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Abstract

The decision-theoretic rough set model is adopted to derive a profit-based three-way approach to in-
vestment decision-making. A three-way decision is made based on a pair of thresholds on conditional
probabilities. A positive rule makes a decision of investment, a negative rule makes a decision of non-
investment, and a boundary rule makes a decision of deferment. Both cost functions and revenue functions
are used to calculate the required two thresholds by maximizing conditional profit with the Bayesian de-
cision procedure. A case study of oil investment demonstrates the proposed method.
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1. Introduction

As a methodology to deal with uncertain decision
problems, rough set theory (RST) uses a pair of
sets, the lower approximation and upper approxi-
mation, to describe a set representing instances of
a concept.”> The lower approximation consists of
those objects that certainly belong to the concept,
and upper approximation consists of those objects
that only possibly belong to the concept.'® The two

approximations divide the universe into three pair-
wise disjoint regions: the positive region, boundary
region and negative region. The positive region is
given by the lower approximation, the boundary re-
gion by the difference of upper and lower approxi-
mations, and the negative region by the complement
of the upper approximation.?’°

Corresponding to the three regions, Yao intro-
duces and studies the notion of three-way decisions,
consisting of the positive, boundary and negative
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rules.”’ The positive rules generated by the posi-
tive region make decisions of acceptance, the neg-
ative rules generated by the negative region make
decisions of rejection, and the boundary rules gen-
erated by the boundary region make deferred or
non-committed decisions.”’ By considering toler-
ance of errors of the three-way decisions, Yao et
al. introduce Bayesian decision procedure into RST
and propose a decision-theoretic rough set (DTRS)
model.?>31:32 The acceptable level of errors or ac-
curacy (a pair of thresholds) can be automatically
computed from risk/cost functions.?>3!:32 The opti-
mal decision of acceptance, rejection or deferment
with the minimum conditional risk can be directly
calculated in DTRS.

A main difficulty in applying DTRS is the es-
timation of loss functions. To overcome this diffi-
culty, Herbert and Yao introduce a game-theoretic
approach to DTRS for learning optimal parameter
values.*® Measures of classification ability are in-
terpreted as players in a game, each with a goal of
optimizing its value; actions performed in this game
consist of increasing or decreasing the size of the
classification regions. Zhou and Li use the con-
cepts of optimistic decision, pessimistic decision,
and equable decision to describe the cost of misclas-
sification, the thresholds of probabilistic inclusion
are calculated based on the minimization of risk cost
under respective decision bias.”’

In this paper, we focus on the semantic studies
on investment problems. A model of investment
is presented based on three-way decisions: invest-
ment, non-investment or further investigation. By
considering the cost and the revenue simultaneously,
a profit-based analysis of three-way investment de-
cisions is given. We choose the optimal action with
maximum conditional profit by using Bayesian de-
cision procedure. A pair of a cost function and a rev-
enue function is used to calculate the two thresholds
automatically. Our approach is a natural extension
of DTRS. Some additional semantics for investment
decision are considered.

The rest of the paper is organized as follows.
Section 2 reviews basic concepts of DTRS. Section 3
proposes a three-way investment decision model. A
case study of oil investment is given in Section 4.

2. Overview of Decision-theoretic Rough Sets

Basic concepts, notations and results of probabilis-
tic rough sets as well as their extensions are briefly
reviewed in this section,3:9-11:1519,24,25,26,27,28,29,30,38
and Liu et.al summarize the two decades research on
decision-theoretic rough sets. °

Let U be a finite and nonempty set and R an
equivalence relation on U. The pair apr = (U,R)
is called an approximation space, The equivalence
relation R induces a partition of U, denoted by U /R.
For a subset X C U, its lower and upper approxima-
tions are defined by:

apr(X) =
apr(X) =

{xeUl|x] CXx};

(xeURNX£0}. (1)

where [x] is the equivalence class containing x.
Based on the rough set approximations of X, one can
divide the universe U into three pair-wise disjoint
regions: the positive region POS(X), the boundary
region BND(X), and the negative region NEG(X):

POS(X) = apr(X);
BND(X) = apr(X)—apr(X);
NEG(X) = U-—apr(X). )

A rule generated by an element x € POS(X) im-
plies that one can certainly accept x as a member of
X, the rule generated by an element x € NEG(X)
expresses the fact that one certainly reject x as a
member of X, and a rule generated by x € BND(X)
leads to a situation of undecidability. The struc-
ture of three disjoint regions motivates the three-way
decision-making.

