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Abstract 

Due to the implicit characteristics of learning disabilities (LDs), the diagnosis of students with learning disabilities 
has long been a difficult issue. Artificial intelligence techniques like artificial neural network (ANN) and support 
vector machine (SVM) have been applied to the LD diagnosis problem with satisfactory outcomes. However, 
special education teachers or professionals tend to be skeptical to these kinds of black-box predictors. In this study, 
we adopt the rough set theory (RST), which can not only perform as a classifier, but may also produce meaningful 
explanations or rules, to the LD diagnosis application. Our experiments indicate that the RST approach is 
competitive as a tool for feature selection, and it performs better in term of prediction accuracy than other rule-
based algorithms such as decision tree and ripper algorithms. We also propose to mix samples collected from 
sources with different LD diagnosis procedure and criteria. By pre-processing these mixed samples with simple and 
readily available clustering algorithms, we are able to improve the quality and support of rules generated by the 
RST. Overall, our study shows that the rough set approach, as a classification and knowledge discovery tool, may 
have great potential in playing an essential role in LD diagnosis. 
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1. Introduction 

The term “Learning Disabilities” (LDs) was first used in 
1963 [1]. However, experts in this field have not yet 
completely reach an agreement on the definition of LDs 

and its exact meaning [2]. According to definition given 
by the United States National Center for Learning 
Disabilities [3], a learning disability is: 
“a neurological disorder that affects the brain's ability 
to receive, process, store, and respond to information. 
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The term learning disability is used to describe the 
seeming unexplained difficulty a person of at least 
average intelligence has in acquiring basic academic 
skills. These skills are essential for success at school 
and work, and for coping with life in general. LD is not 
a single disorder. It is a term that refers to a group of 
disorders.” 

As a result, a person can be of average or above 
average intelligence, without having any major sensory 
problems (like blindness or hearing impairment), and 
yet struggle to keep up with people of the same age in 
learning and regular functioning. 

Due to the implicit characteristics of learning 
disabilities, the identification of students with LDs has 
long been a difficult and time-consuming process. In the 
United States, the so called “Discrepancy Model” [4], 
which states that a severe discrepancy between 
intellectual ability and academic achievement has to 
exist in one or more of these academic areas: (1) oral 
expression, (2) listening comprehension (3) written 
expression (4) basic reading skills (5) reading 
comprehension (6) mathematics calculation, is 
commonly adopted to evaluate if a student is eligible for 
special education services.  

In Taiwan, the diagnosis procedure pretty much 
follows the “Discrepancy Model” and is roughly 
separated into 4 steps: (1) application for screening of 
potential students with LDs by parents, general 
education teachers and/or junior-level evaluation 
personnel, (2) identification of potential students with 
LDs by junior-level evaluation personnel, (3) diagnosis 
of possible students with LDs by senior-level evaluation 
personnel, and (4) final confirmation by special 
education specialists (usually college or university 
professors with LD major) [5]. Note, both junior-level 
and senior-level evaluation personnel are selected 
special education teachers with days’ (junior level) or 
weeks’ (senior level) training on LD diagnosis related 
procedure. 

The sources of input parameters required in such 
prolonged process include information from parents, 
general education teachers, students’ academic 
performance and a number of standard achievement and 
IQ tests. To guarantee collection of required information 
regarding to students suspected with LDs, usually 
checklists of some kind are developed to assist parents 
and general education teachers. The Learning 
Characteristics Checklists (LCC), a Taiwan locally 

developed LD screening checklist, is commonly used in 
some counties of Taiwan [6]. LCC consists of six 
features, which include LCC full scale index (LCC-FSI), 
LCC-A, LCC-B, LCC-C, LCC-D and LCC-E. Among 
the standard tests, the Wechsler Intelligence Scale for 
Children, Third Edition (WISC III) plays the most 
important role in the third and fourth stages of the 
current LD diagnosis model. The WISC-III is composed 
of 13 sub tests [7]. The scores of the sub-tests are then 
used to derive 3 IQs, which include full scale IQ (FIQ), 
verbal IQ (VIQ), performance IQ (PIQ), and 4 indexes, 
which include verbal comprehension index (VCI), 
perceptual organization index (POI), freedom from 
distractibility index (FDI), processing speed index (PSI) 
[7]. All IQ and index scores are normalized with a mean 
of 100 and a standard deviation of 15 [8]. There are also 
a number of locally developed standard achievement 
tests (AT), which typical consists of reading, math, and 
fields that related to students’ academic achievement. 

Diagnosis of students with LDs then involves 
mainly interpreting the standard tests scores and 
comparing them to the norms that are derived from 
statistical method. As an example, in case the difference 
between VIQ and PIQ is greater than 15, representing 
significant discrepancy between a student’s cultural 
knowledge, verbal ability, etc, and his/her ability in 
recognizing familiar items, interpreting action as 
depicted by pictures, etc, is a strong indicator in 
differentiating between students with or without LD [6]. 
A number of similar indicators together with the 
students’ academic records and descriptive data (if there 
is any) are then used as the basis for the final decision 
(by senior evaluation personnel and special education 
specialists). Confirmed possible LD students are then 
evaluated for one year before admitting to special 
education. However, it deserves to note that a previous 
study in Taiwan reveals that the certainty in predicting 
whether a student is having a LD using each one of the 
currently available indicators is in fact less than 50% [9]. 

As we can see, the above procedure involves 
extensive manpower (mainly the overloaded special 
education teachers) and resources. In addition, the 
diagnosis process requires that the special education 
teachers having a strong background in both psychology 
and statistics. Unfortunately, those were not commonly 
included in their training at the college level. 
Furthermore, a lack of nationally regulated standard for 
the LD diagnosis procedure and criteria results in 
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possible variations on the outcomes of diagnosis. In 
most cases, the difference can be quite significant [5]. 
Accordingly, the quality of interpretation varied and the 
pressure is primarily on the special education specialists 
at the final stage. 

With the advance in artificial intelligence (AI) and 
its successful applications to various classification 
problems, it is interesting to investigate how these AI-
based techniques perform in identifying students with 
LDs. In our previous study, we made attempts in 
adopting two well-known artificial intelligence 
techniques, artificial neural network (ANN) and support 
vector machine (SVM), together with various feature 
selection algorithms and evolutionary computation, to 
the LD diagnosis problem [5, 10]. The results are quite 
satisfactory, and indicate that AI may be a possible 
alternative solution to the problem. However, most 
special education teachers or professionals we talked to 
tend to be skeptical to this kind of black-box predictor. 
It is thus essential that we seek possible ways to 
combine our classifier with some other algorithms that 
can produce meaningful explanations or rules for the 
prediction. The thought leads us to the exploration of 
other potential technologies. Rough set theory is 
selected as it can be used for both feature reduction and 
classification, and at the same time generates rules that 
are meaningful to teachers and professionals in special 
education community.  

