 = P2.

Formally, Cong is similarity relation on partitions of
U .

In all partitions of U , we identify the two spe-
cial partitions P∗ and P∗, in which, P∗ = 〈{U}〉, i.e.,
the universal partition where just have one set; P∗ is
the one in which each element in U is in a differ-
ent class, i.e., if P∗ = 〈A1,A2, · · · ,An〉, then for ev-
ery i = 1,2, · · · ,n, Ai = {xi}(xi ∈U). Formally, the
above Cong also satisfies the following condition:

C3 : Cong(P∗,P∗) = Min{Cong(P1,P2)},

in which, P1 and P2 are two partitions of U . In the
real-world practice, the following two Cong are used
21:

Cong1(P1,P2) = Cong1(E1,E2)

= 1− 1(
2
n

) ∑
U
|U ·E1(〈x,y〉)−U ·E2(〈x,y〉)|,

In Cong1, U ·E(〈x,y〉) = E(x,y) = E(y,x) (E is an
equivalence relation on U), ∑

U
|U · E1(〈x,y〉)−U ·

E2(〈x,y〉)| is the number of pairs that have different
values in E1 (the equivalence relation corresponding
to P1) and E2 (the equivalence relation correspond-
ing to P2), n = |U | and

(
2
n

)
=

n(n−1)
2

.

Cong2(P1,P2) = Max[Score(g(P1,P2))],

in which, P1 = {A1,A2, · · · ,Aq}, P2 = {B1,B2, · · · ,
Bq}, let Q = {1,2, · · · ,q} and g : Q → Q be bijec-
tive, then

Score(g(P1,P2)) =

q
∑
j=1

Card(Dg· j)

Card(U)
,

Dg· j = A j
⋂

Bg( j).

In the reference 21, many interesting properties
of the above measures of congruence of partitions
are discussed. In the follows, we focus on some in-
dexes for comparing partitions, which will help us
to select a better partition from all partitions of U .
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3. Indexes for Evaluating Partitions

In this section, we provide a new Cong of two par-
titions and some indexes for evaluating partitions
based on Yager’s works 21.

3.1. A New Cong of Partitions

Assume that E1,E2, · · · ,En are equivalence rela-
tions of U , partitions P1,P2, · · · ,Pn are induced by
E1,E2, · · · ,En, respectively. Let the unordered pair
〈x,y〉 such that x,y ∈U and x 6= y.

Definition 1. 〈x,y〉 is called a double basic factor
(DBF) if E1(x,y) = E2(x,y) = 1, i.e., for the parti-
tions P1 and P2, the double basic factor 〈x,y〉 means
that x and y are in the same class.

Definition 2. 〈x,y〉 is called an n−multiple basic fac-
tor (nBF) if E1(x,y) = E2(x,y) = · · ·= En(x,y) = 1,
i.e., for the partitions P1,P2, · · · ,Pn, the n−multiple
basic factor 〈x,y〉 implies that x and y are in the same
class.

Definition 3. 〈x,y〉 is called a double independent
factor (DIF) if E1(x,y) = E2(x,y) = 0. i.e., for the
partitions P1 and P2, the double independent factor
〈x,y〉 means that x and y are not in the same class.

Definition 4. 〈x,y〉 is called an n−multiple inde-
pendent factor (nIF) if E1(x,y) = E2(x,y) = · · · =
En(x,y) = 0, i.e., for the partitions P1,P2, · · · ,Pn, the
n−multiple independent factor 〈x,y〉 implies that x
and y are not in the same class.

Definition 5. x0 ∈U is called an absolute indepen-
dent element (AIE) of E if for any x ∈U and x 6= x0,
then E(x,x0) = 0, i.e., if x0 is the absolute indepen-
dent element of E, then Ax0 = {x0}.

Definition 6. x0 ∈U is called an n−multiple abso-
lute independent element (nAIE) of E1,E2, · · · ,En

if for any x ∈ U and x 6= x0, then E1(x,x0) =
E2(x,x0) = · · · = En(x,x0) = 0, i.e., if x0 is
the n−multiple absolute independent element of
E1,E2, · · · ,En, then for every E j( j = 1,2, · · · ,n),
Ax0 = {x0}.

Example 1. Let U = {x1,x2,x3,x4,x5,x6,x7}. As-
sume equivalence relations E1 and E2, in which,

P1 = {A1,A2,A3}
= {{x1,x2,x3},{x4,x5,x6},{x7}},

P2 = {B1,B2}
= {{x2,x4,x6},{x1,x3,x5,x7}}.