Let S = (U,A,V, f) be an information table. Vx €
U,X CU, let,

1312
Pr(X|[x]) = ; 3)
||
where | - | stands for the cardinality of a set, and

Pr(X|[x]) denotes the conditional probability of the
classification. This simple method for estimating the
conditional probability based on the cardinalities of
sets is used as an illustration. In general, one may
consider other methods for estimating the probabil-
ity more accurately.?®
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The decision-theoretic rough set model is com-
posed of 2 states and 3 actions. The set of states is
given by Q = {X,X¢}, indicating that an element
is in X and not in X, respectively. For simplicity,
we use the same symbol to denote both a subset
X and the corresponding state. With respect to the
three-way decision, the set of actions is given by
o/ = {P,B,N}, where P, B, and N represent the
three actions in classifying an object x, namely,
deciding x € POS(X), deciding x € BND(X), and
deciding x € NEG(X), respectively. The loss func-
tion regarding the risk or cost of actions in different
states is given by the 3 x 2 matrix:

X (P) [ X¢ (N)
P | App Apy
B | Agp Agy
N | Awnp Ann

In the matrix, App, Agp and Ayp denote the losses in-
curred for taking actions P, B and N, respectively,
when an object belongs to X. Similarly, Apy, Agv
and Ayy denote the losses incurred for taking the
same actions when the object does not belong to X.

Suppose A,pp < ABP < ANP and A'NN < )LBN <
Apy, by using of the Bayesian decision procedure,’
the (a, B)-probabilistic lower and upper approxima-
tions are defined as follows:

apr 5 (X) = {xeU|PrX|l]) > a},
apriap)(X) = {xeU|Pr(X|k])>B} 4
where
o — (Apv — Agv)
(Apy — Agy) + (Agp — App)
B = (Asv — Ann) 5)

(Agv — Aaw) + (Anp — Agp)

In the case with 0 < B < o < 1 (see references
[28,29] for condition on the loss function in A), after
tie-breaking, the three-way decision rules are given
as follows:

If Pr(X|[x]) > o, decide x € POS(X);
If B < Pr(X|[x]) < o, decide x €« BND(X);
If Pr(X|[x]) < B, decide x € NEG(X).

Three-way Investment Decisions with DTRS

The three regions of rough set theory lead to three-
way decisions.

The three-way perspective on the theory of rough
sets makes it more applicable. The three regions
may also be interpreted as the positive verifica-
tion and negative verification of a hypothesis, as
well as undecidability, based on a given piece of
evidence.!® The notion of three-way decisions is re-
lated to many studies, such as hypothesis testing,!
medical decision-making,'®!* products inspecting
process,23 documents classification,® model selec-
tion criteria,2>® environmental management,3 data
packs selection,?” and email spam filtering.3*3>

When o = 1, B = 0, the DTRS model becomes
the standard Pawlak rough set model;'> when o =
B = 0.5, the DTRS model becomes the 0.5 proba-
bilistic model;!” when o = 1 — 8 and o € (0.5, 1],
the DTRS model reduces to the VPRS model.

3. A Three-way Decision Model of Investment

Rough set theory has been successfully used in many
domains, with different interpretations of the the-
ory. In model construction, one focuses more on the
syntax aspects. In applications, one considers algo-
rithms, especially attribute reduction algorithms and
rule generation algorithms. In this paper, we mainly
focus on the semantics studies in investment deci-
sions by using RST. In this section, a three-way deci-
sion approach is introduced for investment. The goal
is to seek for the maximum expected profit. Profit
is estimated from two aspects, revenue and cost; a
good investment should have a higher revenue and a
lower cost.

The well known Bayesian decision proce-
dure can be explained as follows.! Let Q =
{51,852, ,sm} be a finite set of m states, and let
of ={ay,az,--- ,a,} be afinite set of n possible ac-
tions. Let Pr(w;|x) be the conditional probability
of an object being in the state w; given its descrip-
tion x. Let 6(a;|w;) denote the revenue, or gain, and
¢(aj|w;) denote the cost, or loss for taking action a;
when the state is w;. For an object X, suppose action
a; is taken. Since Pr(w;|x) is the probability that the
true state is w; given X, the expected difference be-
tween revenue and cost associated with taking action
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a; is given by the following formula:
(6(ajlwi)—o

R(aj|x) = (ajlwi))Pr(wix). (6)

on

i=1

The quantity
profit.

