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Abstract 

Describing protein structures in terms of their energy features can be a key to understand how proteins work and 
interact to each other in cellular reactions. This can be also a base to compare proteins and search protein similari-
ties. In the paper, we present protein comparison by the alignment of protein energy signatures. In the alignment, 
components of energy signatures are represented as fuzzy numbers. This modification improves the decision 
making while establishing the alignment path and guarantees the approximate character of the method, at the same 
time. The effectiveness of the developed alignment algorithm is tested by incorporating it in the new FS-EAST 
method (Fuzzy Signatures – Energy Alignment Search Tool), which allows to seek structurally similar regions of 
proteins. 

Keywords: bioinformatics, protein structure, similarity searching, force fields, molecular mechanics, fuzzy 
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1. Introduction 

Estimating similarity between two or more protein 
structures requires comparative techniques such as 
alignment that allow for the character of the information 
that has to be processed. The similarity searching is a 
fault-tolerant process, which allows seeking molecules 
with identical or similar structures to the given query 
molecule. Furthermore, the similarity searching may 
concern the whole structure of a protein or just selected 
protein regions and it must consider evolutionary 
changes and possible mutations that could appear in 
protein structures through many years.1-4  
 

Alignment is a valuable tool for the comparison of two 
or more sequences of data. The alignment is a way of 
arranging sequences to identify mutual similarities of 
their particular elements. The purpose of the process is 
to find and show similarity relationships between 
elements of two compared sequences. Gaps and 
mismatches can occur between elements in the final 
alignment with the intention that identical or similar 
elements can be assigned as corresponding.5,6 Since 
proteins are built up with hundreds amino acids and 
thousands of atoms, for the efficiency reasons they are 
usually represented in much reduced form in the 
alignment process. Two most popular forms of the 
representation include: amino acid sequences, if the 
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comparison occurs at the primary structure level 
(sequence alignment), and sequences of alpha carbon 
positions, if the comparison occurs at the tertiary 
structure level (structural alignment).7,8  
 
In our research on protein activities in cellular reactions 
Refs. 9-12, we usually seek regions that are biologically 
important modules, like active sites of enzymes1,7, or we 
evaluate a quality of predicted protein structures. For 
this purpose, we have developed the EAST method of 
similarity searching.13,14 The EAST stands for Energy 
Alignment Search Tool. This means the EAST repre-
sents protein structures as sequences of different energy 
features, called energy profiles, and consequently, it 
uses the alignment process during the similarity search-
ing. Before the alignment we fuzzify the input sequen-
ces of energy features. The fuzzification influences the 
decision making during the calculation of values for the 
similarity matrix in the alignment phase.  
 
In the paper we present an improved alignment of 
energy profiles (Section 5), which we incorporated into 
the new FS-EAST method (Fuzzy Signatures – Energy 
Alignment Search Tool). The FS-EAST is the successor 
of the EAST method. To ensure the approximate cha-
racter of the similarity searching we treat energy profi-
les as sequences of fuzzy energy signatures. In conse-
quence, we have eliminated some weaknesses of pre-
vious versions of the EAST method. Performance tests 
and discussion on the FS-EAST algorithm with the new 
alignment method are presented in Section 6. Before the 
detailed description of the alignment method, we give a 
short overview of popular methods used in the area of 
protein similarity searching in Section 2. In Section 3, 
we present a brief idea of protein construction followed 
by the explanation, how we represent protein structures 
as sequences of fuzzy energy signatures (Section 4). 

2. Related Works 

Although, protein structure similarity searching has 
been explored for the last two decades, efficient and 
accurate methods of protein alignment are still a 
challenging topic. Similarity searching methods 
developed so far use various representations of protein 
molecules, depending on the purpose the method will be 
used for. Nevertheless, existing algorithms for protein 
similarity searching are usually grounded in principles 
of approximate retrieval and heuristics. For molecules, 

such as proteins, two trends can be distinguished: (1) 
similarity searching based on the alignment of protein 
amino acid sequences, (2) similarity searching based on 
the alignment of three-dimensional molecular structures.  
 
In the first group, there are two leading competitive 
methods – FASTA15 and BLAST16. Both methods apply 
the paradigm of cutting sequences into shorter 
fragments called words. Having the list of words, they 
find entire proteins or their regions with the best word 
hits and use dynamic programming to establish the 
optimal alignment of input sequences. Similarity 
searching by protein sequence is usually one of the first 
steps in many studies on biological molecules, e.g., gene 
or protein identification.  
 
In the second group, protein structures, originally 
represented by atomic coordinates and interatomic 
covalent bonds, are first transformed to the simpler form 
in order to reduce the search space. There are three main 
reasons of this:  
1. protein structures are very complex; they are usually 

composed of thousands of atoms; 
2. the similarity searching is usually carried through the 

comparison of a given structure to all structures in a 
database; 

3. the number of protein structures in databases, like 
Protein Data Bank (PDB)17 rises exponentially every 
year and is now 61 695 (November 24, 2009). 