In this case, according to Definitions 1-6, we
know that 〈x1,x3〉 and 〈x4,x6〉 are double basic fac-
tors. 〈x1,x4〉, 〈x1,x6〉, 〈x2,x5〉, 〈x2,x7〉, 〈x3,x4〉, and
〈x3,x6〉 are double independent factors. And x7 is
the absolute independent factor of P1.

Assume P1 = {A1, · · · ,An}, P2 = {B1, · · · ,Bn}
and Mi j = Ai

⋂
B j. It is not difficult to obtain the

properties as follows.

Theorem 1. If |Mi j|> 2, then ∀x,y ∈Mi j, 〈x,y〉 is a
DBF.

Proof. For any x,y ∈ Mi j, x,y ∈ Ai and x,y ∈ B j,
i.e., E1(x,y) = E2(x,y) = 1, according to Definition
1, 〈x,y〉 is a DBF .

Corollary 2. For any x ∈U,

1. x is an AIE of P∗;

2. x is not an AIE of P∗.

Theorem 3. For P∗ and P∗, ∀x,y ∈ U and x 6= y,
〈x,y〉 is not a DBF of P∗ and P∗.

Proof. ∀x,y ∈U , x 6= y, we have E∗(x,y) = 1 in P∗

and E∗(x,y) = 0 in P∗ , hence, 〈x,y〉 is not a DBF of
P∗ and P∗.

Theorem 4. For any partition P of U such that
P 6= P∗, there exists a DBF 〈x,y〉 of P and P∗.

Proof. Due to P 6= P∗, hence there are at least two
elements x and y are in the same class in P. That is
E(x,y) = 1. And ∀x,y∈U , E∗(x,y) = 1. This means
that 〈x,y〉 is a DBF of P and P∗.

Theorem 5. There exists a DBF of P1 and P2 if
and only if there exist Ai ∈ P1 and B j ∈ P2 such that
|Mi j|= |Ai

⋂
B j|> 2.
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Proof. Assume that there exists a DBF of P1 and
P2, denoted by 〈x,y〉. It means that x and y are in the
same class in both P1 and P2, i.e., there exists Ai ∈ P1
and B j ∈ P2 such that x,y ∈ Ai and x,y ∈ B j, hence
x,y ∈Mi j = Ai

⋂
B j, i.e., |Mi j|> 2.

Assume that for Ai ∈ P1 and B j ∈ P2 such that
|Mi j|= |Ai

⋂
B j|> 2. Then there exist x,y ∈Mi j and

x 6= y, i.e., x,y ∈ Ai and x,y ∈ B j, hence, 〈x,y〉 is a
DBF of P1 and P2.

Formally, we can calculate the degree of similar-
ity of partitions P1 and P2 of U based on all DBF and
AIE as follow:

Cong3(P1,P2) = Cong3(E1,E2) =
|U∗|+ |U∗|

|U | , (1)

in which, U∗ is the set of all double basic factors,
i.e.,

U∗ = {x,y|x,y ∈U,x 6= y,E1(x,y) = E2(x,y) = 1},

U∗ is the set of all 2-multiple absolute independent
elements, i.e.,

U∗ = {x|∀y ∈U,x 6= y,E1(x,y) = E2(x,y) = 0}.

Theorem 6. For any partitions P1 and P2 of U,

Cong3(P∗,P∗) = Min[Cong3(P1,P2)].

Proof. According to Eq. (1), we have

Cong3(P1,P2) =
|U∗|+ |U∗|

|U | .

It easy to prove that for P∗ and P∗ of U , we have
|U∗|= 0 and |U∗|= 0, i.e.,

Cong3(P∗,P∗) = 0.

On the other hand, for any partitions P1 and P2 of U ,
Min[Cong3(P1,P2)] > 0, hence,

Cong3(P∗,P∗) = Min[Cong3(P1,P2)].

Corollary 7. Assume that P1 and P2 are two parti-
tions of U. Cong3 : P1×P2 → [0,1] is the degree of
congruence or similarity of two partitions.

Proof. According to the Eq. (1), Cong3 satisfies
that

1: Cong3(P1,P2) = Cong3(P2,P1) = |U∗|+|U∗|
|U | ,

2: Cong3(P1,P1) = |U |
|U | = 1

Based on Theorem 6, Cong3 is the degree of congru-
ence or similarity of two partitions 21.