Given a description X, a decision rule is func-
tion 7(x) specifing which action to take. The overall
profit is expressed as the sum of expected profit as-
sociated with a given rule. Since R(7(x)|x) is the
conditional profit associated with action 7(x). The
overall profit is defined by:

Z=Y R(t(

xeU

R(a;|x) is also called the conditional

X)|x)Pr(x), (7)

where the summation is over the set of all possible
descriptions of objects. If 7(x) is chosen so that
R(a;|x) is as big as possible for every x, the over-
all profit #Z is maximized. Thus, the Bayesian de-
cision procedure can be formally states as follows.
For every x, compute the conditional profit R(a;|x)
fori=1,2,--- ,n and select the action for which the
conditional profit is maximum.

To apply the Bayesian decision procedure, the
decision-theoretic rough set model starts from defin-
ing the three probabilistic regions from which the
probabilistic approximations are defined. For invest-
ment decisions, the DTRS is slightly modified.

With respect to the three regions, the set of ac-
tions, the profit regarding the revenue and cost of
classification actions with respect to different states
are given by the 3 x 2 matrix:

X (P) X< (N)
ap | 6pp— @pp | Opv — Qpy
ap | Opp— @pp | Opv — @pv
an | Onp — @np | Ony — Oan

In the matrix, Opp — @pp, Ogp — Qpp and Onp — Onp
denote the profits incurred for taking actions ap, ap
and ay when an object belongs to X ; and Opy — Qpy,
Ogy — gy and Ony — @ny denote the profits in-
curred for taking actions ap, ag and ay when the
object does not belong to X. Let App = Opp — @pp,
Apn = Opy — Qpy, App = Opp — Qpp, Agv = Opv — QB
A.Np = Oyp — Onp and ANN = Oy — PNy, WE obtain

the same results of DTRS. The separation of A into
a revenue function 8 and a cost function ¢ makes it
to be easily interpretable to an investment manager.
The expected profit associated with taking differ-
ent actions for objects in [x] can be expressed as:

Z(ap|lx]) = (8pp— @pp)Pr(X|[x]) +
(6py — @pv ) Pr(XC[[x]),
Z(ap|[x]) = (08— @pp)Pr(X|[x]) +
(8sv — @av) Pr(X|[x]),
Z(an|[x]) = (Onp— @np)Pr(X|[x]) +
(Ony — o) Pr(X€|[x]).  (8)

where the equivalence class [x] of x is viewed as de-
scription of x. The Bayesian decision procedure sug-
gests the following maximum-profit decision rules:

(P) 1 R(aplix)) > #(as|]) and
H(ap|lx]) = Z(an|[x]),

decide x € POS(X);

If #Z(ap|[x]) > Z%(ap|[x]) and
Z(ap|[x]) = Z(an|[x]),

decide x € BND(X);

If Z(an|[x]) > %(ap|[x]) and
(ay| M) = % (ag|[x]),

decide x € NEG(X).

(B)

(N)

Since Pr(X|[x]) + Pr(X€|[x]) = 1, we can simplify

the rules by using only the probabilities Pr(X|[x]),

the revenue function 0, and the cost function ¢.
Consider a special revenue function with:

(c0). Onp < Opp < Opp,

Opy < Opv < Onp. 9

That is, the revenue of classifying an object x be-
longing to X into the positive region POS(X) is no
less than the revenue of classifying x into the bound-
ary region BND(X), and both of these revenues are
no less than the revenue of classifying x into the neg-
ative region NEG(X). The reverse order of revenues
are used for classifying an object not in X.
Similarly, consider a special cost function with:

(cl).

Opp < Qgp < Onp,

Oy < Py < @py. (10)
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That is, the cost of classifying an object x belong-
ing to X into the positive region POS(X) is no more
than the loss of classifying x into the boundary re-
gion BND(X), and both of these costs are no more
than the cost of classifying x into the negative re-
gion NEG(X). The reverse order of costs are used
for classifying an object not in X.

Under conditions (c0) and (c1), we can simplify
decision rules (P)-(N) as follows. For the rule (P),
the first condition can be expressed as:

X (ap|[x]) = %(ap|[x]
(6pp — @pp) Pr(X|[x])
(6 — @pp) Pr(X|[x]) + (6pv — @pv)P

That is,

) =
+ (6pv — Qe ) Pr(X€|[x]) >
(X [x]).