The reduced representation of proteins depends on the 
method. E.g. well-known VAST18 algorithm identifies 
secondary structure elements (SSE) in compared 
proteins and maps them into set of representative 
vectors. Afterwards, it tries to match pairs of vectors 
using the bipartite graph. The SSE representation of 
protein structures is also used in the comparison method 
applied in the LOCK2.19  

The idea of popular DALI20 method bases on the 
calculation of a distance matrix for each compared 
protein. Single matrix includes intramolecular distances 
between coordinates of the Cα atoms representing each 
residue of the protein in the comparison process. The 
DALI method seeks similar regions in distance matrices 
of two compared proteins. The DALI belongs to the 
group of methods known as clustering-based methods.  

The CE21 algorithm use the combinatorial extension 
of alignment path formed by aligned fragment pairs 
(AFPs) of both compared proteins. AFPs are fragments 
of both structures indicating the clear structural 
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similarity and are described by local geometrical 
features. The distance between corresponding residues 
in two AFPs is calculated considering the positions of 
their Cα atoms. The idea of AFPs is also used in the 
FATCAT.22,23  

The CTSS24 method is grounded in the theory of 
differential geometry on 3D space curve matching. It 
first calculates splines to approximate positions of the 
Cα atoms in compared proteins and afterwards, for each 
residue it calculates shape signatures that incorporate 
curvature, torsion and secondary structure type. The 
pairwise comparison is performed with the use of 
distance matrices that store the distance between shape 
signatures. Different shape features are also used in the 
PFSC method.25 

Presented methods are frequently used in the protein 
function identification, homology modeling or protein 
structure prediction with the use of the threading. 
 
There is also a group of algorithms that use Molecular 
Interaction Potentials (MIPs) or Molecular Interaction 
Fields (MIFs), like these presented in Refs. 28-30. They 
use atomic coordinates of biological molecules to calcu-
late component, nonbonded interaction energies. MIP/ 
MIFs are results of interaction energies between the 
considered compounds and relevant probes. MIPs are 
often calculated with the popular GRID31 program and 
are used for the comparison of series of compounds 
displaying related biological behavior. However, this 
group of very precise algorithms is not appropriate for 
our purposes. MIPs-based methods are frequently used 
to study ligand-receptor interactions, which is crucial 
for the pharmacology and development of new drugs. 
Moreover, since MIPs-based methods usually represent 
molecular structures in the form of 2D grids, they are 
too computationally complex and time-consuming for 
big molecules.  
 
From the viewpoint of the computational procedure, the 
newly developed EAST uses similar techniques to 
methods mentioned in the first and the second group. 
However, oppositely to rough methods, like VAST, CE, 
DALI or other that focus on the fold similarity, the 
EAST concentrates on stronger regional similarity of 
protein substructures and grasps small structural defor-
mations. In the view of the structure representation, our 
method is similar to techniques that use MIPs/MIFs. 
However, the EAST is less computationally complex. 

3. Protein Construction 

Analyzing their general construction, proteins are 
macromolecules with the molecular mass above 10 kDa 
(1 Da = 1.66×10–24g) built with amino acids (>100 
amino acids, aa). Amino acids are linked in linear 
chains by peptide bonds.1 In the construction of proteins 
we can distinguish four description (or representation) 
levels: primary structure, secondary structure, tertiary 
structure and quaternary structure. The last three levels 
define the protein conformation or protein spatial 
structure, which is determined by location of atoms in 
the 3D space.2 The biochemical analysis is usually 
carried on one of the description levels.  

Primary structure is defined by amino acid sequence 
in protein linear chain.3 Example of sequence of 
myoglobin molecule is presented in Fig. 1. Each letter 
in a sequence corresponds to one amino acid in the 
protein chain. There are 20 standard amino acids found 
in most living organisms.4 

Secondary structure describes spatial arrangement of 
amino acids located closely in the sequence. This 
description level distinguishes in the spatial structure 
some characteristic, regularly folded substructures.1,2 
The examples of the secondary structures are α-helices 
(visible in Fig. 2a) and β-sheets.  

Tertiary structure (Fig. 2) refers to spatial 
relationships and mutual arrangement of amino acids 
located closely and distantly in the protein sequence.4 
Tertiary structure describes the configuration of a 
protein structure caused by additional, internal forces, 
like: hydrogen bonds, disulfide bridges, attractions 
between positive and negative charges, and hydrophobic 
and hydrophilic forces. This description level characte-
rizes the biologically active spatial conformation of 
proteins.3  

Quaternary structure refers to proteins made up of 
more than one amino amid chain (Fig. 3). This level 
describes the arrangement of subunits and the type of 
their contact, which can be covalent or not covalent.4 

 
>1MBN:A|PDBID|CHAIN|SEQUENCE 
VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFK
HLKTEAEMKASEDLKKHGVTVLTALGAILKKKGHHEAELKPLAQSHA
TKHKIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKD
IAAKYKELGYQG 

Fig. 1. Protein sequence of the myoglobin (PDB ID: 1MBN) 
in the FASTA format. 
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a) b)  

Fig. 2. Spatial structure of the myoglobin (PDB ID: 1MBN): 
a) secondary structure representation, b) atomic representation 
of the tertiary structure in the RasMol viewer.32 

 

Fig. 3. Quaternary structure of the human hemoglobin (PDB 
ID: 4HHB, all four chains) in the atomic representation, 
colored by chain. 