Cong3 can be generalized to n−multiple case as
follows:

Cong3(P1,P2, · · · ,Pn) =
|U∗n|+ |U∗n|

|U | . (2)

in which, U∗n is the set of all n−multiple basic fac-
tors, i.e.,

U∗n = {x,y|x,y ∈U,x 6= y,E1(x,y) = · · ·En(x,y) = 1},

U∗n is the set of all n−multiple absolute indepen-
dent, i.e.,

U∗n = {x|∀y ∈U,x 6= y,E1(x,y) = · · ·= En(x,y) = 0}.

Compared Cong1 and Cong2 with Cong3, Cong3
is easier to calculate than Cong1 and Cong2. This
can be shown in the following example.

Example 2. Let U = {x1,x2,x3x4,x5,x6,x7}. As-
sume P1 = {A1 (= {x1,x2,x3}),A2(= {x4,x5,x6}),
A3(= {x7})}, P2 = {B1 = {x2,x4,x6}, B2 = {x1,
x3,x5,x7}}.

The Cong1 can be calculated by the follows:

Cong1(P1,P2) = Cong1(E1,E2)

= 1− 1(
2
n

) ∑
U
|U ·E1(〈x,y〉)−U ·E2(〈x,y〉)|

= 1− 11
21

=
10
21

To calculate Cong2, we add B3 = /0 in P2. The
number of bijective g : {1,2,3} → {1,2,3} is six,
i.e.,

Published by Atlantis Press 
    Copyright: the authors 
                  156



SOME INDEXES FOR COMPARING AND SELECTING PARTITIONS

1. For g(1) = 2, g(2) = 1 and g(3) = 3, we
have the pairs: (A1,B2),(A2,B1) and (A3,B3).
Then,

Dg.1 = A1
⋂

B2 = {x1,x3},
Dg.2 = A2

⋂
B1 = {x4,x6},

Dg.3 = A3
⋂

B3 = /0.

Hence, Score(g(P1,P2) = 4
7 .

2. For g(1) = 1, g(2) = 2 and g(3) = 3, similarly,
we have Score(g(P1,P2) = 2

7 .

3. For g(1) = 1, g(2) = 3 and g(3) = 2, we have
Score(g(P1,P2) = 2

7 .

4. For g(1) = 2, g(2) = 3 and g(3) = 1, we have
Score(g(P1,P2) = 2

7 .

5. For g(1) = 3, g(2) = 2 and g(3) = 1, we have
Score(g(P1,P2) = 1

7 .

6. For g(1) = 3, g(2) = 1 and g(3) = 2, we have
Score(g(P1,P2) = 3

7 .

Based on the above conclusions, we have

Cong2(P1,P2) = Max[Score(g(P1,P2))]

= Max{4
7
,
2
7
,
2
7
,
2
7
,
1
7
,
3
7
}

=
4
7
.

According to P1 and P2, we have

E1(x1,x3) = E2(x1,x3) = 1
E1(x4,x6) = E2(x4,x6) = 1

i.e., 〈x1,x3〉 and 〈x4,x6〉 are DBF of P1 and P2, hence,
U∗ = {x1,x3,x4,x6} and |U∗|= 4. Because there are
no 2-multiple absolute independent elements, i.e.,
U∗ = /0. Finally, we have

Cong3(P1,P2) = Cong3(E1,E2) =
4+0

7
=

4
7
.

In addition, if we add partition P3 = {C1(=
{x1,x3}),C2(= {x2,x4,x5}),C3(= {x6,x7})} in this
example, according to Eq. (2), we can obtain

E1(x1,x3) = E2(x1,x3) = E3(x1,x3) = 1.

It is easy to obtain U∗3 = {x1,x3},U∗3 = /0, hence,

Cong3(P1,P2,P3) = Cong3(E1,E2,E3)

=
2+0

7
=

2
7
.

4. Indexes for Selecting Partitions

Formally, Congi(i = 1,2,3) of two partitions only
provides us similarity of two partitions. It is diffi-
cult to tell us which one of two partitions is best. To
select a better partition from all partitions of U , we
need the following indexes.