(68v — Opv) +
(orv — @uv) +

(¢ev — PBV)
(6pp — Bpp) +

Pr(X|lx]) =

(6sv — Opv) + (@8p — @rp)’

Similarly, the second condition of rule (P) can be
expressed as:

Z(ap|[x]) = %(an|[x]) <=
(Opp — @pp)Pr(X|[x]) + (6pv — @pv) Pr(X°[[x]) >
)+

(Onp — onp)Pr(X|[x])) + (Onv — @) Pr(X€|[x])
That is,
(6N — Opv) + (Ppv — OAN)
PriXli) > (0w — Opv) + (@ev — @) + (Bpp — 6np) + (Pne — PpP)

The first condition of rule (B) is the converse of
the first condition of rule (P). It follows,

Hag|[x]) = Z(ap|[x]) =

(68p — @pp) Pr(X|[x]) + (Oav — @av) Pr(X‘|[x]) >
(Opp — @pp) Pr(X|[x]) + (8pv — @pv ) Pr(X€|[x]).
That is,
PrX|]) < (6v — Opv) + (Qev — PaN)

(68v — Opv) + (@pv — @8v) + (6pp — Opp) + (8P — PpP)

For the second condition of rule (B), we have:
2% (ap|[x]) = Z(an|[x]) <=

(08p — @pp)Pr(X|[x]) + (6pv — @av) Pr(X[[x]) >
(Onp — @np)Pr(X|[x]) + (6ny — @nn ) Pr(X | [x])

That is,

(6w — 6v) +
(6w — Ov) + (@Bv — PN ) +

(@sv — )
(6Bp — Onp) +

Pr(X|[) = (o — o)’

Three-way Investment Decisions with DTRS

The first condition of rule (N) is the converse of
the second condition of rule (P) and the second con-
dition of rule (N) is the converse of the second con-
dition of rule (B). It follows:

Z(an|[x]) = Z(ap|[x]) <=
(Onp — onp)Pr(X|[x])) + (Onw — @) Pr(X“|[x]) >
(Oep — @pp) Pr(X|[x]) + (6pv — @pv) Pr(X°|[x]);

Z(an|[x]) = %#(ap|[x]) <=

(Onp — onp) Pr(X|[x]) + (Ony — onw ) Pr(X€|[x]) >

(6 — @gp) Pr(X|[x]) + (6av — @av) Pr(X°|[x]).
That is,

(O — Opv) +
(opv — Onn) +

(¢pv — owv)

Pr(X|[x]) < (O — 6p)

(6w — 6pv) + + (onvp — @rp)’
and

(6nv — Opv) + (PBV — On)
(@8v — @nw) + (65 — Onp)

X .
PrixileD) < (6w — Opv) + + (onp — @pp)
For convenience, we denote the three expres-

sions in these conditions by the following three pa-
rameters:

o (6sv — Opn) + (@pv — @BV )
(6v — 6pv) + (@pv — @) + (Opp — Opp) + (@pp — Prp)
B (Onw — 6v) + (@Bv — Oaw)
" (B — Bsv) + (@rv — Onw) + (B8p — Bnp) + (e — Ppp)
y= (Onw — Bpv) + (@rv — @) an
(6 — Opv) + (©pv — @) + (6P — Onp) + (NP — QPP)

The decision rules (P)-(N) can be expressed con-
cisely as:

(P) If Pr(X|[x]) > a and Pr(X|[x]) >
decide x € POS(X);

(B) If Pr(X|[x]) < o and Pr(X|[x]) > B,
decide x € BND(X);

(N) If Pr(X|[x]) < B and Pr(X|[x]) <

decide x € NEG(X).

Each rule is defined by two out of the three parame-

ters.
By setting o > 3, we can easily found the fol-
lowing condition on the revenue and cost functions:

(6pp — Opp) +
(6v — Opv) +

(6P — ONp) +
(6nw — Opv) +

(onp — PsP)
(98v — o)

(psp — @rp)
>
(@pv — @pv)
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: : b d b b+d d
From the inequality 7 > ¢ — 2 > %0 > ¢,
(a,b,c,d > 0), we have:
(6pp — Opp) + (App — App)
(6sv — Opn) + (Apv — Agv)
o (Bpp — Opp) + (Agp — App) + (0pp — Onp) + (Anp — Asp)
(GBNfePN)JF(APN ABN) (GNN*GHV)+(ABN72'NN)
_ (6rp—6np) + (Anp — Arp)
(6nn — Opn) + (Aen — An)
(68p — 6np) + (Anp — Agp)
> (6nn — B8v) + (Aav — Anw) 12
This implies that 0 < B < y < o < 1, and the pa-

rameter Y is no longer needed. In this case, after
tie-breaking, the following simplified rules are ob-
tained:

(P1) If Pr(X|[x]) > a, decide x € POS(X);
(B1) If B < Pr(X|[x]) < c, decide x € BND(X);
(N1) If Pr(X|[x]) < B, decide x € NEG(X).