4. Energy Profiles for Protein Structures 

Let’s consider a simple protein P built up with m amino 
acids (residues). The primary structure of the protein P 
will have the following form: P=(p1, p2, …, pm). The 
tertiary structure (spatial structure) will be symbolized 
by a set of N atoms AN. The structure AN can be also 
represented as a sequence: ( )mn

m
nnN AAAA ,...,, 21
21= , 

where  each in
iA  is a subgroup of atoms corresponding 

to the i th residue pi of the protein P, ni is a number of 
atoms in the i th residue pi depending on the type of the 
residue, and: 

 U
m

i

n
i

N iAA
1=

= , and ∑
=

=
m

i
inN

1

. (1) 

Locations of atoms in the structure AN are described in 
the 3D space by the (x, y, z) Cartesian coordinates. 
 
The method that we have developed benefits from the 
dependency between the protein structure and the con-
formational, potential energy of the structure.33,34 In our 

research, we calculate energy profiles EΞ, which 
describe energy properties for all substructures in

iA in 
the amino acid chain of the protein structure AN. Energy 
profiles are calculated according the rules of molecular 
mechanics33,34 and on the basis of Cartesian coordinates 
of small groups of atoms that constitute each peptide pi. 
Therefore, energy profiles represent energy features 
distributed in protein structures.  
 
The energy profile for a single protein structure AN can 
be presented in form of matrix: 

 [ ]meeee
rrrr

...321=ΕΞ , (2) 

where each ie
r

 is an energy signature, which is a vector 
of energy features for the i th peptide pi (Fig. 4) and 
respective subgroup of atoms in

iA of the protein P: 

 ( )Tcc
i

vdw
i

tor
i

ben
i

st
ii eeeeee ,,,,=r

 (3) 

Vector components correspond to appropriate energy 
types for the i th peptide pi: st

ie represents bond stretching 
energy feature, ben

ie  represents angle bending energy 
feature, tor

ie  represents torsional angle energy feature, 
vdw
ie  represents van der Waals energy feature, cc

ie  repre-
sents electrostatic (charge-charge) energy feature.  
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Fig. 4. Part of sample protein spatial structure (eight 
amino acids) with representative energy signatures for 
consecutive residues. 
 
These components are calculated with the use of 
molecular mechanics methods: 
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• bond stretching (est) 

 ( ) ( )∑
=

−=
bonds

i
ii

inst dd
k

Ae
1

20

2
, (4) 

where: ki is a bond stretching force constant, di is a dis-
tance between two atoms, di

0 is an optimal bond length; 
• angle bending (eben)  

 ( ) ( )∑
=

−=
angles

i
ii

inben k
Ae

1

20

2
θθ , (5) 

where: ki is a bending force constant, θi is an actual va-
lue of the valence angle, θi

0 is an optimal valence angle; 
• torsional angle (etor) 

 

 ( ) ( )∑
=

−+=
torsions

i

mntor m
V

Ae
1

)cos(1
2

γω , (6) 

where: Vm denotes the height of the torsional barrier, m 
is a periodicity, ω is the torsion angle, γ is a phase 
factor; 
• van der Waals (evdw)  
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where: r ij denotes the distance between atoms i and j, σij  
is a collision diameter, εij is a well depth; 
• electrostatic (charge-charge, ecc), described by the 

Coulomb’s law 

 ( ) ∑∑
= +=

=
N

i

N

ij ij

jincc

r

qq
Ae

1 1 04πε
, (8) 

where: qi, qj are atomic charges, r ij denotes the distance 
between atoms i and j, ε0 is a dielectric constant.34 
 
The number of components in the energy signature 

ie
r

depends on the force field parameter set used in the 
computation of the energy profile EΞ. In our compu-
tations, we used the Amber9435 force field, which 
generates five mentioned types of potential energy. 
Therefore, a single energy profile is a 5×m matrix, 
where m is a length of the protein (in amino acids). 
Rows of the matrix are called energy patterns (or 
energy characteristics) and columns are called energy 
signatures. In Fig. 5 we can observe five energy charac-
teristics for three molecules of HIV-1 transcriptase. 

However, in further considerations we will look at 
energy profiles as sequences of energy signatures. 
 
