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Abstract 

A new clonal selection immune algorithm with perturbation guiding search and non-uniform hypermutation 
(nCSIA) is proposed based on the idea of perturbed particle swarm algorithm and non-uniform mutation. The 
proposed algorithm proportional clones antibody based on the affinity, adaptively adjusts the searching steps of 
antibodies with hypermutation according to the adaptive variation rule of non-uniform mutation and chooses the 
promising antibody based on the affinity by clonal selection principle. In order to keep the balance of 
exploration/exploitation better, perturbation guiding search strategy is presented, which is actually an elitist 
learning mechanism and is borrowed from the perturbed particle swarm algorithm. In order to validate the 
effectiveness of nCSIA, comprehensive experiments and analysis are done based on fifteen unimodal or multimodal 
benchmark functions. Compared with standard and the recent algorithms, it indicates that the proposed algorithm is 
feasible, effective and has better performance in terms of convergence, accuracy and stability. More evident 
predominance emerges from further experimental comparisons with expanding search space and increasing 
dimensions. 

Keywords: Clonal selection, perturbation guiding search, particle swarm algorithm, non-uniform mutation, artificial 
immune system. 

1. Introduction 

The immune system (IS)1 is a complex of cells, 
molecules and organs that represent an identification 
mechanism capable of perceiving and combating 
dysfunction from our own cells (infectious self) and the 
action of exogenous infectious microorganisms 
(infectious nonself). The emphasis is on a systemic view 
of the immune system, with a focus on the clonal 
selection principle, the affinity maturation of the immune 
response, and the immune network theory2. Immune 
algorithm3 (IA) is a heuristic optimization algorithm 
which was inspired by biological immune system’s 

character. The majority immune system inspired 
optimization algorithms which are based on the 
applications of the clonal selection and hypermutation4. 
Clonal selection algorithm5-7 is characterized by cloning 
and mutating to produce an offspring population around 
the candidates. It expands the searching range by a 
combination of antibodies and antigens, namely, 
calculating the fitness, select the best antibody and 
memorize it. By the death of inactive cell and abandoning 
antibodies which have low affinity, the generation of 
memory cell can maintain the antibodies diversity. 
Though it has so many advantages, it still needs further 
improvements8: it is costly in terms of the number of 
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evaluations of the objective function, it is not adaptive to 
variations in the topology of the response surface, and the 
evolution is chiefly accomplished by random mutation, so 
the speed of convergence is slowed down. 

Particle swarm optimization (PSO) algorithm, which 
was introduced by Kennedy and Eberhart in 19959, is an 
intelligent optimization algorithm that mimics swarm 
behavior in birds flocking and fish schooling to guide the 
particle population to search for global optimal solution. 
As PSO is easy to implement, it is rapidly successfully 
applied in many areas, such as function optimization, 
network training, fuzzy system control and other fields10-

13. However, every coin has two sides. The rapid 
convergence speed of the standard PSO also means to be 
easily trapped into the local optima with the decreasing 
diversity of swarm during population evolution14. 

Perturbed particle swarm optimization (pPSO)15 
offers a new way to keep population diverse and to 
escape from the local optimal trap. The best location 
(solution) found by the particle population is denoted as 
gbest  whose property and behavior has an important 
effect on the PSO’s final performance. The perturbed 
gbest  updating strategy is based on the concept of 
possibility measure16 to model the lack of information 
about the true optimality of the gbest . The gbest  in 
pPSO is denoted as “possibly at gbest ” ( )pgbest which 
is characterized by a normal distribution around the 
gbest  and it also provides a simple and efficient 
exploration at the early stage and encourages local fine-
tuning at the latter stage. Its function is to reduce the 
likelihood of premature convergence and to guide the 
search towards the promising space. 

Mutation operation is a main operator in evolutionary 
algorithm (EA)17, and various mutations have been 
incorporated into EA, such as Gaussian18, Cauchy19 and 
Lévy probability distribution-based20 mutations, non-
uniform mutation21 and some mixed mutation strategy22. 
Non-uniform mutation has the merits of even “longer 
jumps” than Cauchy mutation at the early stage of the 
algorithm and much “finer-tunings” than Gaussian 
mutation operator at the later stage. The basic idea of 
mixed strategy22 is that different mutation operators have 
some types of optimization problems that cannot be 
solved efficiently and integrate several mutation 
operators into a single algorithm can overcome this 
problem. Inspired by evolutionary game theory, Dong et 
al. presented a mixed strategy evolutionary programming 
algorithm22 that employs the Gaussian, Cauchy, Lévy, 
and single-point mutation operators. Experimental results 
show that the mixed strategy performs equally well or 
better than the best of the four pure strategies does. 

In this paper, a new clonal selection immune 
algorithm with perturbation guiding search and non-
uniform hypermutation (nCSIA) is proposed to integrate 
the advantages of perturbing the global best antibody for 
the guided search and non-uniform mutation. The 
perturbation guiding search idea in AIS is borrowed from 
the perturbed particle swarm optimization algorithm15, 
which features in keeping population diverse and elitist 
learning mechanism along with the global best solution 
with a slight perturbation. The algorithmic analysis and 
experimental results show that nCSIA has excellent 
performance with good convergence, stability and 
application potentials. 