4.1. Stability Entropy of Partition

For a fixed partition P of U , stability entropy of P,
denoted by SEP, is calculated as follows:

SEP = 1− S2
P

(xP−1)2 +(n− xP−1)2 , (3)

in which, n = |U |, m is the number of classes of P,

xP =
n
m

, (4)

S2
P =

m

∑
i=1

(xP−ai)2, (5)

ai is the number of the elements of the i−th class of
P, i.e., ai = |Ai|.
Theorem 8. For any partition P of U, 0 6 SEP 6 1.
Proof. For any partition P of U ,

SEP = 1− S2
P

(xP−1)2 +(n− xP−1)2

= 1− S2
P

( n
m −1)2 +(n− n

m −1)2

= 1− m2S2
P

(n−m)2 +(m(n−1)−n)2

= 1−

m
∑

i=1
(n−mai)2

(n−m)2 +(m(n−1)−n)2 .

Published by Atlantis Press 
    Copyright: the authors 
                  157



Xuezheng Zhang, Zheng Pei, Yong Liu

Due to ai > 1, (n−mai)2 6 (n−m)2 and

m

∑
i=1

(n−mai)2 6 m(n−m)2.

On the other hand,

(n−m)2 +(m(n−1)−n)2−m(n−m)2

= (m−2)((m−1)n2−m2),

Due to 1 6 m 6 n, (m−2)((m−1)n2−m2) > 0, i.e.,
(n−m)2 +(m(n−1)−n)2 > m(n−m)2,

0 6

m
∑

i=1
(n−mai)2

(n−m)2 +(m(n−1)−n)2 6 1,

hence, for any partition P of U , 0 6 SEP 6 1.

Definition 7. A partition P is called an extreme
partition of the element a ∈ U , denoted by P>a , if
{a} is a class of P, and U −{a} is a class of P, i.e.,
P>a = {{a},U−{a}}.

Theorem 9. Stability entropy SEP satisfies the fol-
lowing properties:

1. SEP∗ = 1;

2. SEP∗ = 1;

3. For any a ∈U, SEP>a = 0.

Proof. Assume that P∗, P∗ and P>a are partitions of
U , respectively,

1. Due to P∗ = {U}, m = 1. According to Eq.
(4), we have

xP∗ = |U |,a1 = |U |,

according to Eq. (5), we have

S2
P∗ =

1

∑
i=1

(xP−ai)2

= (xP−a1)2

= (|U |− |U |)2 = 0.

According to the Eq.(3), we have

SEP∗ = 1− S2
P∗

(xP∗−1)2 +(n− xP∗−1)2

= 1− S2
P∗

(n−1)2 +(n−n−1)2

= 1−0 = 1.

2. Due to P∗ = {{a1},{a2}, · · · ,{an}}, m = |U |
= n. We know that for any i ∈ {1,2, · · · ,n},

xP∗ = 1,ai = 1,

according to Eq. (5), we have

S2
P∗ =

n

∑
i=1

(xP∗−ai)2

=
n

∑
i=1

(1−1)2 = 0.

According to the Eq.(3), we have

SEP∗ = 1− S2
P∗

(xP∗−1)2 +(n− xP∗−1)2

= 1− S2
P∗

(1−1)2 +(n−1−1)2

= 1−0 = 0.

3. For any a ∈U , due to P>a = {{a},U −{a}},
m = 2. We know

xP>a =
n
2
,a1 = 1,a2 = n−1,

according to Eq. (5), we have

S2
P>a

=
2

∑
i=1

(xP>a −ai)2

= (
n
2
−1)2 +(

n
2
−n+1)2

=
(n−2)2

2
.

According to the Eq.(3), we have

SEP>a = 1−
S2

P>a
(xP>a −1)2 +(n− xP>a −1)2

= 1−
(n−2)2

2
(n

2 −1)2 +(n− n
2 −1)2

= 1−1 = 0.
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Intuitively, SEP expresses stability of the number
of classes of partition P, in which, we select xP (the
average number of classes) as a level value, and if
m
∑

i=1
(xP−ai)2 → 0, then SEP → 1.

Example 3. Continue Example 2. For P1 and P2,
m = 3 and m = 2, respectively. According to SEP,
we have

xP1 =
7
3
, xP2 =

7
2

= 3.5,

SP1
2 = (xP1 −3)2 +(xP1 −3)2 +(xP1 −1)2 =

8
3
,

SP2
2 = (xP2 −3)2 +(xP2 −4)2 = 0.5,

SEP1 = 1− SP1
2

(xP1 −1)2 +(7− xP1 −1)2

= 1−
8
3

49
3

=
41
49

.= 0.84,

SEP2 = 1− SP2
2

(xP2 −1)2 +(7− xP2 −1)2

= 1−
1
2

25
2

=
24
25

= 0.96.