In our approach, we compute energy profiles on the 
basis of protein atomic coordinates (x, y, z) of protein 
structures retrieved from the macromolecular structure 
database Protein Data Bank (PDB17). During the 
calculations we used TINKER36 application of molecu-
lar mechanics and Amber94 force field, which is a set of 
physical-chemical parameters.  
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Fig. 5. Different energy characteristics: a) bond stretching, b) 
angle bending, c) torsional angle, d) van der Waals, e) 
electrostatic, for three molecules of the HIV-1 DNA 
transcriptase (PDB ID: 1RT1, HIV-1 Reverse Transcriptase 
Complexed with MKC-442, PDB ID: 1RT2, HIV-1 Reverse 
Transcriptase Complexed with TNK-651, and PDB ID: 1RT3, 
AZT Drug Resistant HIV-1 Reverse Transcriptase Complexed 
with 1051U91). 
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We had computed complete energy profiles for more 
than 34 000 protein structures from the PDB (November 
10, 2009) and we store them in a special database. To 
this purpose, we have designed and developed the 
Energy Distribution Data Bank (EDB),37 which is 
available to the public with no costs under the following 
address http://edb.aei.polsl.pl. 

5. Optimal Alignment of Fuzzy Energy Profiles 

The FS-EAST (Fuzzy Signatures – Energy Alignment 
Search Tool) that we have developed aligns energy 
profiles in order to find strong similarities between 
proteins or between parts of these proteins. In the 
similarity searching, a user specifies the energy profile 
as a sequence of energy signatures representing an input 
protein molecule. This profile will be compared and 
aligned to profiles stored in the EDB database. This is a 
pairwise comparison. The FS-EAST incorporates the 
alignment method, which treats components of energy 
signatures as fuzzy numbers. Therefore, the alignment 
process is carried on the sequences of fuzzy numbers in 
5-dimensional energy space. The alignment method is 
described in next sections. 

5.1.  Preliminaries 

Let ( )nAAAA eee ,2,1, ,...,,
rrr=ΕΞ  and ( )mBBBB eee ,2,1, ,...,,

rrr=ΕΞ  

are two energy profiles of molecules A and B. The 
length of the ΞΕA  is n and the length of the ΞΕB is m. 

We transform each energy profile to the fuzzyfied 
energy profile: 

 [ ]meeee
rrrr

...321=ΕΞ → ( )mϕϕϕ rrr

,...,, 21=ΦΞ  (9) 

The transformation proceeds as follows. Each compo-
nent t

ie  of any energy signature ie
r

 is represented as a 
triangular fuzzy number ( )ααϕ +−= t

i
t
i

t
i

t
i eee ,, , where 

t
ie  becomes a modal value of its fuzzy representation, t 

is one of five types of potential energy and α is a spread 
(Fig. 6).  

 

ei
t-α ei

t ei
t+α 

1 

e 

µ(e) 

 

Fig. 6. Representation of a single component in the energy 
signature as a fuzzy number. 

Values of spreads are specific for the type of the energy 
t. They are the same for all energy components t

iϕ  of 

the same type of potential energy t in all energy 
signatures in any energy profile. Values of the spread 
for different energy types are discussed in Section 5.3. 
 
The i th fuzzyfied energy signature 

iϕr will have the 

following form: 

 ( )Tcc
i

vdw
i

tor
i

ben
i

st
ii ϕϕϕϕϕϕ ,,,,=r

 (10) 

Therefore, the fuzzyfied energy profile of the protein P 
will be a sequence of fyzzyfied energy signatures: 

 ( )mϕϕϕ rrr

,...,, 21=ΦΞ  (11) 

5.2. Alignment method 

Let ( )nAAAA ,2,1, ,...,, ϕϕϕ rrr=ΦΞ  and ( )mBBBB ,2,1, ,...,, ϕϕϕ rrr=ΦΞ  

are two fuzzyfied energy profiles for molecules A and B. 
We are looking for the best adjustment of these two 
energy profiles, which indicates the best structural 
similarity of proteins. The adjustment allows some 
mismatches and gaps to occur, if this leads to the best 
solution. To accomplish this task we can use dynamic 
programming methods. We considered different 
methods, like: Dynamic Time Warping,38-40 Needleman-
Wunsch,41 and Smith-Waterman.42 Finally, we have 
chosen Smith-Waterman algorithm, since it concentrates 
on local alignments and reduces the influence of 
evolutionary noise and produces more meaningful 
comparisons. 
 
We have modified the Smith-Waterman method to align 
sequences of energy signatures, which are vectors of 
fuzzy numbers. The modified method generates the 
similarity matrix S according to the following rules: 

 for ni ≤≤0  and mj ≤≤0 : 

 000 == ji SS ,   (12.1) 
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where: kω , lω  are gap penalties for horizontal and 

vertical gaps of length k and l, respectively, and 
),( ,, jBiA ϕϕδ rr

 is a progression function (or delta 

function): 
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ijij
jBiA when
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µ
µµ

ϕϕδ rr . (13) 

The progression can be positive or negative. This 
depends on the similarity of energy signatures 

iA,ϕr  and 

jB,ϕr  from compared energy profiles. If two energy 

signatures 
iA,ϕr  and 

jB,ϕr match to each other, the 

progression is positive and equal to the ijµ+1 . 