2. The Artificial Immune System and Particle 
Swarm Optimization 

2.1. Artificial Immune System and Inspired 
Optimization Algorithms 

The human immune system (HIS) is a highly evolved, 
parallel and distributed adaptive system. The information 
processing abilities of HIS provide important aspects in 
the field of computation. This emerging field is referring 
to as the Artificial Immune Systems23. The immune 
system’s ability to adapt its B-cells to new types of 
antigens is powered by processes known as clonal 
selection and affinity maturation by hypermutation24. In 
fact, besides the clonal selection, during the initial 
expansion of clones, some of the progeny cells neither 
went on dividing nor developed into plasma cells. Instead, 
they reverted to small lymphocytes bearing the same B-
cell receptor on their surface that their ancestors had. This 
lays the foundation for a more rapid and massive 
response the next time when the antigen enters the body, 
i.e. immune memory. The majority immune-inspired 
optimization algorithms are mainly concentrated on the 
clonal selection while the immune memory is only a 
concomitant which is simply modeled as an elitist 
selection. 

AIS can be defined as computational systems inspired 
by theoretical immunology and observed immune 
functions, principles and models, which are applied to 
problem solving8. The first immune optimization 
algorithm25 may be the work of Fukuda et al. that 
included an abstraction of clonal selection to solve 
computational problems26. But the AIS for optimization 
have been popularized mainly by de Castro and Von 
Zuben’s CLONALG5. CLONALG selects part fittest 
antibodies to clone proportionally to their antigenic 
affinities. The hypermutation operator performs an 
affinity maturation process inversely proportional to the 
fitness values generating the matured clone population. 
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After computing the antigenic affinity of the matured 
clone population, CLONALG creates randomly part new 
antibodies to replace the lowest fitness antibodies in 
current population and retain best antibodies to recycle.  

In recent years, AIS have received significant amount 
of interests from researchers and industrial sponsors27,28. 
Some of the first work in applying immune system 
paradigms was undertaken in the area of fault diagnosis29. 
Later work applied immune system paradigms to the field 
of computer security30,31, which seemed to act as a 
catalyst for further investigation of the immune system as 
a metaphor in many areas, such as anomaly detection23,32, 
pattern recognition33,34, sensor fusion and configuration35, 
rule extraction36, and optimization5,7,37-39. 

As far as multiobjective optimization is concerned, 
MISA40 is the first attempt to solve general 
multiobjective optimization problems using artificial 
immune systems. A vector Artificial Immune System 
(VAIS)41 is proposed for solving multiobjective 
optimization problems based on the opt-aiNet. NNIA42 is 
proposed for multiobjective optimization based on its 
unique selection technique, which only selects minority 
isolated nondominated individuals based on their 
crowding-distance values. The selected individuals are 
then cloned proportionally to their crowding-distance 
values before heuristic search. By using the 
nondominated neighbor-based selection and proportional 
cloning, the new algorithm realizes the enhanced local 
search in the less-crowded regions of the current trade-off 
front. Chen et al. proposed a hybrid mutation operator 
(GP-HM operator)43 with the combination of Gaussian 
and polynomial mutations. The GP-HM operator adopts 
an adaptive switching parameter to control the mutation 
process, which uses relative large steps in high 
probability for boundary individuals and less-crowded 
individuals. With the program run, the probability of 
performing relative large steps is reduced gradually. By 
this means, the exploratory capabilities are enhanced by 
keeping a desirable balance between global and local 
search. 

2.2.  Antigen, Antibody and Antibody Population 

In this paper, we follow the nomenclature of immunology 
and define the terms as follows. 

For the minimization problem min ( ),y f x x= ∈Ω , 

where { }1 2, , , T
nx x x x= , Ω  is the feasible region. 

The optimization problem ( ),y f x x= ∈Ω  is antigen 

and the decision variable { }1 2, , , T
nx x x x= is the 

antibody. The set of the antibody is called antibody 
population. 

By the way, as the idea of perturbation guiding search 
in this paper is borrowed from the perturbed particle 
swarm algorithm15, the terms of “antibody” from AIS and 
“particle” from PSO are indiscriminating in this paper. 
Both of them are solution variable { }1 2, , , T

nx x x x= . 

2.3. Particle Swarm Optimization Algorithm 

In PSO44,45, a potential solution is viewed as a particle 
without weight and volume who can move in the search 
space at a certain speed to some direction. Each particle 
tracks two extrema to update its velocity and location. 
One extremum is the best location found by itself, 
denoted as pbest . Another one is the best location found 
by all particles, denoted as gbest . 