The proposed model is a natural application and ex-
tension of DTRS.

As two special cases of the model, one may con-
sider either the revenue function or the cost function.
For the revenue only model, we have:

o — (6av — Opv)
(6av — 6py) + (Opp — Op)’

; (6w — Ogv)
(6w —6pv) + (Opp — Onp)

For the cost only model, we have:

OCN _ ((PPN - q)BN)
(Pev — @av) + (@sp — Pep)’
ﬁ// _ (q)BN — QDNN) )
(@av — onw) + (Pne — Psp)

Note that in the profit 3 x 2 matrix in Section 3,
some of the values may be less than 0. It is rea-
sonable to impose that the expected value of profit
must be more than 0 in any realistic investment. By
equation (6), we can directly make the following de-

cisions without further computing:

(P2)  If Opp — @pp < 0 and Bpy — @py < O,
Z(ap|[x]) < 0,we decide x ¢ POS(X);
(B2)  If B — g < 0 and By — @y < O
2 (ap|[x]) <0, we decide x ¢ BND(X);
(N2)  If Onp — @wp < 0 and Oyy — @y < O,
Z(ay|[x]) <0, we decide x ¢ NEG(X).

They represent additional semantics in investment
decision. We can automatically obtain the thresh-
old values o and 3 by using of equation (11) and
immediately generate three-way decision rules.

4. A Case Study of Oil Investment

In this section, we illustrate the proposed model by a
case study of the investment decision-making in oil
exploration.

In a practical investment problem, whether ex-
ecutes a project or not is determined by the profit,
which is called expected monetary value (EMV) in
oil industry.!3 The EMV of an oil exploration project
is based on two possible outcomes: no oil discov-
ery and oil discovery. When no oil is discovered,
the EMV of the project is negative, and vice versa.>?
The EMV usually depends on two aspects: one is the
revenue, including oil reserves, the output at end of
project, etc.; the other is the cost, including the ex-
ploration costs, the development costs, the prior in-
vestment fee, the opportunity cost, etc. One method
to deal with this investment problem is to use deci-
sion tree to choose a project for which EMV is max-
imum, and the final decision is composed of drilling
and not drilling. Methodologies based on preference
theory, portfolio theory and option theory are also
introduced to solve investment appraisal problem in
the upstream oil industry.'?

Yusgiantoro and Hsiao point out that there are
three classifications for all oilfields: (i) a high po-
tential basin, which is poorly explored and requires
exploration and exploitation; (ii) a fair potential
basin which contains marginal oil reserves and re-
quires intensive exploration; and (iii) poor poten-
tial hydrocarbon, which may or may not contain oil
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Table 1. Avenues and costs of eight types of oilfield (Unit: mil-

lion US $)
O | Opp | Ogp | Onp | Opv | Opv | Onv | Orp | ©BP | OnP | ©Rv | OBV | PN
01 5 5 0 0 0.5 1 1 2 3 1 0.5 0
0) 10 8 0 0 1 2 2 3 5 2 1 0
03 12 5 0 0 3 6 3 5 8 4 0.5 0
04 7 2 0 0 2 4 1 1.5 3 5 1 0
o5 | 20 10 0 0 7 12 4 7 10 7 3 0
o¢ | 15 8 0 0 3 5 2 3 4 3 1 0
07 8 4 0 0 10 15 2 4 5 4 3 0
0g 18 15 0 0 1 2 1 2 3 4 3 0

reserves.>? This classification may be helpful in ob-
taining the revenue and cost functions. Macmillan
argues that the oil investment decides should divide
into three parts: drill, don’t drill, and to defer a the
decision by acquiring seismic data.'> With the in-
sights gained from these studies, we use the three-
way decision model proposed in Section 3 to solve
the problem.