Actually, the ijµ  parameter is the weighted mean 

compatibility degree of two fuzzy energy signatures 

iA,ϕr  and
jB,ϕr . The ijµ  parameter quantifies similarity 

between these two energy signatures and it is calculated 
according to the following expression: 
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ij λ
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µ , (14) 

where t
ijµ is the compatibility degree of tth components 

of compared energy signatures, t is one of the energy 

type from the set T={st, ben, tor, vdw, cc}, tλ  is the 
participation weight specific for the energy type. 
 
The calculation of the compatibility degree for tth 
components of energy signatures 

iA,ϕr  and 
jB,ϕr is 

presented in Fig. 7a. For mismatching components of 
energy signatures (Fig. 7b) the progression is always 
negative and has the constant value (−1/3). 
 
One of the key problems during the calculation of the 
similarity matrix S is to make an appropriate decision, 
how to derive values for the current matrix cell based on 
cells calculated previously. Certainly, this is done 
according to the eq. (12.2), which shows that for the cell 
Si,j we can derive the value from (Fig. 8): 
(a) the cell Si-1,j-1 in case of matching energy signatures 

iA,ϕr  and 
jB,ϕr , which gives positive progression – 

eq. (13), and also mismatching energy signatures 

iA,ϕr  and 
jB,ϕr , which gives negative progression, 

(b) left side cells Si-k,j providing k gaps (k≥1) 
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Fig. 7. Calculation of the compatibility degree for matching 
component values of energy signatures of molecules A and B 
(a). Mismatching energy components (b). 
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Fig. 8. Derivation directions during the calculation of cell 
values in the similarity matrix S. Axes x and y of the matrix 
consists of sequences of energy signatures for two compared 
proteins A and B. 

(c) upper cells Si,j-l  providing l gaps (l≥1) 
(d) we can also set 0, if values derived from above 

rules decreases below zero 
 
In each of the cases (a-d), we have to decide what is 
more profitable, i.e. what gives the higher score. Is it 
more advantageous to give mismatch penalty (negative 
progression) or insert a gap (with the gap penalty)? How 
to measure the accordance of two compared energy 
signatures 

iA,ϕr  and 
jB,ϕr and decide whether they match 

or mismatch to each other? Should we use hard or soft 
computing approach to determine the similarity between 
energy signatures?  These were the questions that we 
have considered in our research. Finally, we have 
decided to fuzzify energy signatures, since we observed 
small component energy discrepancies in families of 
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similar protein structures. Therefore, the similarity of 
component energies in energy signatures is not resolved 
in the context of crisp values 0 or 1. This would exclude 
many molecules from the group of similar proteins. 
Instead of this, we allow a bit of tolerance and 
imprecision for components of energy signatures and 
we measure their compatibility with the use of eq. (14). 
If the compatibility degree is profitable, the diagonal 
derivation direction is promoted in the decision process 
instead of inserting a gap or penalizing for a mismatch.  
 
Filled similarity matrix S consists of many possible 
paths how two energy profiles can be aligned. In the set 
of possible paths the modified Smith-Waterman method 
finds and joins these paths that give the best alignment 
and the highest number of aligned energy signatures.  
Backtracking from the highest scoring matrix cell and 
going along until a cell with score zero is encountered 
gives the highest scoring alignment path. The 
backtracking is possible, since for each cell we 
remember how the value of the cell was derived – from 
left, up or diagonal.  

In Fig. 9 we present two sample cases how the 
alignment path can look like and how we interpret the 
similarity of proteins based on it.  

In Fig. 9a the best alignment is represented by the 
longest path on the main diagonal. This means two 
proteins are similar on the corresponding positions, e.g., 
signature 

iA,ϕr  is similar to 
jB,ϕr , where i=j. For two 

proteins A and B, it means part F1 of the molecule A is 
similar to part F1 of molecule B.  

We can also observe shorter paths besides the main 
diagonal. They represent local similarities of some 
regions of one molecule to appropriate regions of the 
second molecule. However, any reconstruction of the 
alignment path that would lead through these shorter 
paths will not give better alignment than the main 
diagonal. 

In Fig. 9b we can observe many local similarities re-
presented by short paths. Therefore, the best alignment 
is determined by joining appropriate paths in order to 
obtain the highest scoring alignment path – according to 
the eq. (12). This is more complex situation. However, 
it expresses the nature of biological molecules, such as 
proteins, which differentiated during the evolution 
process. Spaces between joined paths, which in Fig. 9b 
are marked with dashed lines, reflect gaps in the final 
alignment. We can notice the similarity of regions F1, 

F2, F3, and F4 of molecules A and B, but the location of 
these regions in the construction of both molecules is 
different. E.g., modules F1, F2 in the molecule A are 
connected and in the molecule B are disjoined. 
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Fig. 9. Similarity matrix with the best alignment path traced 
through it: a) alignment of consecutive residues, b) alignment 
with gaps. 