In the n-dimension search space, the particle swarm 
{ }1 2, , , mX x x x=  is composed of m particles, and the 

i-th particle’s location is { }1 2, , , T
i i i inx x x x= , its 

velocity is { }1 2, , , T
i i i inv v v v= . The best location 

found by itself is { }1 2, , , T
i i i inp p p p= and the best 

location ( )gbest  found by all the particles is 

{ }1 2, , ,
T

g g g gnp p p p= . During the evolutionary 

process, the velocity and position of i-th particle on d-th 
dimension are updated as 

1
1 1 2 2* * *( ) * *( )t t t t t t

id id id id gd idv w v c r p x c r p x+ = + − + −       (1) 

1t t t
id id idx x v+ = +                          (2) 

where 1, 2, ,d n= , 1, 2, ,i m= . n  is the dimension 
of the search space, m  is the scale of the swarm, t  
stands for the current generation, 1 2,c c  are the 

acceleration coefficients, 1r  and 2r  are two random 
values uniformly distributed in the range of [0, 1]. w  is 
the inertia weight. In order to prevent the particle from 
exceeding the search space, velocity is restricted in 

max max[ , ]v v− , where max max*v k x=  and { }0.1 1.0k≤ ≤ . 
In PSO, the swarm converges rapidly within the 

intermediate vicinity of the gbest . However, such a high 
convergence speed often results in Ref. 45: 1) the lost of 
diversity and 2) premature convergence if the gbest  
wrongly guides to a local optimum. This motivates the 
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development of a perturbed particle swarm algorithm15 
based on the perturbed gbest  updating strategy, which is 
based on the concept of possibility measure16 to model 
the lack of information about the true optimality of the 
gbest 46. In contrast to conventional approaches, the 
gbest  in pPSO is denoted as “possibly at gbest  

pgbest { }1 2, , ,
T

g g gnp p p= ′ ′ ′ ”, instead of a crisp location, 

where gdp′  is the perturbation result of gdp  of gp  

( 1, 2, ,d n= ). 

3. nCSIA Algorithm 

3.1.  Algorithm Composition 

3.1.1. Generation and Evaluation of Initial Antibody 
Population  

The initial antibody population is generated randomly 
in the range of min max[ , ]X X . Every antibody is evaluated 
for its affinity with optimization problem (fitness). The 
current optimal solutions pbest  are assigned as the 
initial antibodies, and locate the best antibody as the 
global best individual gbest . 

3.1.2. Proportional Cloning  

In immunology, cloning means asexual propagation 
so that a group of identical cells can be descended from a 
single common ancestor, such as a bacterial colony 
whose members arise from a single original cell as the 
result of mitosis. Clone is implemented proportionally 
according to the affinity of antibodies in order to self 
adaptively explore the total search space. Combined with 
the fitness value and position of antibody, the affinity of 
i-th antibody can be defined as follows: 

1
i

i
i

affinity
fitness
dis

=
+

                                (3) 

Where ifitness  denotes the fitness value of i-th antibody, 
and idis  denotes the distance between i-th antibody and 
global optimal antibody gbest : 

2

1
( )

n

i id d
d

dis x gbest
=

= −∑                (4) 

where idx  and dgbest  denote the d-th dimension 
components of i-th antibody and global optimal antibody 

respectively, and n  denotes the dimension of the 
decision variable. We can conclude from (3) that the 
larger the particle’ fitness value is and the closer the 
particle to the global optimum, the larger the affinity is. 

Assume that m  antibodies are cloned proportionally, 
and produce the clonal sets , 1iS i m= . During the 
clonal process, the number of clone of i-th antibody is: 

1

*i
i m

jj

num
affinity

m
affinity

=

⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎣ ⎦∑

  (5)

where i iS num= , 1i m= . 

From (5) we can conclude that the clones of the 
antibody are in proportion to the antibody’s affinity. 
Through this method, antibodies with larger affinity are 
cloned more and then accelerated to explore the even 
larger domain space with hypermutation operation. That 
is, their excellent properties are fully explored for even 
more promising search area until the global best 
neighborhood and locate the global solution exactly. The 
antibodies with low affinity are maintained a little for 
population diversity and some possible good genes may 
be used. 

3.1.3. Non-uniform HyperMutation 

Hypermutation is the key operation to implement 
evolution in the antibody population. Non-uniform 
hypermutation applies different perturbation vector to the 
cloned offspring antibodies and makes antibodies evolve 
continuously. The principle is defined as follows: assume 
that we need to mutate the d-th dimension of antibody 

1{ , , , , }T
i i id inx x x x= whose upper and lower 

bounds are denoted as ,UB LB  respectively. Then, the d-
th dimension after mutation of the antibody is: 

' ( , ),     (0,1) 0
( , ),      (0,1) 1

id id
id

id id

x
x t UB x
x t x LB

ξ
ξ

+ Δ − =⎧
= ⎨ − Δ − =⎩  (6)

where   

(1 )( , ) * (1 )
bt

Tt y y r −Δ = −                           (7) 

and random variable (0,1)ξ  will be 0 or 1 with equal 
probability. t  denotes the current cycle variable, 
T denotes the maximum generation number, r  is a 
uniform random real number in the range of  (0, 1), and 
b  denotes the system parameter which determines the 
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degree of dependency on iteration number (non-
uniformity)17. 