The main objective of this study is thus to explore 
the feasibility of applying the rough set (RST) approach 
to the LD diagnosis problem. In the course of study, 
various pre-processing procedures, like clustering, 
feature discretization and reduction, will be applied to 
the collected data sets to evaluate their effect on the 
RST performance. 

 This rest of the paper is organized as follows. 
Section 2 briefly describes history of AI techniques on 
the special education applications, the rough set theory 
and its advantages over other classification methods. 
Section 3 and 4 presents the experiment settings, design 
and corresponding results. Finally, Section 5 gives a 
summary of the paper and lists some issues that deserve 
further investigation. 

2. Related Work 

Artificial intelligence techniques have long been applied 
to special education community. However, most 
attempts occurred in more than one or two decades ago 

and mainly focused on using the expert systems to assist 
special education in various ways [5].  

In addition to expert systems, numerous machine 
learning based classification techniques have been 
developed and widely used in various applications [11]. 
Among all the classification techniques, artificial neural 
network (ANN) has received lots of attentions due to 
their demonstrated performance and has gained widely 
acceptance beginning from the 1990s [12]. The support 
vector machine (SVM) [13] has also emerged as a 
powerful tool for classification and performs better than 
artificial neural networks and other models in certain 
scenarios. A particular advantage of SVM over ANN is 
that it can be analyzed theoretically using concepts from 
computational learning theory, and at the same time can 
achieve good performance when applied to real world 
problems. 

Our previous experiences in applying the above two 
classification approaches (ANN and SVM) to the LD 
diagnosis procedure have shown that ANN can achieve 
better performance in term of classification accuracy 
than the SVM model [5]. Unfortunately, both of the 
ANN and SVM techniques are among the so called 
black-box models and their generated results are 
difficult to interpret. 

On the other hand, rough set theory (RST), proposed 
by Zdzislaw Pawlak in 1982 [14] to analyze the 
classification of uncertain or incomplete data, has a 
number of advantages over the above two models. 
Although both fuzzy set and rough set are used to deal 
with uncertain information, the RST is suitable for 
identifying relationships that might not be found using 
statistical methods [15]. The RST is a model of 
approximate reasoning, which can be used to manage 
vague and uncertain data or problems related to 
information systems, indiscernibility relations and 
classification, attribute dependence and approximation 
accuracy, reduct and core attribute sets, and decision 
rules [16].  

The starting point of the RST is the assumption that 
some knowledge is associated with every object of 
interest. For example, if the object is a personal 
computer (PC), the PC’s attributes may correspond to 
the data related to its functionalities. With the RST, real 
world information is represented by information table 
(IT). A row in the IT may describe an event, a patient, or 
an object. A column then represents an attribute of the 
event, patient, or object. Information table can be 
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defined as: IT=(U, A), U = {x1, x2, …, xn}, representing 
a finite set of samples of size n, while A = {a1, a2, … , 
ap}, representing a finite set of attributes of size p. In 
most real world applications, these attributes may 
consist of p-1 conditional attributes and a decision 
attribute. In this case, the IT may be considered as a 
decision table (DT) [15]. 

Given a DT, it is possible that inconsistency, defined 
by objects with the same conditional attribute values yet 
have opposite consequences (decision), exists. In that 
case, approximation is used in RST to draw conclusion 
from the DT. In particular, the lower approximation of a 
set X depicts the set of objects with respect to DT that 
can be certainly classified as an equivalent class with 
the given conditional attributes. On the other hand, the 
upper approximation of a set X contains the set of 
objects that may possibly be classified as an equivalent 
class with the given conditional attributes. The 
difference of the upper and lower approximation of a set 
X is called the boundary region. Accordingly, certain 
rules may be drawn from the lower approximation of a 
set [15].  

An original DT may contain redundant information, 
which includes indiscernible objects or superfluous 
attributes. To be more specific, objects are indiscernible 
if they are characterized by the same information. In 
RST, indiscernibility relation of objects means different 
objects with the same attribute values, which is the 
mathematical basis of rough set theory. Redundant 
information may be removed from the DT as long as it 
preserves data consistency, which leads to another 
essential idea of RST – the reduct. A reduct of a DT is a 
set A (⊂DT) that has the same indiscernibility 
information as the DT and the set A can not be further 
reduced. In other words, a reduct is a minimal sufficient 
subset of a set of attributes that has the same ability to 
discern concepts as when the full set of attributes is used 
[17]. They also represent necessary condition attributes 
in decision making. Accordingly, the RST can also be 
used to reduce data size and dimensionality in data 
analysis [18]. As a matter of fact, many researches have 
adopted the RST as a tool for feature selection [19].  

To implement the rough set theory, a procedure, 
which includes generating reducts and identifying the 
decision rule, for determining the reducts is necessary. 
A number of algorithms and tools have been proposed 
and implemented to calculate the reducts associated 
with the RST [20, 21, 22]. To identify or compose the 

candidate reduct rules, a rule identification algorithm is 
developed based on [22], which includes four steps: 
Step 1: Creating basic units and put into Database. 
Step 2: Calculating the lower and upper 

approximations for basic units. 
Step 3: Finding the core and reduct of attributes.  
Step 4: Finding the core and reduct of attributive 

values. 
In applications, the RST has lead to significant 

advances in many areas including knowledge discovery, 
machine learning, and expert systems [23]. For example, 
researchers proposed an approach to illustrate 
formulation of more meaningful rules using the notion 
of ordinal prediction. It proved to be an improvement 
for rule learning both in computing performance and in 
the usefulness of the rules derived from a case study on 
melanoma data [24]. Zhao et al. made an empirical 
experiment for letter recognition to demonstrate the 
usefulness of the discussed relations and reducts [25]. 
Tseng and Huang introduced a rough set theory 
application for feature selection in customer relationship 
management (CRM) [26]. Yang et al. presented a case 
study of applying rough set theory to analyze customer 
complaints in an IC packaging foundry in Taiwan [27]. 
One research discovers classification rules through a 
knowledge induction process that selects decision rules 
with a minimal set of features for real-valued data 
classification [28]. Jian et al. extended outlier detection 
to rough set theory, which has become a popular method 
for knowledge discovery in databases (KDD), much due 
to RST’s ability to handle uncertain and/or incomplete 
data. Experimental results on real data sets also 
demonstrate the effectiveness of the RST method for 
outlier detection [29]. Yang and Wu applied rough sets 
to identify the set of significant symptoms causing 
diseases and to induce decision rules using the data 
from a Taiwan’s otolaryngology clinic. Experimental 
results discover that the pattern is considered to be 
potentially helpful in improving the medical diagnosis 
[30].  

The above examples show the versatility of the RST, 
which leads us to the thought that it should also have the 
potential in uncovering rules other than that are used in 
current LD diagnosis procedure or answering questions 
that may be currently under controversy in learning 
disabilities community. 

In case the data attribute values processed by the 
RST are continuous, discretization of such real value 
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attributes is required prior to rules induction so as to 
reduce the number of rules while at the same time 
preserve the knowledge contents or the discernibility 
[31]. Many discretization algorithms have been 
proposed in the field of data mining [32]. 