 For real proteins there can be many local similari-
ties as it is shown in Fig. 10.  

Presented matrix shows similarities between seque-
nces of energy profiles for two molecular structures 
representing different conformations of the Human 
Kinase CDK2. Dark color indicates high similarity – 
high compatibility degree between signatures – and 
bright color indicates weak similarity. The matrix of 
compatibility degrees CD in Fig. 10 is not exactly the 
similarity matrix S used in the modified Smith-
Waterman method. Each cell of the matrix CD holds 
values of the compatibility degree between a pair of 
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energy signatures, while the matrix S contains cumulat-
ed values of the similarity for each cell. 

 
 1 ... 1B38 238 ... 

..
.2

3
8

 .
.. 

1
W

9
8 

  
   

..
. 1

 

 

Fig. 10. Matrix of compatibility degrees between sequences of 
energy profiles for two molecules PDB ID: 1B38 (Crystal 
Structure of Human CDK2 with ATP) and PDB ID: 1W98 
(Structural Basis of CDK2 Activation by Cyclin E). 

The cumulated value includes all match awards 
(positive progressions), mismatch and gap penalties for 
the path that stops in particular cell of the matrix S. For 
the best alignment path this cumulated value determines 
the S-W Score similarity measure:  

 +=− ∑
=

+
matches

k
jBiAkScoreWS

0
,, ),( ϕϕδ rr

 

 ∑∑
==

− ++
gaps

k
k

mismatches

k
jBiAk

00
,, ),( ωϕϕδ rr

, (15) 

where: ),( ,, jBiAk ϕϕδ rr+  is a similarity award (positive 

progression) for matching energy signatures 
iA,ϕr  and 

jB,ϕr , ),( ,, jBiAk ϕϕδ rr−  is a mismatch penalty (negative 

progression) for mismatching energy signatures 
iA,ϕr  

and 
jB,ϕr , and kω is a gap penalty. 

 
The modified Smith-Waterman method allows horizon-
tal and vertical gaps to appear in the final alignment. 
These gaps are related to evolutionary changes in pro-
tein molecules. However, there are penalties for enter-
ing a gap and extending it. In our solution, we use affine 
gap penalty: 

 )( EOk kωωω +−= , (16) 

where: ωO is a gap open penalty, ωE is a gap extension 
penalty, k is a number of gaps. 

Parameters for the modified Smith-Waterman 
method that we use in our FS-EAST algorithm are pro-
vided in the next section. 
 

5.3. Parameters of proposed alignment method 

Fault-tolerance and approximate character of the modi-
fied Smith-Waterman method is regulated by spreads α, 
which affect the calculated values of compatibility 
degrees t

ijµ , and final average compatibility degree
ijµ . 

Spreads decide how distant two energy values can be to 
treat them as similar. The higher value of the spread, the 
more tolerant the method is. Certainly, increasing the 
value of the spread causes a danger of accidental 
alignments. In the paper Ref. 43 we presented results of 
the research carried for families of protein molecules. 
The research constitutes the statistical foundation for 
parameters of the previous versions of the EAST. On 
the basis of the research, we derived the current values 
of spreads and participation weights for different energy 
types. These values are presented in table 1. 

For the gap penalty, we applied parameters from the 
original implementation of the Smith-Waterman me-
thod42: gap open penalty ωO=1, gap extension penalty 
ωE=1/3. We made a group of tests that confirmed they 
work fine in our modified version. Therefore, the gap 
penalty is )3/1( kk +−=ω , where k is a gap length. 

Table 1.  Values of spreads and participation weights for 
different energy types. 

Range 
Energy type 

From To 

Default 

α 

Weight 

λt 

Bond stretching 0.30 0.80 0.50 0.5 

Angle bending 0.40 2.00 0.80 0.5 

Torsional angle 0.40 0.95 0.70 1.0 

Van der Waals 1.55 3.55 2.55 0.2 

Electrostatic 1.20 4.20 3.05 1.0 

5.4. Graphical User Interface for FS-EAST 
algorithm 

Using, calibrating and tuning parameters for the FS-
EAST require friendly access to its particular steps. For 
this reason, we have developed an advanced GUI in 
order to preview selected phases of the similarity 
searching process with the use of energy profiles.   
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The EAST execution panel is presented in Fig. 11. 
In the upper part of the panel users specify the query 
protein (by PDB ID identifier), for which the EAST 
algorithm searches similar molecules. The structure of 
the query protein can be also provided in the form of the 
PDB molecular structure file or using already prepared 
energy profile in the EDML44 format. 
 

 

Fig. 11. EAST similarity searching execution panel. 