3.1.4. Clonal Selection 

The function of clonal selection is to make antibody 
population evolve, which is similar with the selection 
operation of evolutionary algorithm17. The average 
population affinity is improved between the pre-mutation 
and the post-mutation antibody population to avoid 
algorithm degradation. 

The schematic diagram is revealed as Figs. 1. ,①  ,②   
 represent③  proportional clone, non-uniform 

hypermutation and clonal selection, respectively. ix  

denotes the i-th antibody, who has inum  copies. After 
non-uniform hypermutation and clonal selection, the new 
individual x′  is obtained. 

 
Fig. 1. Clone, HyperMutation and Clonal Selection Process 

3.1.5. Perturbation Guiding Search 

The velocity and position updating equation of PSO is 
actually an elitist learning mechanism from the historical 
experience of individual and population. The premature 
occurrence is possible to appear if all the solutions learn 
from the same global best individual, which is the 
inherent motivation of pPSO15. 

This idea is applied to the clonal selection immune 
algorithm in this paper, that is to say, an elitist learning 
strategy is adopted by nCSIA as follows. 

After clonal selection operation, every antibody of 
nCSIA will begin a learning process from  two extrema. 
One extremum is the best antibody found by itself, 
denoted as pbest . Another one is the (perturbed) best 
solution found by antibody population. nCSIA perturbs 
the global best antibody gbest , gets a perturbed global 
best pgbest , and update the antibody’s (particle’s) 
flying velocity as follows: 

( , )t t
gd gdp N p σ′ =                                      (8) 

 ( )p tσ =                                           (9) 
1

1 1 2 2* * *( ) * *( )t t t t t t
id id id id gd idv w v c r p x c r p x+ ′= + − + −       (10) 

where t
gdp′  denotes the d-th dimension of pgbest in the 

t-th generation. From (8) it can be observed that 
the pgbest is characterized by a normal distribution 

( , )t
gdN p σ , where σ  represents the degree of uncertainty 

about the optimality of the gbest . In order to account for 
the information received over time that reduces 
uncertainty about the gbest  position, σ is modeled as a 
non-increasing function of the generation number as (11). 
In this paper the update formula of σ  is defined as 
follows: 

max

min

( )
        ,  *

/ 10  ,  s
p t

t T

others

σ α

σ
=

<⎧
⎨
⎩

 (11)

where 
( * )

s
t T
interval

α
=

−⎢ ⎥
⎢ ⎥⎣ ⎦

 (12) 

In the above formulas, maxσ ， minσ ， α  and 
interval  are manually set parameters. Parameter 
interval  in (12) indicates that σ  should be updated 
every interval generations. t denotes the current iteration 
number. T  is the maximal generation number. During 
the perturbing process, if one dimension of an antibody 
exceeds the definition domain, the antibody remains 
unchanged. Otherwise, its velocity will be updated 
according to Eq.(10).  Its position is updated with Eq.(2). 

The perturbation guiding search strategy (8-11) 
should be distinguished from conventional velocity and 
position update equations (1) and (2) of PSO, which 
applies a random perturbation to the antibodies. The 
function of pgbest  is to encourage the antibody to 
explore an even larger region beyond that defined by the 
search trajectory. By considering the uncertainty 
associated with each gbest as a function of time, 
pgbest provides a simple and efficient exploration at the 

early stage when σ  is large and encourages local fine-
tuning at the latter stage when σ  is small. Subsequently, 
this approach helps to reduce the likelihood of premature 
convergence, and simultaneously guides the search 
toward the promising search area. 
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3.2. Algorithm Composition 

A new clonal selection immune algorithm with 
perturbation guiding search and non-uniform 
hypermutation (nCSIA) is proposed in this paper. 
Reference15 exhibited an enhanced perturbed particle 
swarm optimization algorithm based on the perturbation 
idea.  As Ref. 21 analyzed, non-uniform mutation has 
self-adaptive property and evolutionary programming 
based on non-uniform mutation shows encouraging 
performance. Algorithm nCSIA combines the strategies 
of proportional clone, affinity proliferation, non-uniform 
hypermutation and perturbation guiding search. Therefore, 
the balance of exploration and exploitation is easy to be 
kept and even satisfactory performance is expected. 

The algorithmic flowchart is presented as Fig. 2. The 
detailed description is as follows: 

Step1: Initialize antibody population and related 
parameters; 

Step2: Evaluate antibodies; 
Step3: Calculate the affinity of antibodies; 
Step4: Determine the clone number of antibody 

according to its affinity; 
Step5: Implement non-uniform hypermutation and 

obtain the offspring antibody. 
Step6: Select the antibodies whose affinities are 

largest from the parent antibodies and 
offspring population as the new antibody 
population. 

Step7: Perturb the global best antibody for 
perturbation guiding search with equations (8-
11). 

Step8: Algorithm terminates if termination conditions 
meet. Otherwise, go to Step2. 