In addition to the RST, clustering has also been 
applied to reduce data uncertainty due to outdated 
sources or imprecise measurement in order to achieve 
higher quality data mining results [33]. In general, 
clustering operates by organizing unlabelled data into 
groups of similar objects. Clustering in itself finds 
various applications in fields like marketing, bio-
medical, web, and many others [34]. Among many 
proposed clustering algorithms, k-means [35] and two-
step [36] are two commonly seen techniques that are 
available in various data mining tools. 

In this paper, besides evaluating the potential of the 
RST in LD identification problem, it is also our 
objective to know whether applications of pre-
processing procedures like clustering, discretization or 
reduct calculation help in improving the rules induced 
by the RST for the diagnosis of LD students. 

3. Experimental Settings and Design 

To fulfill the objectives of this study, we have designed 
and conducted four experiments to evaluate the 
potential of the RST approach as a knowledge discovery 
and classification tool for the identification of students 
with LDs. Combinations of various discretization and 
feature reduction algorithms will be explored to see how 
they perform on our collected data. Clustering will also 
be included at some point of the experiments to see how 
this uncertainty data reduction method affects the 
performance (e.g., quality of generated rules) of the 
RST. Finally, we also incorporate special education (or 
statistics) domain knowledge to determine more 
appropriate cut-points for data discretization. The 
results will be compared to those derived using other 
discretization algorithms. 

The tools we use in this study include RSES [18], 
Rosetta [37], and YALE [38].  Five data sets contain 
test samples collected from counties located in the 
northern, central, and southern Taiwan (as shown in 
Table 1) are used as the training or validation data. 
Depending on the data sets, each sample may contain 
features from achievement test (AT), learning 
characteristics checklist (LCC), and/or WISC-III 
standard test. 

Table 1. Data sets and their features used in this study 

data 
set

sample
size 

percentage 
of students 
with LDs 

feature×size† 

A 125 19.5% WISC-III×7, LCC×6, AT×3

B 159 47.8% WISC-III×7, LCC×6, AT×3

C 656 25.0% WISC-III×7, WISC-III×13 

D 441 35.6% WISC-III×7, WISC-III×13 

E 878 54.2% WISC-III×7 

† AT represents achievement test, for dataset A it includes 
Word Recognition (WR), Reading and Math sub-tests, 
while for dataset B it includes Chinese, English and Math 
sub-tests. LCC represents learning characteristics checklist, 
which contains 6 features. Please refer to [6] regarding 
details of LCC. WISC-III×7 includes three IQ scores and 4 
indexes, while WISC-III×13 includes the 13 WISC subtests. 
Please refer to [7] for further details on WISC-III standard 
test.  

Among these five data sets, data set A, B, and C 
have been used extensively in our previous study [5, 10]. 
In particular, cases contained in data set A and C 
represent ones that follow a stricter diagnosis procedure 
as described in Section 1, with the one-year post 
evaluation executed by trained special education 
teachers [5]. On the other hand, although pretty much 
follow the same procedure, cases in data set B are 
diagnosed without involving special education 
specialists and with the one-year evaluation process 
conducted mostly by general education teachers. The 
somewhat looser procedure may have higher possibility 
in mistakenly diagnosing underachiever as having 
learning disabilities [5]. The latter two data sets, D and 
E, have just been acquired recently and included in this 
study. The source of data set D is the same as data set C, 
but with samples coming from later years. Data set E 
contains samples from central Taiwan, which is 
completely new to us. However, one thing deserves 
attention is that its percentage in diagnosing students as 
having LDs is much higher than the other data sets, 
which implies that its diagnosis criteria may be 
somewhat looser than the other counties. 

The design of the four experiments are listed and 
explained in the following four sub-sections. Note that 
rules generated by RST are expressed in a form like: If 
Conditions (C) then Decision (D). The quality of such 
rules can be expressed by certainty and coverage factors, 
defined as follows [15]. 
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Certainty=
)satisfying cases of(number 

)andsatisfying cases of(number 
C

DC
 (1) 

Coverage=
)satisfyingcases of(number 

)and satisfying  cases of(number 
D

DC
 (2) 

Additionally, the number of cases that satisfy C is 
also referred to as support. For evaluation of ANN 
classification model, a performance index, correct 
identification rate (CIR), is defined as follows.  

CIR=
)cases ofnumber  (total

)tionidentifica LD-non and LDcorrect  of(number   

3.1. Experiments 1 

The first experiment served as a preliminary study 
so that we can compare the RST performance to our 
earlier studies using ANN model. In addition, we would 
also like to see how the RST performs as a tool for 
feature reduction/selection, and how is the quality of 
rules generated by the RST. Data set A and B are 
chosen as the test samples since we have pretty much 
experience on both data sets and are very familiar with 
them. 

Table 2. Procedure of Experiment 1 

Repeat the following procedure twice with data set A and B 
being the training and testing data-set  interchangeably 

For discretization-algorithm = {global, local} 
Perform discretization-algorithm on training data-set 
and output the discretized-training-data-set and cut-off 
points of each feature 
Perform discretization-algorithm on testing data-set 
with cut-off points and output the discretized-testing-
data-set 

For reduct-algorithm = {exhaustive, genetic} 
Perform reduct-algorithm on discretized-training-data-
set and output the reducts 
With each reduct, extract samples with associated 
attributes from discretized-training-data-set and output 
the feature-reduced discretized-training-data-set  

Perform simple validation with the RST generated 
rules on the feature-reduced discretized-training-data-
set 
Output certainty / coverage factors 
Select rules with higher certainty and support, validate 
each rule on the discretized-testing-data-set 
Output each individual rule, its certainty and support 
factors 

In this experiment, the input data set is first 
discretized, followed by a reduct generation process. 

For each selected feature set (reduct), a simple 
validation test with the input data set being randomly 
divided into two halves, each serves as the training 
(contain 60% of the samples) and validation (the rest 
40% of the samples) data. In addition, rules with higher 
support and certainty in the above procedure are 
extracted and validated one by one on the other data set. 
The above procedure is repeated twice with roles of data 
set A and B interchanged. The procedure of experiment 
1 is depicted in Table 2. 

The tool we used in this experiment is RSES [18], 
which adopts Boolean reasoning approach to discretize 
data samples (referred to as local and global methods in 
RSES). For reducts and/or rules calculation, RSES use 
algorithms like exhaustive, genetic, dynamic, covering, 
and LEM2 algorithms. The later two methods are for 
rule generation only. Only the best results after trying 
all possible combinations of the above algorithms are 
output. Unless otherwise specified, RSES’s default 
settings are used throughout the experiment. 