Results of the similarity searching are presented in the 
EAST statistics window (Fig. 12). Here, we can observe, 
which proteins are similar to the given query protein 
(PDB ID) and what is the level of the similarity. 
 

 

Fig. 12. Results of the similarity searching using the EAST. 

Alignment of protein structures (query vs. resultant) 
represented by energy profiles can be visualized at the 
level of chosen component energy characteristics and 
also at the level of protein amino acid sequences (Fig. 
13). Although, we concentrate on strong protein simila-
rities in our research, it is worth noting that amino acid 
sequences of compared proteins do not have to be the 
same. In Fig. 13 we can see the alignment of electro-

static energy characteristics for query protein 1TB7 and 
sample resultant molecule 2QYL. 
 

 

Fig. 13. Alignment of protein structures visible at the level of 
chosen component energy characteristics and the level of 
protein amino acid sequences. 

Compatibility degree matrices, similarity matrices and 
path matrices can be visualized with the use of the 
EAST: matrix analyzer window presented in Fig. 14. In 
the presented example, we show the matrix of 
compatibility degrees for molecules 1TB7 and 2QYL. 
Dark regions indicate higher similarity of energy 
signatures according to assumed thresholds.  

The EAST: matrix analyzer is very useful in the 
observation of similarities of particular regions of 
proteins, verification of similarity matrix during the 
alignment phase and verification of value derivation 
directions for the backtracking. It can also support 
studies on similarity changes as an effect of changes of 
the EAST parameters. 
 

 

Fig. 14. EAST: matrix analyzer window showing sample 
compatibility degree matrix for specified thresholds. 
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6. Effectiveness Analysis 

Results of many searching processes that we have 
performed with the use of presented alignment method 
show the new implementation of the EAST is more 
perceptive than previous versions. This can be observed 
in Fig. 15, which shows partial results of an example 
similarity searching process with the use of the new FS-
EAST and its direct predecessor EAST.43 Searching was 
executed for molecule 1TB7, which represents catalytic 
domain of Human Phosphodiesterase 4D in complex 
with the AMP. For the new FS-EAST (Fig. 15a) we can 
observe wider alignment frames (Length), higher values 
of matching positions (Matches) and higher percentage 
of matching positions (Match%), e.g. for molecules 
1TBB, 2PW3, 1Q9M, 1OYN (PDB ID).  
 

a) 

Best results for job: 2009-11-23 12:02:09 
S-W type: Fuzzy SW; Energy type: Fuzzy signatures 
Mismatch: -0.3334; gap open: 1; gap ext.: 0.3334 
 
PDB ID Chain Length Matches Match% S-W Score 
------ ----- ------ ------- ------ --------- 
1TBB A 319 317 99 471.32 
2PW3 A 320 317 99 458.27 
1Q9M A 318 318 100 449.70 
1OYN A 319 317 99 449.41 
1PTW A 320 318 99 447.18 
2QYL A 319 314 98 429.31 
1ROR A 319 313 98 428.29 
1RO9 A 319 313 98 426.34 
1RO6 A 319 313 98 426.23 
1XMU A 318 308 96 415.34 
1TB5 A 318 301 94 402.47 
1ZKL A 314 289 92 358.70 
1T9S A 311 296 95 347.07 
1TAZ A 312 285 91 343.52  

 

b) 

Best results for job: 2009-11-23 17:56:18 
Cut-off: 1.0; Energy type: Energy signatures 
Mismatch: -0.3334; gap open: 1; gap ext.: 0.3334 
 
PDB ID Chain Length Matches Match% S-W Score 
------ ----- ------ ------- ------ --------- 
1TBB A 314 292 92 269.54 
2PW3 A 317 266 83 229.56 
1Q9M A 314 262 83 221.61 
1OYN A 314 262 83 221.37 
1PTW A 314 262 83 218.42 
2QYL A 313 224 71 170.53 
1ROR A 313 214 68 161.13 
1RO9 A 312 212 67 155.37 
1XMU A 307 212 69 153.38 
1TB5 A 313 210 67 149.59 
1RO6 A 316 202 63 145.81 
1TAZ A 262 115 43 31.70 
1ZKL A 236 101 42 28.54 
1T9S A 112 55 49 24.87  

Fig. 15. Results of the searching process with the use of the 
new FS-EAST algorithm (a) and its predecessor EAST (b) 
executed for the molecule 1TB7 (Human Phosphodiesterase 
4D with the AMP). 

Moreover, the modified value of positive progression 
(similarity award) in the FS-EAST results in higher 
values of the similarity measure S-W Score and higher 
stability of the FS-EAST. 
 
We compared results of the EAST similarity searching 
to results of the VAST algorithm available at the 
National Center for Biotechnology Information (NCBI) 
web site. The verification confirmed successfulness of 
our method. In some specific cases the VAST can verify 
results of the EAST, i.e. results are not contradictory. 
However, the VAST focuses on the fold similarity, 
while EAST concentrates on stronger similarity. 
Therefore, the EAST is more sensitive for conforma-
tional changes caused e.g., by the activation of a protein 
in cellular reaction, while the VAST is perfect for the 
homology searching and modeling.  