3.3. Computational Complex 

Analyzing nCSIA’s computational complexity is 
revealing. The related parameters are referred to Section 
IV.B. Then the time complexity of one generation for the 
algorithm can be calculated as follows: 

The time complexity for evaluating fitness of 
population is ( )O m ; the time complexity for calculating 
affinity is ( )O mn ; the time complexity for proportional 
cloning is (2 )O m ; the worst time complexity for 
hyperMutation is ( )O mn ; the time complexity for clonal 
selection is (2 )O m ; the time complexity for perturbation 
guiding search is ( )O m mn+ . So the worst total time 
complexity is 

 ( ) ( ) (2 ) ( ) (2 ) ( )O m O mn O m O mn O m O m mn+ + + + + + . 

According to the operational rules of the symbol O, 
the worst time complexity of one generation for nCSIA 
can be simplified as 

( )O mn                                         (13) 
So the time complexity of nCSIA is ( )O mnT  and the 
costs of calculating affinity and hypermutation dominate 
the computational complexity of nCSIA. 

 

 
Fig. 2.  Algorithmic Flowchart 

4. Experimental comparison and algorithmic 
analysis 

In order to validate the necessity and good performance 
of nCSIA, 15 benchmarks (in Table-1) are adopted to do 
numerical experiments and comparison, in which first 
seven functions 1 7~f f  are unimodal and the others are 
multimodal. The statistical results of the Best, Median, 
Mean and standard deviation (STD) are presented and 
compared each other among PSO, pPSO, FEP, ImPSO 
and nCSIA, respectively. 

4.1. Algorithms to Compare 

The comparing algorithms in Tables 2-4 are specified as 
follows. PSO is standard particle swarm optimization 
algorithm. pPSO15 is a hybrid algorithm of standard 
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particle swarm optimization algorithm and a perturbation 
strategy. FEP is a faster evolutionary programming19 with 
Cauchy mutation, which has a larger search step than 
Guassan mutation. ImPSO is a clonal selection immune 
algorithm whose hupermutation is based on Gaussian 
mutation. The nCSIA algorithm is proposed in this paper 
and its operations are given in Section 3. 

4.2. Parameter Setting 

The parameters in algorithm are set as follows: the 
dimension of search space n  = 30 for functions 1 12~f f . 
The antibody population size m = 30, the maximal 
generation number T = 2000, the inertia weight w =0.9, 
the acceleration constant 1 2 0.5c c= =  and the degree of 
uncertainty parameters 

max 0.4σ = , min 0.001σ = , 0.2α =  
and / 10interval T= , system parameter b = 5.  For 
functions 13 15~f f , the dimension of the search space 
n = 4, and the other parameters are the same to the 
functions 1 12~f f . 

4.3. The Experimental Results and Analysis 

The experimental results of PSO, pPSO, FEP, ImPSO, 
nCSIA are summarized in Tables 2-4. All the 
experimental data are obtained from the statistical results 
of 30 independent runs except FEP. The experimental 
results of FEP are fetched from Ref. 19 immediately. FEP 
does not provide the best and median experimental items 
and the corresponding items are filled with the character 
of slash “/” in Tables. Furthermore, the maximal 
generation numbers of FEP vary with questions in the 
range of 1 500 to 20 000. That is to say, the comparison 
between FEP and other algorithms is unfair to a certain 
extent, which is merely taken as a reference. 

Generally speaking, nCSIA algorithm illustrates 
encouraging performance as Tables 2-4 show. Firstly, 
nCSIA found the most truly optimal solutions than all 
other algorithms except for FEP (13 from 15 functions) 
observed from the “best” items in Tables. Secondly, it 
has obviously better performance than PSO on all of the 
test functions, which shows steady and robust 
performance of the 30 independent tests. Thirdly, nCSIA 
outperforms pPSO greatly for high dimensional functions 

1 2, ,f f  4 6, ,f f  9 10 11 12, , ,f f f f and the solution accuracy has 
also been raised drastically. Both of them have 
comparative performance for functions 5 7 8, ,f f f  and 
three low dimensional multimodal functions. For function 

3f , the best item of pPSO is better than that of nCSIA, 
however, the items of median, mean and STD of nCSIA 

are markedly better than those of pPSO. Fourthly, nCSIA 
has better or similar performance with 
FEP for 10 functions and is slightly worse than FEP for 
other functions. For immunity based algorithms ImPSO 
and nCSIA, the latter has more satisfactory performance 
than the former for functions 2 ,f 4 6 11, , ,f f f 12 13, ,f f  

14 15,f f , performs comparatively for functions 3 ,f  

5 ,f 7 ,f 8 9,f f ,
10f  and is worse than the former for 

function 1f . In a word, nCSIA has an encouraging 
performance in terms of convergence, accuracy and 
stability comparing with four other algorithms for various 
different benchmark functions. 