3.2. Experiments 2 

The objectives of this experiment are (1) to find 
possible combination(s) of discretization and reduct 
algorithms, and (2) to evaluate the three WISC-III 
feature sets (WISC-III×7, WISC-III×13, and WISC-
III×20) that achieve better rule quality. The experiment 
proceeds by subsequently pre-processing the input data 
set with selected features by combinations of various 
discretization and feature reduction algorithms. A five-
fold cross validation test is then performed on the pre-
processed data set. We then measure the overall 
certainty and coverage by averaging the certainty and 
coverage of the tests. The procedure is depicted in Table 
3.  

In addition to RSES, Rosetta [37] is also used in this 
experiment so that we may be able to experiment with 
more discretization and reduct calculation algorithms. 
Note, Rosetta does include some RSES functionalities, 
but some of those may not be applicable to data samples 
larger than some predetermined size. In that cases, we 
use RSES instead. To differentiate between the two, 
algorithms derived from (or available in) RSES will be 
prefixed with “RSES” hereafter. 

Prior to the cross validation test, the experiment 
starts by subsequent application of combinations of six 
discretization algorithms (RSESlocal, RSESglobal, 
entropy scaler, EFW scaler, naïve scaler, and semi-naïve 
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scalers) and five feature reduction algorithms (Johnson, 
Holte’s, RSESexhaustive, RSESGenetic, and 
RSESdynamic reducers). For further information on the 
above mentioned data discretization and feature 
reduction algorithms, please refer to [18, 32] for more 
details. 

Table 3. Procedure of Experiment 2 

data-set = data set C 
For feature-set = {WISC-III×7, WISC-III×13, and WISC-
III×20} 

For discretization-algorithm = {RSESlocal, RSESglobal, 
entropy, EFW, naïve, or semi-naïve scaler} 

Perform discretization-algorithm on data-set containing 
feature-set and output the discretized-data-set 
For reduct-algorithm = {Johnson, Holte’s, 
RSESexhaustive, RSESdynamic, or RSESGenetic} 

Perform reduct-algorithm on discretized-data-set and 
output the reducts 
Perform five-fold cross-validation with the features 
listed in reducts on discretized-data-set for RST rules 
induction and validation 
Output certainty / coverage factors and combinations 
of (discretization-algorithm, reduct-algorithm) that 
achieve the certainty / coverage 

The samples we use in this experiment are from data 
set C. The reason for such a choice are twofold, (1) we 
have used data set C in our earlier study and thus are 
more familiar with this data set, and (2) data set C 
contains more samples than the others (e.g., data set A 
and B) so that we may have a more credible outcomes 
with this experiment. In addition, three features 
combinations (WISC-III×7, WISC-III×13, and WISC-
III×20) of data set C are tested independently. 

As a basis for comparison, we also include two well 
known rule generating algorithms, C4.5 and Ripper, in 
our study. C4.5 is an algorithm for the construction of a 
decision tree [39], while Ripper (Repeated Incremental 
Pruning to Produce Error Reduction) is a rule induction 
algorithm that was proposed by Cohen [40].  

3.3. Experiment 3 

In the third experiment, we try to use clustering to pre-
process the data sets prior to the RST rules generation 
procedure. The training samples in this experiment are 
from data set A and B. For induced rules to be 
generalized, we retain only WISC-III×7 features that are 
common to all the five data sets. The objective of this 

experiment is to see whether the rules quality can be 
improved by excluding potential outliers contained in 
the data-sets with clustering. The procedure is depicted 
in Table 4. 

Table 4. Procedure of Experiment 3 

For data-set = {data set A, data set B, data set A∪B} 
If clustering = YES 

Perform k-mean and two-step clustering algorithms on 
data-set with number of cluster=2 
Let clustered data-set = data-set ∩ {clustered cases that 
agree on both of the two clustering algorithms and experts’ 
diagnosis} 

Let (discretization-algorithm, reduct-algorithm) be the 
combinations that achieve higher certainty in Experiment 2 
Perform discretization-algorithm on data-set / clustered 
data-set and output the discretized-data-set 
Perform reduct-algorithm on discretized-data-set and output 
the reducts 
Perform RST rules induction with the reducts and output the 
generated-rules 
For rule in generated-rules 

Validate the rule on data sets C, D, and E (after being 
discretized with discretization-algorithm) and output the 
certainty and support factors 

Note that the procedure shown in Table 4 will be 
repeated three times, with data set A, B, or A∪B being 
processed, respectively. With each input data set, 
clustering step may or may not be applied to the 
samples before feeding them to the RST rule induction 
procedure. The clustering step is done by independently 
applying two clustering algorithms (K-means and two-
step) to the data sets and then keeps only those samples 
that both of the two clustering algorithms and the 
experts’ diagnosis all agree upon (by experts’ diagnosis, 
we mean diagnosis that follows the procedure that we 
described in Section 1). Note the reason that we use K-
means and two-step algorithms is because they happen 
to be available in the tool we used. Although it is not the 
focus of this study, we does conduct a simple 
experiment to evaluate how these two clustering 
algorithms, when applied individually or combined 
together, affect certainty and coverage of the RST 
induced rules. 

The idea of combining data set A and B is coming 
from findings in our previous study [5]. To be more 
specific, we have noticed that ANN models generated 
from data set A is doing very well in predicting students 
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with learning disabilities. On the other hand, ANN 
models generated from data set B seem to perform 
better (as compared to those generated from data set A) 
in predicting students without learning disabilities. The 
difference may be resulted from inconsistency in the 
diagnosis process between these two counties [5]. Thus 
it seems intuitive to pre-process the combined data sets 
so that we may filter out samples that do not match in 
predictions by both clustering algorithms and the 
experts’ diagnosis decision. It is expected that some 
falsely diagnosed cases can be excluded, and thus to 
potentially improve the overall quality of the RST 
generated rules. 

Finally, the rules that generated from such a 
procedure are validated using data set C, D, and E, with 
those rules that have higher certainty being output. Note 
that in the discretization and feature reduction 
procedures, only combinations of the two algorithms 
producing better predictions in experiment 2 are 
included. 

3.4. Experiments 4 

The objective of experiment 4 is to compare the results 
(in terms of rules quality and support) of using manual 
discretization and discretization algorithm(s) that 
performed better in experiment 3. Accordingly, the 
experiment is pretty much the same as experiment 3, 
except that the discretization procedure is done 
manually according to the fact that both WISC-III IQs 
and indexes have been normalized to a mean of 100 and 
a standard deviation of 15 [8]. All IQ and index scores 
are then discretized into six intervals with 100 being the 
center cut-point and all other cut-points set to 100 
plus/minus one or two times the standard deviation. 
Accordingly, the six intervals include [*, 70), [70, 85), 
[85, 100), [100, 115), [115, 130) and [130, *). The 
notation [x, y) represents the range of score is greater 
than or equal to value x and less than value y. In 
addition, [*, y) or [x, *) indicates that the interval is less 
than y or greater than or equal to x, respectively. In 
addition, only the data set (or combined data sets) that 
produced the best prediction rules in experiment 3 is 
used. The procedure is depicted in Table 5. 