Hence, SEP1 < SEP2 . Intuitively, we consider that
stability of the partition P1 is less than stability of
the partition P2.

4.2. Accuracy rate of Partition

From the information granulations point of view
23,24, every information granulation is understood by
knowledge, the more information granulations, the
more knowledge. It is well known that classes of
partition P are special information granulations of
U , based on information granulations, in this paper,
we define the following index to evaluate a partition
of U , it is also called accuracy rate (ARP) of the par-
tition P.

ARP =
m
|U | , (6)

in which, m is the number of classes of P. According
to Eq. (6), for special partitions of U , we have

ARP∗ =
1
|U | ,

ARP∗ = 1,

ARP> =
2
|U | .

In the above equations, if |U | −→ ∞, then accuracy
rate ARP −→ 0. Due to m 6 |U |, hence, for any par-
tition P,

0 6 ARP 6 1.

Corollary 10. ARP = 1 if and only if P = P∗.
In Example 3, we have

ARp1 =
3
7
,ARp2 =

2
7
.

This means that knowledge of P1 is more than P2.

4.3. Validity entropy of Partition

From the practical point of view, it is difficult to
evaluate a partition P of U . In many cases, selecting
a partition P of U is associated with many aspects,
from the attributes selection point of view, selecting
a partition P of U is equal to selecting attributes. In
this paper, SEP and ARP are only partial evaluations
of P, respectively. By integrating SEP and ARP, we
propose validity entropy (V EP) of P as follow:

V EP = w×SEP +(1−w)×ARP, (7)

in which, w ∈ [0,1]. w and 1−w are understood as
weights of SEP and ARP, respectively.

Corollary 11. For any w ∈ [0,1], V EP∗ = 1.
As a special case, if w = 0.5, then V EP is the

average of SEP and ARP, e.g., in Example 3, let
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w = 0.5, then

V EP1 =
SEP1 +APP1

2

=
41
49 + 3

7
2

=
31
49

.= 0.63,

V EP2 =
SEP2 +APP2

2

=
24
25 + 2

7
2

=
109
175

.= 0.62.

Example 4. Let U = {x1,x2, · · · ,x100}, partitions
P1 = {A1,A2,A3,A4,A5} and P2 = {B1,B2,B3}, in
which,

A1 = {x1,x2, · · · ,x20},
A2 = {x21,x22, · · · ,x70},
A3 = {x71,x72, · · · ,x80},
A4 = {x81,x82, · · · ,x95},
A5 = {x96,x97,x98,x99,x100},
B1 = {x1,x2, · · · ,x30},
B2 = {x31,x32, · · · ,x60},
B3 = {x61,x62, · · · ,x100}.

According to Eqs. (3), (4), (5) and (6), it is not
difficult to obtain that

xP1 =
100
5

= 20, xP2 =
100
3

,

SP1
2 = (xP1 −20)2 +(xP1 −50)2 +(xP1 −10)2 +

(xP1 −15)2 +(xP1 −5)2

= 1250,

SP2
2 = (xP2 −30)2 +(xP2 −30)2 +(xP2 −40)2

=
200
3

,

SEP1 = 1− SP1
2

(xP1 −1)2 +(100− xP1 −1)2

= 1− 1250
192 +792

.= 0.81,

SEP2 = 1− SP2
2

(xP2 −1)2 +(100− xP2 −1)2

= 1−
200
3

(97
3 )2 +(197

3 )2

.= 0.99,

ARp1 = 0.05,ARp2 = 0.03.

Let w = 0.3, according to Eq. (7), we have

V Ep1 = 0.3×SEP1 +0.7×ARP1
.= 0.3×0.81+0.7×0.05 = 0.278,

V Ep2 = 0.3×SEP2 +0.7×ARP2
.= 0.3×0.99+0.7×0.03 = 0.318.

Due to V Ep1 < V Ep2 , intuitively, the partition P2 is
better than the partition P1, and we can select the
partition P2 to solve the corresponding problem.

5. Illustrative example

In this section, we explain our method in evaluat-
ing environment pollution. Department of the En-
vironment often selects many facts to evaluate envi-
ronment pollution of some areas, e.g., air and wa-
ter, or soil and crops. Let five areas be U = {u1,
u2,u3,u4,u5}. Their environment pollution informa-
tion (obtained from Department of the Environment)
are shown in Table 1 and Table 2, respectively.