We have a set of 2 states and a set of 3 actions
for oil investment. The set of states is given by
Q = {X,X} indicating that an oilfield has oil and
does not have oil, respectively. With respect to the
three-way decision, the set of actions is given by
o/ = {ap,ap,ay}, where ap, ap, and ay represent
investment, need further analysis and do not invest-
ment, respectively. There are 12 parameters in the
model. Opp, Opp, Oyp and @pp, Ppp, Pnp denote the
revenues and costs incurred for taking actions of in-
vestment, need further analysis and do not invest-
ment when an oilfield has oil; Opy, Oy, Ony and ®pN,
@y, PNy denote the revenues and costs incurred for
taking actions of investment, need further analysis
and do not investment when a field does not have
oil. We assume, Oyp < Ogp < Opp, Opy < Oy < O,
orp < @pp < Qnp and Oy < Ppy < Ppy.

Table 1 shows the revenues and costs for eight
types of oilfield. The values in the table reflect the
following semantics considerations:

- The quantify 6,p is the revenues of reserves or
output of oil; Oyp = 0 when the project is not exe-
cuted.

- The quantify O,y is the revenues when the oil-

field does not have oil. Following the idea of op-
portunity cost in economics,'® namely, a person
can just do one thing at one time, we consider the
revenues/costs of a particular project versus other
projects. The quantity Opy denotes the choice of
investment, whose revenue is zero; Ogy and Oyy
denote the revenue from another project instead
of the oil project.

- The quantify @,p is the cost when the oilfield has
oil, gpp denotes the cost of prior development fee
and exploration fee, and ¢gp and @np denotes the
opportunity cost when one hesitates or does not
invest the oil project.

- The quantify @,y is the cost when the oilfield does
not have oil; @yy = 0 when the project is not exe-
cuted.

From equation (11), we can directly compute the
thresholds a and B for each oilfield in Table 1. The
results are summarized in Table 2.

Table 2. Values of « and 3 for eight types of oilfield

o B
o1 | 0.3333 | 0.2000
02 | 0.4000 | 0.1667
03 | 0.4194 | 0.3043
o4 | 0.5217 | 0.4615
os | 0.4583 | 0.3810
o | 0.3846 | 0.2500
o7 | 0.6471 | 0.6154
og | 0.2000 | 0.1111

It can be seen that different pairs of thresholds
are obtained for different types of oilfield. Sup-
pose now that Pr(X|o;) = 0.35 for all o; € O. By
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Table 3. The decision rules when the conditional probability

changes
Pr(X|o;) POS(X) BND(X) NEG(X)
0.00 0 0 {01,02,03,04,05,06,07,08}
0.05 0 0 {01,02,03,04,05,06,07,08}
0.10 0 0 {01,02,03,04,05,06,07,08}
0.15 0 {os} {01,02,03,04,05,06,07}
0.20 {og} {02} {01,03,04,05,06,07}
0.25 {og} {o1,02} {03,04,05,06,07}
0.30 {og} {01,02,06} {03,04,05,07}
0.35 {o1,08} {02,03,06} {o4,05,07}
0.40 {01,02,06,08} {03705} {04,07}
0.45 {01,02,03,06,03} {05} {04,07}
0.50 {01,02,03,()5,06,08} {04} {07}
0.55 {01,02,03,04,05,06,08 } 0 {o7}
0.60 {01,02,03,04,05,06,08} 0 {o7}
0.65 {01702703704705706707708} 0 0
0.70 {01,02703,04,05,06,07,08} 0 0
0.75 {0],02,03,04,()5,06,07,08} 0 0
0.80 {01,02,03,04,05,06,07,08} 0 0
0.85 {01,02,03,04,05,06,07,08} 0 0
0.90 {01,02,03,04,05,06,07,08 } 0 0
0.95 {01,02703,04,05,06,07,08} 0 0
1.00 {01,02,03,04,05,06,07,08 } 0 0

three-way decision rules (P1), (B1) and (N1), we
have: POS(X) = {01,038}, BND(X) = {02,03,06},
and NEG(X) = {04,05,07}.

The three regions are determined both by the
conditional probabilities and the thresholds. In Ta-
ble 3, we list the three regions when the probability
changes for 0.00 to 1.00 with a step size of 0.05.

5. Conclusions

A three-way decision approach is introduced into
investment based on the decision-theoretic rough
set model. The three-way rules generated by the
positive, boundary and negative regions represent
the decisions of investment, deferment, and non-
investment. Based on a pair of a revenue function
and a cost function, the Bayesian decision proce-
dure is used to systematically compute the required
parameters. An example of oil investment is used to
show the difference between the three different types
of rules. Our results enhance an understanding of

the decision-theoretic rough set model and broaden
its applications in investment decision-making.
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