4. Results and Implications 

In the following, we will present results of the four 
experiments depicted in Section 3, together with our 
findings and interpretations. 

Table 5. Procedure of Experiment 4 

Let data-set = data-set in {data set A, data set B, data set 
A∪B} that performs best in experiment 3 
If clustering = YES 

Perform k-mean and two-step clustering algorithms on 
data-set with number of cluster=2 
Let clustered data-set = data-set ∩ {clustered cases that 
agree on both of the two clustering algorithms and experts’ 
diagnosis} 

Let reduct-algorithm(s) = algorithm(s) that achieve the 
highest certainty in Experiment 2 
Perform manual discretization procedure (with 70, 85, 100, 
115 and 130 being the cut-points) on data-set / clustered 
data-set and output the discretized-data-set 
Perform reduct-algorithm on discretized-data-set and output 
the reducts 
Perform RST rules induction with the reducts and output the 
generated-rules 
For rule in generated-rules 

Validate the rule on data sets C, D, and E (after being 
discretized with manual discretization procedure) and 
output the certainty and support factors 

4.1. Results of Experiment 1 

By applying the two data reduction algorithms that 
RSES provides (exhaustive and genetic algorithms) to 
the discretized data set (using global or local 
discretization methods), we have calculated the 
corresponding reducts for data set A and B. For the 
purpose of comparison, a simple validation procedure 
using ANN model, as depicted in [5, 10], is also 
preformed on the data sets with selected features (reduct 
sets). The selected feature sets, simple validation test 
results using the RST and ANN model of data set A and 
B are shown in Table 6 and 7, respectively. Note, in 
each iteration of experiment 1, only four selected 
reducts with higher simple validation certainty (using 
the RST) are shown (one by global discretization and 
three by local discretization). 

Based on our previous experiences with other 
feature selection algorithms (wrapper-based GA 
algorithm) [5, 10], we are impressed by the quick 
processing time, which is in a matter of seconds, of the 
RST approach in generating these feature sets. As a 
comparison, for the same data set, depending on the 
wrapped learner, a GA-based feature selection 
procedure usually take tens of minutes or even hours for 
producing just one feature set. However, the questions 
remain would be: (1) as a classification tool, is the RST 
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better than the ANN model? (2) as a feature selection 
tool, is the quality of selected features by the RST 
comparable to the other approaches? 

Table 6. Selected feature sets and their corresponding best 
certainty/CIR with data set A. (The number within parenthesis 
represents the coverage of the prediction.) 

 
 

discret. 
alg. selected features 

Certainty 
with 
RST 

CIR 
with 
ANN

1 global 
WR, Math, LCC-B, 
LCC-D, LCC-E, VCI, 
POI, PSI 

86% 
 (1.0) 

86% 
 (1.0)

2 local 
WR, Reading, Math, 
LCC-A, LCC-D, PIQ, 
VCI, POI, PSI 

86% 
 (1.0) 

90%
 (1.0)

3 local 
WR, Reading, LCC-D, 
LCC-E, PIQ, VCI, POI, 
PSI 

82% 
(1.0) 

82% 
(1.0)

4 local 
WR, Reading, Math, 
LCC-A, LCC-D, LCC-
E, PIQ, VCI, POI 

74% 
(1.0) 

86% 
(1.0)

Table 7. Selected feature sets and their corresponding best 
certainty/CIR with data set B. (The number within parenthesis 
represents the coverage of the prediction.) 

 
 

discret. 
alg. selected features 

Certainty 
with 
RST 

CIR 
with 
ANN

1 global 
Chinese, English, LCC-
A, LCC-B, LCC-C, 
LCC-E, VIQ, FDI, PSI 

76.6% 
 (1.0) 

85.9%
 (1.0)

2 local 
Chinese, LCC-B, LCC-
C, VIQ, PIQ, FIQ, POI, 
FDI, PSI 

84.4% 
 (1.0) 

90.6%
 (1.0)

3 local 
Chinese, Math, LCC-B, 
LCC-C, VIQ, FIQ, FDI, 
PSI 

82.8% 
 (1.0) 

85.9%
 (1.0)

4 local 
Chinese, Math, LCC-B, 
LCC-C, VIQ, PIQ, FIQ, 
FDI 

81.2% 
 (1.0) 

85.9%
 (1.0)

For the first question, according to results shown in 
Table 6 and 7, the RST is a little bit behind in most 
cases as a classification tool for identifying students 
with LDs. However, as a tool for feature selection, the 
RST seems to be competitive to the wrapper-based 
genetic approach in a number of cases. In particular, the 
CIR using the second feature set with ANN model in 
Table 6 is 90%, which is the highest that we have ever 
got from data set A (in term of simple validation). As a 

comparison, 86% is the best we achieved in our earlier 
studies by ANN model [5, 10]. On the other hand,  
although the best feature set selected from data set B 
using the RST may achieve 90.6% in CIR (see Table 7) 
by ANN model, yet it may still fall a little short from 
what we achieved in [5] (which would be 93.8% in 
CIR).  

Up to this point, we already know how the two 
classifiers (the RST and ANN) perform in term of LD 
identification accuracy. Usually, for black-box predictor 
like ANN, this would be the end of discussion. However, 
a favorable characteristic of RST is that it can not only 
produce a model based on existing data so as to classify 
new cases, but it also provides us the opportunity to 
analyze the model and gain new insight into the 
problem [32]. As a further illustration, the RST 
approach may be able to generate rules like the ones 
listed in Table 8 and 9. The fact that the “classification 
model” being represented in a form (i.e., rules as shown 
in Table 8 and 9) familiar to specialists from the special 
education community does make the RST look more 
appealing than the other approaches. 

Table 8. Rules extracted from experiment 1 using data set A, 
with each rule being the one that receives the top-four most 
support within its class. (The number within parenthesis 
represents the support when applying the rule to the specific 
data set.) 

 Rules 
certainty in 
data set A 

certainty in 
data set B 

1
(LCC-B > 84.5) & (VCI < 
87) & (POI < 97)  
LD=NO 

100% 
(46) 

75.5% 
 (49) 

2 (POI < 97) & (PSI < 92) & 
(VCI < 87)  LD=NO 

100% 
 (44) 

77.9% 
 (77) 

3 (LCC-D < 83) & (VCI < 87) 
& (POI < 97)  LD=NO 

100% 
 (41) 

74.6% 
 (59) 

4 (VCI < 87) & (POI < 97)  
LD=NO 

98.3% 
 (58) 

72.7% 
(99) 

5 (Math < 30.5) & (POI > 97) 
& (PSI < 92)  LD=YES 

100% 
 (11) —† 

6 (LCC-D < 83) & (POI > 97) 
& (PSI < 92)  LD=YES 

100% 
 (10) 

100% 
 (12) 

7 (VCI < 87) & (POI > 97) & 
(PSI < 92)  LD=YES 

100% 
 (8) 

100% 
 (10) 

8
(LCC-B > 84.5) & (POI > 
97) & (PSI < 92)  
LD=YES 

100% 
 (9) 

100% 
 (8) 

† The rule can not be generalized to data set B as Math scores 
between the two data sets are not standardized. 
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Table 9. Rules extracted from experiment 1 using data set B, 
with each rule being the one that receives the most support 
within its class. (The number within parenthesis represents the 
support when applying the rule to the specific data set.) 