In Fig. 16 we can observe structural alignment of the 
query molecule 1TB7 and resultant molecule 2QYL 
(crystal structure of PDE4B2B in complex with 
inhibitor NPV) performed by the VAST and visualized 
by the Cn3D45 confirming results of the FS-EAST. We 
can observe the reduced representation of both struc-
tures in the form of backbones (red color for 1TB7 and 
yellow for 2QYL). Mismatching positions were marked 
using blue lines. 

 

Fig. 16. Structural alignment of the query molecule 1TB7 and 
resultant molecule 2QYL. 

We also tested performance of presented alignment 
algorithm built-in in our FS-EAST method. Tests were 
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prepared for the Energy Distribution Data Bank storing 
34 372 protein energy profiles. For our tests we chose 
query molecules with different lengths and representing 
different structural classes in the SCOP:46 
• 1QUZ (solution structure of the potassium channel 

Scorpion toxin HSTX1) – 32 aa,  
• 1QPM (NMR structure of the Mu Bacteriophage re-

pressor DNA-binding domain) – 80 aa, class: all α,  
• 1QZ8 (crystal structure of SARS coronavirus 

NSP9) – 110 aa, class: all β,  
• 1R3U (crystal structure of Hypoxanthine-Guanine 

Phosphoribosyltransferase from Thermoanaerobac-
ter tengcongensis) – 178 aa, class: α&β,  

• 1QPS (crystal structure of a post-reactive cognate 
DNA-Eco RI complex at 2.50 A in the presence of 
Mn2+ ion) – 256 aa, class: α&β,  

• 3ERK (complex structure of the MAP kinase 
ERK2/SB220025) – 349 aa, class: α+β,  

• 1R9O (crystal structure of P4502C9 with 
Flurbiprofen bound) – 454 aa, class: all α,  

• 1QQA (Purine repressor mutant-Hypoxanthine-Pa-
lindromic operator complex) – 674 aa, class: all α,  

• 1QQW (crystal structure of human Erythrocyte 
Catalase) – 996 aa, class: α&β.  

 
The FS-EAST search executed without any additional 
acceleration takes about 6-20 min depending on the size 
of the user’s query molecule. All tests were performed 
using the PC CPU Intel 3.2 GHz, 2GB RAM. We 
compared these results to VAST and DALI for the same 
set of query structures. The VAST search can take up to 
several hours, when carried out against database 
containing all structures from the PDB, e.g. for the 
1QQW molecule it took 90 min. Using DaliLite47 we 
obtained results after 4-30 min. However, in order to 
speed up its execution, DaliLite uses feature filters, like 
BLAST16 or GTG,48 and narrowed database of protein 
structures PDB90. The FS-EAST also incorporates the 
BLAST as a preselection filter. The BLAST prese-
lection speeds up the entire process of similarity 
searching. In our method, the BLAST eliminates 
molecules, which amino acid sequences completely 
differ from the user’s molecule. The acceleration is 
noticeable – the FS-EAST with the preselection phase 
runs about 1-3 minutes, which is about 10 times faster 
than DALI. 

Comparison of the average execution times for three 
similarity searching algorithms: DALI with the GTG 
preselection, VAST and FS-EAST without preselection 
is presented in Fig. 17. 
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Fig. 17. Comparison of the execution times for three 
similarity searching algorithms: DALI with preselec-
tion, VAST and FS-EAST without any preselection. 

7. Concluding Remarks 

In the paper, we studied a fuzzy representation of 
energy signatures in the alignment of protein energy 
profiles. Representing energy components of energy 
signatures as fuzzy numbers brings several advantages. 
It improves the decision making process in determi-
nation of the alignment path. Performed tests showed 
the alignment method is more perceptive, which is 
reflected in wider alignment frames. We have 
introduced a new progression function (known as 
similarity award in previous implementations). This 
increased a stability of the alignment path and 
eliminated a tendency to jump between diagonals in the 
similarity matrix S built by the energy adapted Smith-
Waterman algorithm. It was one of the weaknesses of 
previous versions of the EAST. Moreover, the new FS-
EAST method with the presented alignment method 
continues good traditions in measuring the quality of the 
alignment and self-compensating small dissimilarities of 
some components of energy signature vectors by higher 
similarities of other components. Finally, performance 
tests show the FS-EAST is as fast as its direct 
predecessor and faster than rough methods used in the 
fold similarity search, like VAST and DALI. 
 
Future efforts will cover the improvement of the FS-
EAST performance by implementation of intelligent 
heuristics, distribution of work and specific indexing of 
data. Furthermore, we think about increasing the granu-
larity of the FS-EAST method to the level of particular 
atoms. This would raise the overall precision of the 
EAST family and extend its functionality e.g. towards 
drug design or clinical decision support systems.49 
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