4.4. Online Performance Comparison and Analysis 

In order to graphically present the comparison in terms of 
average convergence characteristics of the evolutionary 
processes in solving different problems, now we show the 
online performance comparison of four algorithms with 
fourteen benchmark functions. The abscissa stands for the 
evolutionary generations and the vertical axis is the 
logarithmic plot of the average function values of the 30 
simulations for the first twelve functions. For functions 

14 15,f f , they are the average function values of the 30 
simulations.  

Observed from Fig. 3, we can get the conclusion that 
nCSIA has stronger exploration and exploitation abilities 
and can reach satisfactory evolutionary behaviors for 
most functions. There is a common and interesting 
phenomenon that the online performance of nCSIA is 
worse than other algorithms at the early stage in all the 
figures, however, it will preponderate over them at about 
the middle or later stage. This situation is coincident with 
the features of the non-uniform mutation21. Non-uniform 
mutation does not focus on the exploitation, but on the 
exploration for the promising search area at the early 
stage, which results in an apparently inferior performance 
to other algorithms. But with the progress of algorithm, 
the predominance of non-uniform mutation operation 
emerges, namely to surpass or to come up with other 
algorithms. For example, functions 4 9 14, ,f f f  are three 
representatives for three kinds of benchmark functions of 
featuring these evolutionary behaviors. 

This mechanism is to keep nCSIA not easy to be 
trapped by the local optimal area with the algorithm run. 
Furthermore, it is explicit that nCSIA still has the trend to 
find even better solutions if the maximal generation 
numbers were increased for functions 1 2 3, ,f f f , 4 ,f 11f  
and 

12f . 
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5. Experimental Comparison with Expanding 
Spaces and Increasing Dimensions 

Encouraging results have demonstrated through 
numerical experiments in last Section when comparing 
with standard and recent algorithms. However, can the 
excellent performance of nCSIA remain when the 
benchmark functions become more difficult? Expanding 
their search spaces and increasing their dimensions are 
considered in this paper.     

Three unimodal functions 1 4 6, ,f f f  and three 
multimodal functions 10 11 12, ,f f f , which have different 
characteristics, are selected as representatives to do the 
further comparable experiments due to computational 
costs.

1f  is a typical unimodal function which is used to 
validate the quick convergence ability of algorithm. 

6f  is 
a step function, which is characterized by plateaus and 
discontinuity. It is well-known that the numbers of local 
minima of 10 11 12, ,f f f  increase exponentially with the 
dimension increasing. They are the most difficult class of 
problems for many optimization algorithms19 and they are 
used to check if the performance of algorithms is 
dramatically affected by the enlarging spaces or not. 

Algorithms pPSO, ImPSO and nCSIA are considered 
in these two groups of experiments. 

5.1. Comparison for Expanding Domains 

Eq. (6) requires setting the lower bound and the upper 
bound. It is no problem for the present benchmarks. 
However, it is difficult to do so for real world problems, 
for we don’t know where the optima situate. The possible 
guidelines for setting the variable bounds are the personal 
or expert experience and multiple trials starting from a 
large domain which is smaller and smaller. It is pivotal 
that whether algorithms have similar performance with 
expanding domains. For this reason, this group of 
experiment is done to verify whether nCSIA has steady 
and consistent performance when facing this situation. 
Four different domains are adopted, which are the initial, 
10 times, 100 times and 1000 times larger domains. 
Function 1f  is taken as an example, namely four groups 
of experiments are conducted with the initial domain 

2 2[ 10 ,10 ]nx∈ − , 10 times domain 3 3[ 10 ,10 ]nx∈ − , 100 
times domain 4 4[ 10 ,10 ]nx∈ −  and 1000 times domain 

5 5[ 10 ,10 ]nx∈ − , where n is the dimension of benchmark. 
In order to make the simulation more persuasion, all the 
parameters are the same to the above experimental 
settings and the statistical results are also obtained from 
30 independent runs. 

There is something to say that the search space is 
drastically enlarged as we did. For example, the expanded 
search space will be 1000n ⋅Ω  if the initial space of a 
function is Ω  when 1000 times domain is considered. 
The search space is expanded 9010  times which is an 
astronomical datum when n is 30.  

The items “1, 10, 100, 1000” at the first column of 
Tables 5-10 mean the expanding times of the initial 
domain of the function. For example, “1” in Table 5 
means the initial domain and “1000” means the domain 
of expanding 1000 times of function 1. Item “Algo.” is 
the abbreviation of “algorithm”. 

Generally speaking, the results of three algorithms for 
these selected functions are worsening with the domains 
expanding observed from the Tables 5-10. The expanding 
domains have most evident effects on pPSO whose 
results are heavily affected, and ImPSO is next. 
Observing  from  the  “Best”  items  of  nCSIA  of  all six 
benchmarks, it can be seen that the performance of 
nCSIA is slightly worsening to some extent with the 
domain expanding. Similar situation occurs to the  
“Mean” items of six functions except for 11f . The mean 
value of 5f  is 2.83 for the initial domain, however, it is 
0.669 and 0.77 for the domains of 10 and 100 times 
larger. Comparatively saying, the superiority of nCSIA 
over pPSO and ImPSO are more evident with larger 
search domains as Tables 5-10 show. 