 Rules 
certainty in 
data set B 

certainty in 
data set A

1 (VIQ < 68) & (FDI < 71)  
LD=NO 

100% 
(41) 

87.5% 
(88) 

2 (PIQ < 80) & (POI < 72)  
LD=NO 

100% 
(36) 

84.6% 
(26) 

3 (VIQ < 68) & (POI < 72)  
LD=NO 

100% 
(34) 

100% 
(11) 

4 (POI < 72) & (FDI < 71)  
LD=NO 

100% 
(26) 

100% 
(7) 

5 
(Chinese < 15) & (LCC-C > 
85) & (VIQ > 74) & (FDI < 
90)  LD=YES 

100% 
(31) —† 

6 (FIQ > 88) & (70 < FDI < 
87)  LD=YES 

100% 
(27) 

50% 
(10) 

7 (LCC-C > 89) & (FIQ > 88) 
 LD=YES 

100% 
(21) 

33.3% 
(12) 

8 (LCC-C > 89) & (VIQ > 74) 
& (PSI < 83)  LD=YES 

100% 
(15) 

11.8% 
(17) 

† The rule can not be generalized to data set A, which does 
not contain Chinese feature. 

After reviewing rules in Table 8 and 9, one may 
notice an interesting phenomenon. It appears that 
“YES” rules induced from data set A can be generalized 
quite well to the other data set. For example, the three 
“YES” rules (rule #6~8 of Table 8) are able to correctly 
identifies students with LDs in data set B without any 
false positive. This is quite a remarkable performance if 
they can be validated with further research and 
generalized to more samples. The same goes to the 
“NO” rules generated from data set B. Among the four 
“NO” rules listed in Table 9, two of them (rule # 3 and 4) 
can also filter non-LD samples from data set A without 
any false negative. While the other two are having 
certainty around 85%. The implication behind is that the 
burden of special education teachers or evaluation 
personnel can be somewhat relieved as they have fewer 
cases to evaluate. In addition, due to the effect of 
features reduction, they do not have to take into account 
a large number of features, either. On the other hand, 
the “NO” rules (or the “YES” rules) induced from data 
set A (or data set B) do not seem to generalize equally 
well. In some cases (e.g., rule #6~8 of Table 9), the 
certainty factors of applying such rules to the other data 
set are less than 50%. 

The above outcomes once again confirm our earlier 
findings regarding inconsistency in the diagnosis 
process between the two counties that we acquired data 
set A and B [5]. In addition, according to the fact that  
“YES” rules from data set A can be generalized with 
strong certainty indicates that the county from which we 
collected data set A indeed follows a stricter diagnosis 
procedure. 

When look closer into the rules with higher certainty, 
we find some common sub-rules occurred repeatedly. 
For examples, (POI > 97) & (PSI < 92) within “YES” 
rules. The sub-rule appears to conform to earlier study 
stating relatively that students with LDs usually have 
their PSI score lower than POI score [41]. Apparently, 
the results by the RST go one step further by indicating 
the absolute values of the two indexes. It is thus our 
belief that by cross examining findings from the special 
education community and rules induced by the RST 
carefully, we may be able to uncover step by step more 
useful information behind the LD diagnosis problem. 

4.2. Results of Experiment 2 

The results of experiment 2 are shown in Table 10. Note 
that only results with certainty factor above 90% are 
listed. A number of observations can be derived 
according to the data presented. 

First of all, the WISC-III×7 feature set, containing 
three IQs and four indexes, appears to be the best 
features combination. The WISC-III×20 feature set 
comes in second. On the other hand, the thirteen sub-
test scores of WISC-III (WISC-III×13) do not seem to 
have much effect in the RST rule induction procedure. 

Second, discretization using RSESlocal, 
RSESglobal, and naïve scalers seem to have the best 
positive effect to the improvement of certainty. When 
considering the feature reduction algorithms, 
RSESexhaustive, RSESgenetic, RSESdynamic, and 
Johnson algorithms seem to perform equally well. 

Finally, the RST approach seems to perform better 
than C4.5 and Ripper in term of certainty if not taking 
into account the coverage rate. It even performs better 
than results from our earlier study by combining 
evolutionary computation with ANN model (which 
would be 86.7% in CIR [10]). Note, we need to point 
out that from the point-of-view of special education 
community, practitioners may be equally or even more 
concerned with higher precision in positive 
identification of students with LDs (or filtering out 
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students without LD), even though with lower coverage 
rate. In addition, according to the results, both of C4.5 
and Ripper algorithms may seem to be benefited from 
the pre-processing steps with applications of appropriate 
discretization and feature reduction algorithms. 

Table 10. Five-fold cross validation results of experiment 2 on 
data set C using rough set, C4.5, and Ripper algorithms. Only 
combination(s) of discretization and reduct algorithms that 
achieve better rule quality (by RST) in terms of certainty and 
coverage (listed in parentheses) are shown. 

Feture 
set 

discret. 
alg. 

Reduct 
alg. 

RST 
 (%) 

C45(%) 
(w/wo†) 

Rip (%)
(w/wo†)

WISC-
III×7 

RSES 
Local 

RSES 
exhaustive/ 

genetic 

100 
(.19) 

80/81 
(1) 

80/82 
(1) 

WISC- 
III×7 

RSES 
Global 

RSES 
exhaustive/ 

genetic 

100 
(.16) 

80/81 
(1) 

80/82 
(1) 

WISC- 
III×20 Naïve Johnson 93 

(.09) 
81/81 

(1) 
82/82 

(1) 

WISC- 
III×7 Naïve RSES 

dynnmic 
92 

(.33) 
80/81 

(1) 
80/82 

(1) 

WISC- 
III×7 Naïve 

RSES 
exhaustive/ 

genetic 

92 
(.33) 

80/83 
(1) 

80/83 
(1) 

WISC- 
III×7 Naïve Johnson 90 

(.07) 
80/80 

(1) 
80/79 

(1) 
† In cases of C4.5 and Ripper, certainty with (w) or without 

(wo) discretization and reduction pre-processing are shown. 

4.3. Results of Experiment 3 

With the knowledge derived form experiment 2, we 
retain only RSESlocal / RSESglobal / naïve scaler and 
RSESdynamic / RSESexhaustive / RSESgenetic / 
Johnson feature reduction algorithms in experiment 3. 
For each input data set, we choose to output at most six 
rules that result in the best certainty, both in identifying 
LD and non-LD students. The results are shown in 
Table 11 (with un-clustered input samples) and 12 (with 
clustered input samples). Note that rules generated from 
data set A or B alone are not shown since they perform 
no better than ones resulted from combining data set A 
and B. Accordingly, the term “pre-processing with 
clustering” (or similar) means specifically the scenario 
in which we combine the two data sets first and 
followed by application of clustering procedure. 