Table 1. Evaluating data based on air and water.

u1 u2 u3 u4 u5
air 5 2 5 1 2

water 5 3 5 5 4

Table 2. Evaluating data based on soil and crops.
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u1 u2 u3 u4 u5
soil 3 4 2 3 5

crops 2 5 3 1 1

Based on Table 1 and Table 2, firstly, we use the
following fuzzy clustering method 4 to classify U :

1. Establishing fuzzy similar matrix on U , i.e.,
R̃|U |×|U | = (ri j) and

ri j =
{

1, i = j;
1− c∑m

k=1(|xik|− |x jk|), i 6= j.

In which, i, j ∈ {1,2,3,4,5}, m is the number
of evaluating factors, e.g., in Table 1, x31 = 5
is the evaluating value of air of area u3, c is a
parameter decided by experts.

2. Obtaining fuzzy transitive closure R̃∗ of
R̃|U |×|U |, i.e., R̃∗ satisfies that (1) R̃∗ ◦ R̃∗ = R̃∗;
(2) R̃∗ = (R̃|U |×|U |)p = R̃|U |×|U | ◦ · · · ◦ R̃|U |×|U |,
◦ is multiplication of fuzzy matrix.

3. Selecting λ−level value to obtain classifying
matrix, i.e., R̃∗λ is an equivalent relation.

According to the above mentioned steps, for Ta-
ble 1 and Table 2, we select c = 0.2, and obtain the
following two fuzzy similar matrixes on U :

R̃1 =




1 0 1 0.2 0.2
0 1 0 0.4 0.8
1 0 1 0.2 0.2

0.2 0.4 0.2 1 0.6
0.2 0.8 0.2 0.6 1




,

R̃2 =




1 0.2 0.6 0.8 0.4
0.2 1 0.2 0 0
0.6 0.2 1 0.4 0.2
0.8 0 0.4 1 0.6
0.4 0 0.2 0.6 1




.

It is easy to check that the following matrixes are
fuzzy transitive closures of R̃1 and R̃2, respectively.

R̃1
∗
=




1 0.2 1 0.2 0.2
0.2 1 0.2 0.6 0.8
1 0.2 1 0.2 0.2

0.2 0.6 0.2 1 0.6
0.2 0.8 0.2 0.6 1




R̃2
∗
=




1 0.2 0.6 0.8 0.6
0.2 1 0.2 0.2 0.2
0.6 0.2 1 0.6 0.6
0.8 0.2 0.6 1 0.6
0.6 0.2 0.6 0.6 1




For R̃1
∗
, we select α = 0.8 and 0.6, the corre-

sponding classifying matrixes are:

R̃1
∗
0.8 =




1 0 1 0 0
0 1 0 0 1
1 0 1 0 0
0 0 0 1 0
0 1 0 0 1




R̃1
∗
0.6 =




1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 1 0 1 1
0 1 0 1 1




The corresponding classes of U are as follows,
respectively,

UR1
0.8 = {{u1,u3},{u2,u5},{u4}},

UR1
0.6 = {{u1,u3},{u2,u4,u5}}.

According to Eqs. (3), (6) and (7), let w = 0.3. We
obtain

V E
UR1

0.8
= 0.772,V E

UR1
0.6

= 0.693.

Due to V E
UR1

0.8
>V E

UR1
0.6

, we select V E
UR1

0.8
as the eval-

uation result of air and water. Similarly, we can ob-
tain V E

UR2
0.8

= 0.861 as the evaluation result of soil
and crops.

Compared V E
UR1

0.8
= 0.772 with V E

UR2
0.8

= 0.861,
we select soil and crops to evaluate environment pol-
lution of U = {u1, u2,u3,u4,u5}.
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6. Conclusion

In the real world practice, we always face to select a
better partition to help us make decisions. In this pa-
per, we analyze the relation of elements in two par-
titions of the same set U , define basic factors DBF
and nBF , independent factors DIF and nIF , abso-
lute independent elements AIE and nAIE, present
existence conditions of them. Then, we provide a
new degree of congruence or similarity of two par-
titions Cong3 based on DBF and AIE. To select a
better partition from all partitions of U , we provide
indexes SEP, ARP and V EP, an illustrative example
is given to show their application.
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