The obvious performance difference of three 
algorithms with different search spaces maybe should 
attribute to the non-uniform hypermutation of nCSIA 
because pPSO and ImPSO lack this operation, which is 
introduced to AIS in this paper. Therefore we conclude 
that expanding domain has a little influence on nCSIA, 
however, it is much smaller than that of other algorithms. 

5.2. Comparison for Increasing Dimensions 

The algorithms will be further compared each other with 
higher dimensional benchmarks which are 30, 60, 90 and 
120. The comparison results are given in Tables 11-16. 
   Observed from Tables 11-16, similar conclusions can 
be also reached as the above experiment. Three 
algorithms have worse and worse performance with 
dimension increasing, however the worsening speeds are 
different. On the whole, pPSO and ImPSO perform 
comparatively. However, nCSIA still shows a steady and 
robust performance with the increasing dimensions when 
comparing with two other algorithms. The effects of the 
proposed strategies are verified again from these 
numerical experiments. It also can be concluded that the 
higher dimension has some influence on nCSIA, however, 
it is the least impact on the performance. 
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Table 2. Results comparison among PSO, pPSO, FEP, ImPSO, nCSIA for high dimensional unimodal functions. “/” means the item 

not provided. 
Function Algorithm Best Median Mean STD 

PSO  2.12E-01 8.94E+00 1.81E+01 5.22E+02 

pPSO 5.32E-06 6.89E-06 6.95E-06 7.95E-13 

FEP / / 5.74E-4 1.3E-4 

ImPSO 8.39E-14 4.04E-12 2.96E-11 1.11E-20 
1f  

nCSIA 1.10E-09 3.89E-09 5.88E-09 6.34E-17 

PSO 3.53E+00 1.35E+01 1.44E+01 7.79E+01 

pPSO 1.02E-02 1.81E-01 3.17E-01 2.48E-01 

FEP / / 8.4E-3 7.7E-4 

ImPSO 4.01E-05 7.74E-04 2.76E-03 2.81E-05 
2f  

nCSIA 2.71E-05 2.36E-04 5.41E-04 5.47E-07 

PSO 7.20E+02 3.46E+03 4.17E+03 4.66E+06 

pPSO 9.28E-05 2.04E+01 2.63E+02 5.51E+05 

FEP / / 1.6E-2 1.4E-2 

ImPSO 8.96E-03 5.17E-02 5.91E-02 2.91E-03 
3f  

nCSIA 1.01E-02 2.75E-02 3.51E-02 5.37E-04 

PSO 8.33E+00 2.00E+01 2.03E+01 2.90E+01 

pPSO 1.79E+00 6.39E+00 6.52E+00 1.37E+01 

FEP / / 0.3 0.5 

ImPSO 1.36E-01 8.74E-01 1.74E+00 3.88E+00 
4f  

nCSIA 1.68E-02 4.30E-02 7.05E-02 4.03E-03 

PSO 1.20E+02 7.94E+02 1.36E+03 1.44E+06 

pPSO 1.89E+01 2.49E+01 1.15E+02 9.77E+04 

FEP / / 5.06 5.87 

ImPSO 1.44E+01 2.53E+01 3.35E+01 5.54E+02 
5f  

nCSIA 2.24E+01 2.68E+01 3.67E+01 7.31E+02 

PSO 7.40E+01 2.85E+02 3.44E+02 7.42E+04 

pPSO 0 4.00 4.53 6.53 

FEP / / 0 0 

ImPSO 0 0 3.33E-02 3.33E-02 
6f  

nCSIA 0 0 0 0 

PSO 6.09E-01 1.20E+00 1.32E+00 2.40E-01 

pPSO 1.96E-01 4.79E-01 5.73E-01 1.52E-01 

FEP / / 7.6E-3 2.6E-3 

ImPSO 2.01E-01 7.35E-01 6.90E-01 8.57E-02 
7f  

nCSIA 2.43E-01 6.70E-01 7.06E-01 8.77E-02 
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Table 3. Results comparison among PSO, pPSO, FEP, ImPSO, nCSIA for high dimensional multimodal functions. “/” means the item 