Table 11. Rules generated from data set A∪B without 
clustering prior to rules induction. 

 rules certainty support 

1 (PIQ < 77) & (FIQ < 65)  
LD=NO 100% 182 

2
(PIQ < 74) & (FIQ < 76) & 
(VCI < 70) & (POI<72)  
LD=NO 

100% 130 

3
(PIQ < 74) & (FIQ < 76) & 
(VCI < 70) & (FDI<71)  
LD=NO 

100% 115 

4
(FIQ < 76) & (VCI < 70) & 
(POI < 72) & (FDI < 71)  
LD=NO 

100% 90 

5
(PIQ < 74) & (VCI < 70) & 
(POI < 72) & (FDI < 71)  
LD=NO 

100% 89 

6

(PIQ > 76) & (FIQ > 82) & (84 
< VCI < 94) & (95 < POI < 
102) & (70 < FDI < 76) & (86 
< PSI < 99)  LD=YES 

100% 5 

7
(98 ≤ PIQ < 101) & (91 ≤ FIQ 
< 92) & (71 ≤ FDI < 112) & 
(PSI < 89)  LD=YES 

80.0% 4 

8
(84 ≤ FIQ < 91) & (VCI < 87) 
& (71 ≤ FDI < 112) & (89 ≤ 
PSI < 91))  LD=YES 

62.5% 10 

9

(59 ≤ PIQ < 98) &  (72 ≤ FIQ < 
79) & (55 ≤ POI < 102) & 
(VCI < 87) & (68 ≤ FDI < 71) 

 LD=YES 

62.5% 15 

10
(72 ≤ FIQ < 79) & (VCI < 87) 
& (55 ≤ POI < 102) & (68 ≤ 
FDI < 71)  LD=YES 

62.5% 15 

By carefully reviewing these rules, we have the 
following findings. First, by mixing the training samples 
from different data sets (derived from counties that may 
have inconsistency in their diagnosis process) and pre-
processing with clustering prior to rules induction, both 
certainty and support of the generated rules can be 
improved significantly. In other words, the clustering 
procedure that was conducted in the experiment may 
have effectively removed some data inconsistency, 
which again contributes to the quality of induction rules 
(in terms of certainty and support) by the RST. In 
particular, for positive LD diagnosis prediction, rules 
that generated with clustering step (Table 12) are having 
certainty factor above or closer to 90%, much higher 
than their counterpart (Table 11), which in most cases 
are just slightly higher than 60%. In case of support, 
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rules generated with clustering are higher in number in 
most cases. In addition, rules generated with clustering 
pre-processing usually involve fewer features and are 
thus simpler and more generalized. For example, rules 
in Table 11 contain slightly more than four features in 
average, while it is about three in Table 12. 

Table 12. Rules generated from data set A∪B with clustering 
prior to rules induction. 

 rules certainty support 

1 (PIQ < 74) & (FIQ < 76) & 
(VCI < 70)  LD=NO 100% 171 

2 (PIQ < 74) & (VCI < 70) & 
(POI < 72)  LD=NO 100% 130 

3 (PIQ < 74) & (VCI < 70) & 
(FDI < 71)  LD=NO 100% 115 

4 (VIQ < 64) & (PIQ < 74) & 
(VCI < 70)  LD=NO 100% 97 

5 (VCI < 73) & (POI < 72)  
LD=NO 98.8% 173 

6 
(VIQ < 95) & (FIQ < 87) & 
(PIQ < 91) & (VCI < 73) & 
(POI < 72)  LD=NO 

98.8% 172 

7 (106 ≤ PIQ < 110) & (VCI < 
87) & (PSI < 89)  LD=YES 90.9% 11 

8 (POI > 101) & (73 < FDI < 78) 
 LD = YES 90.0% 50 

9 (FIQ < 87) & (POI > 100)  
LD = YES 89.3% 75 

10 
(106 ≤ PIQ < 110) & (VCI < 
87) & (71 ≤ FDI < 112) & (PSI 
< 89))  LD=YES 

88.9% 9 

11 
(98 ≤ PIQ < 101) & (105 ≤ 
POI < 108) & (71 ≤ FDI < 
112) & (PSI < 89)  LD=YES 

88.2% 17 

12 (105 ≤ POI < 108) & (PSI < 
89)  LD=YES 87.2% 39 

Second, for non-LD prediction, rules generated by 
both procedures can all achieve 100% (or closer to 
100%) in term of certainty. Their supported cases are 
also much higher than the LD prediction rules, which, 
as we have noted earlier, may effectively reduce the 
loading of special education teachers or evaluation 
personnel since they may have fewer cases to evaluate. 

However, there are a couple of issues with the LD 
diagnosis prediction rules. First, we notice that some 
rules have quite a narrow margin, e.g., PIQ in rules 7, 
10, and 11 or POI in rules 11 and 12 of table 12, which 
may pose a strict burden to the WISC-III test procedure 

and interpretation. Second, the support for the generated 
rules are much lower when compared to the total 
number of samples tested. For RST to be an essential 
part in the LD diagnosis related problem in the future, 
these two issues need to be addressed and resolved. 

Finally, according to our observation, rules for non-
LD prediction shown in Table 11 and 12 are quite 
similar to those generated from (the original or clustered) 
data set B only. On the other hand, rules for LD 
prediction are also similar to those derived from (the 
original or clustered) data set A alone. The observations 
also conform to what we derived in experiment 1 and 
our earlier study [5]. 

Note, in order to gain more insight into the effects of 
the clustering procedures on the RST induced rules, we 
conducted an additional simple sensitivity experiment 
by repeating part of experiment 3. We retain only data 
set A∪B, and then modify the subsequent clustering 
and validation steps. For clustering step, two more 
scenarios, which consist of applying only one of the two 
clustering algorithms (K-means or two-step) to the data 
set and keep those samples that match the clustering 
outcomes and the experts’ diagnosis, are included. 
Accordingly, we now have un-clustered data set, K-
means or two-step clustered data set, and K-means + 
two-step clustered data set. For validation step, instead 
of examining every individual rule, we select rules that 
have higher support (greater or equal to 10) and verify 
these rules on the other data sets to get the certainty and 
coverage. The corresponding results are presented in 
Table 13.  

Table 13. A simple sensitivity study to evaluate the effect of 
the clustering procedure. 

certainty 
(coverage) data 

set 
un-clustered K-means 

only 
two-step 

only 
K-means+
two-step 

C 89.4% 
(0.418) 

51.6% 
(0.996) 

49.2% 
(0.998) 

95.3% 
(0.454) 

D 87.6% 
(0.383) 

61.7% 
(0.995) 

58.7% 
(0.993) 

87.5% 
(0.454) 

E 56.4% 
(0.339) 

59.4% 
(0.993) 

58.9% 
(0.993) 

58.4% 
(0.411) 

According to the results, it is obvious that 
application of only one clustering algorithm is not 
enough to filter the potential outliers. On the other hand, 
we may see very clearly the improvement in terms of 
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both certainty and coverage by the K-means + two-step 
clustering procedure. 

4.4. Results of Experiment 4 

Similar to experiment 3, in this experiment, only the top 
five rules that result in the best certainty, both in 
identifying LD and non-LD students, are shown (refer 
to Table 14).  

Table 14. Rules generated from data set A∪B with manual 
discretization and clustering prior to rules induction. 

 Rules Support Certainty

1 (PIQ < 70) & (FIQ < 70) & 
(VCI < 70) => LD=NO 130 100% 

2 (VIQ < 70) & (POI < 70)  
LD=NO 167 100% 

3 (VIQ < 70) & (PIQ < 70) & 
(VCI < 70) => LD=NO 127 100% 

4 (PIQ < 70) & (VCI < 70) & 
(POI < 70) => LD=NO 118 100% 

5 (PIQ < 70) & (VCI < 70) & 
(FDI < 70) => LD=NO 93 100% 

6 (100 ≤ POI < 115) & (PSI < 70) 
 LD=YES 11 90.9% 

7 
(70 < VCI < 85) & (100 < POI 
< 115) & (85 < PSI < 100)  
LD = YES 

54 85.2% 

8 (70 ≤ VIQ < 85) & (100 ≤ PIQ 
< 115)  LD=YES 89 84.0% 

9 (100 ≤ PIQ < 115) & (70 ≤ VCI 
< 85)  LD=YES 69 84.0% 

10 (70 ≤ VCI < 85) & (100 ≤ POI 
< 115)  LD=YES 107 82.0% 

Overall, it appears that for LD prediction rules, the 
certainty is somewhat lower than those listed in Table 
12, yet the rules are more concise and the issue with too 
few supports has been resolved. On the other hand, for 
non-LD prediction rules, the number of support is a bit 
lower than those shown in Table 12.  

Upon reviewing the LD prediction rules more 
carefully, our colleague in special education 
acknowledges that rule #6 is not currently used in the 
LD diagnosis process and may deserve further 
investigation. On the other hand, rules #7~10 seem to fit 
into a well-known predictor, |PIQ – VIQ| ≧ 15 (note 
that VCI and POI are potential substitutes for VIQ and 
PIQ in some cases [7]), as stated earlier in Section 1. 
However, rules 6~8 are still valuable as they present not 

just the relative difference between the two IQs / 
indexes, but their absolute values, too. 

To be more specific, a student with VIQ (or VCI) 
score one or two standard deviations below the average 
(i.e., between 70 and 85) has long been a difficult case 
for diagnosis. The major reason is that underachievers, 
students with mild mental retardation or learning 
disabilities may all have their VIQ (or VCI) score falls 
into this interval. Accordingly, it is very likely that a 
student with LDs may be misdiagnosed as an 
underachiever or one with mild mental retardation (or 
vice versa). Since the instructional objectives for 
students of these three categories are quite different (i.e., 
cognitive, functional or response-to-intervention for 
students with LDs, mild mental retardation and 
underachievers), the negative impact for such a 
misdiagnosis on the students can be enormous. 
Fortunately, rules #7~12 in Table 8 indicate that in case 
the PIQ (or POI) score falls between 100 and 115, it is 
most likely (with more than 80% certainty) that the case 
under consideration would be one with LDs. 
Accordingly, the information may potentially reduce the 
risk of misdiagnosis. 

As IQ score of 70 being the decision boundary 
differentiating students with learning disabilities and 
metal retardation, non-LD prediction rules in Table 8 do 
not seem to present much surprise to special education 
practitioners. In comparison, non-LD prediction rules in 
Table 12 are more valuable since they indicate some 
more appropriate cut-points for filtering students with 
mental retardation from the LD diagnosis procedure. 
The outcome also implies that a discretization process 
incorporating too much special education (or statistical) 
knowledge might just reproduces rules that have already 
been known. 

5. Conclusion and Future Research 

The identification and diagnosis of students with 
learning disabilities, which requires a lot of man power, 
resources and expertise, have never been an easy job. 
Although ANN and SVM models have been applied to 
the LD diagnosis problem with satisfactory outcomes, 
special education teachers or professionals seem to be 
skeptical to these kinds of black-box predictors. 
Accordingly, in this study, we made an attempt to apply 
the RST approach, which can be used as a tool for 
classification, knowledge discovery, and most important 
of all, generating rules that are represented in a form 
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familiar and acceptable to practitioners in the special 
education community. 

The preliminary results show that rough set 
classifier may not have the full coverage of samples like 
the other models, e.g., C4.5, Ripper, or ANN in our 
earlier study. However, RST approach does show its 
capability in discovering currently unknown knowledge 
behind the LD diagnosis procedure, which certainly 
helps special education specialists in finding new 
decision criteria for LD diagnosis. In particular, to the 
best of our knowledge, some of the rules discovered in 
this study have never been used or appeared in any LD 
diagnosis context. In addition, conventional rules 
derived from statistical method for the diagnosis of 
students with LDs usually involve only relative 
differences between various IQ or index scores. On the 
other hand, the RST generated rules specify some 
definite intervals with much higher diagnosis certainty, 
which would certainly be more useful to the LD 
diagnosis personnel. For example, rule #6~8 of Table 8 
or rule #7~12 can all correctly identify LD students with 
no or around 10% false positives. This is quite 
encouraging to us since none of the currently available 
LD diagnosis criteria can achieve such a high degree of 
certainty [9]. Based on the observations described above, 
the primary contribution of this study is thus in 
demonstrating RST’s potential in the LD diagnosis 
application. 

The second contribution of this study would be the 
idea of incorporating clustering procedure to the mixed 
input samples prior to RST rules induction. The 
application of the clustering step on the mixed data sets 
collected from different sources is able to remove 
uncertain cases, which is especially essential in Taiwan 
as various counties may have quite different LD 
diagnosis procedure and criteria. The outcomes as a 
result of clustering are rules with better support and 
improved certainty. 

In the future, we will work closely with our special 
education colleagues to verify the rules that are 
discovered in this study. In addition, we also noticed, 
from comparing results in Table 12 and 14, the 
discretization procedure can be an essential process 
affecting quality and support of the generated rules. In 
future study, we shall be working on integrating 
(carefully) special education domain knowledge with 
the existed discretization algorithms so that we can 
determine some appropriate cut-points that may uncover 

more precious and hidden information to assist the LD 
diagnosis procedure without reproducing rules that 
might have already been known. Finally, it may worth 
trying to adjust the parameter settings of the two 
clustering algorithms used in this study or adopting 
other clustering methods [42, 43] in the future to see if 
those make any difference to the rules generated. 
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