not provided. 
Function Algorithm Best Median Mean STD 

PSO 5.11E+01 7.83E+01 8.57E+01 7.33E+02 

pPSO 4.58E+01 8.36E+01 8.50E+01 4.77E+02 

FEP / / 4.6E-2 1.2E-2 

ImPSO 4.48E+01 6.91E+01 7.26E+01 3.02E+02 
8f  

nCSIA 3.08E+01 5.22E+01 5.42E+01 2.41E+02 

PSO 3.99E+00 7.79E+00 8.11E+00 5.81E+00 

pPSO 2.03E-03 1.42E+00 1.59E+00 4.54E+00 

FEP / / 1.8E-2 2.1E-3 

ImPSO 4.25E-07 1.34E+00 9.72E-01 6.36E-01 
9f  

nCSIA 7.48E-06 1.63E-05 1.57E-01 2.39E-01 

PSO 1.03E+00 1.27E+00 1.55E+00 7.58E-01 

pPSO 3.12E-07 9.86E-03 1.21E-02 1.27E-02 

FEP / / 1.6E-2 2.2E-2 

ImPSO 2.02E-14 7.40E-03 9.36E-03 8.20E-05 
10f  

nCSIA 2.04E-08 1.30E-07 6.23E-03 1.23E-04 

PSO 6.71E+00 1.33E+01 1.57E+01 5.86E+01 

pPSO 3.84E+00 9.47E+00 9.78E+00 2.04E+01 

FEP / / 9.6E-6 3.6E-6 

ImPSO 2.22E-06 2.08E+00 3.07E+00 1.37E+01 
11f  

nCSIA 1.61E-11 2.64E+00 2.83E+00 5.44E+00 

PSO 1.82E+01 4.00E+01 4.18E+01 1.27E+02 

pPSO 8.05E-07 1.10E-02 1.29E-02 5.27E-04 

FEP / / 1.6E-4 7.3E-5 

ImPSO 7.71E-13 1.11E-11 7.32E-04 7.77E-06 
12f  

nCSIA 3.81E-11 2.30E-10 3.06E-10 9.19E-20 

Table 4. Results comparison among PSO, pPSO, FEP, ImPSO, nCSIA for low dimensional multimodal functions. “/” 
means the item not provided. 

Function Algorithm Best Median Mean STD 

PSO -10.2 -5.10 -6.15 13.2 

pPSO -10.2 -7.63 -6.98 11.2 

FEP / / -5.52 1.59 

ImPSO -9.88 -5.02 -5.43 1.94 
13f  

nCSIA -10.2 -5.10 -5.89 3.25 

PSO -10.4 -3.72 -5.91 12.5 14f  

pPSO -10.4 -3.72 -6.10 13.2 
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Function Algorithm Best Median Mean STD 

FEP / / -5.52 2.12 

ImPSO -5.13 -5.03 -5.01 1.30E-02 

nCSIA -10.4 -5.13 -6.49 5.30 

PSO -10.5 -3.84 -4.91 10.5 

pPSO -10.5 -10.5 -7.08 14.6 

FEP / / -6.57 3.14 

ImPSO -5.17 -5.09 -5.06 1.27E-02 
15f  

nCSIA -10.5 -5.18 -6.07 4.12 
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Fig. 3.  PSO, pPSO, ImPSO & nCSIA online performance analysis 
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6. Conclusion and Future studies 

A new clonal selection immune algorithm (nCSIA) is 
proposed with  the ideas  of  non-uniform  hypermutation  
and perturbation guiding search based on the clonal 
selection principle. In immunology, affinity is the fitness 
measurement for an antibody. In the paper it is computed 
in direct proportion to its fitness and in inverse proportion 
to its distance to the global best individual which 
coincides with the inherent exploration and exploitation 
tradeoff requirement of swarm intelligence. Proportional 
clone and non-uniform hypermutation adaptively adjusts 
the exploration or exploitation radius at the neighborhood 
of the promising individuals for the balance of population 
diversity and selection pressure. An elitist learning 
strategy of perturbation guiding search is also proposed 
and for better balance of global search and local search. 
      In order to validate the performance of nCSIA a lot of 
experiments have been done and compared with other 
four algorithms including standard PSO, perturbed PSO 
(pPSO), immune based PSO (ImPSO) and fast 
evolutionary programming (FEP). Comparison with 
pPSO is to verify the effect of proportional cloning and 
affinity proliferation for hybrid algorithm. Comparison 
with ImPSO is to prove that the idea of perturbation 
guiding search is good for the new algorithm. 
Experimental results show that nCSIA algorithm has 
even better performance in terms of convergence, 
robustness and stability for most benchmark functions. 
Thus it indicates that the proposed strategies are effective 
and promising. 

Further experiments are conducted when functions 
are becoming more difficult with much larger search 
spaces. Simulation results illustrate that the superiority of 
nCSIA are more evident with larger search space 
although the expanding domain and increasing dimension 
have some influence on algorithms for a certainty. That is 
to say, it has a little influence on nCSIA, however, it is 
much smaller than that of other algorithms. 

HyperMutation and perturbation guiding search have 
important effects on the algorithms. Better hypermutation 
operation for adaptive exploration and exploitation and 
even more intelligent elitist learning strategy for 
perturbation guiding search deserve further research. 

 

 

 

 

 
 

Table 5. Results of function 1 with expanding domain 

Table 6. Results of function 4 with expanding domain 
f4 Algo. Best Mean STD 

pPSO 1.79E+00 6.52E+00 1.37E+01 

ImPSO 1.36E-01 1.74E+00 3.88E+00 1 

nCSIA 1.68E-02 7.05E-02 4.03E-03 

pPSO 8.16E+01 1.83E+02 3.08E+03 

ImPSO 3.72E+00 4.09E+01 9.52E+02 10 

nCSIA 7.37E-02 2.42E-01 1.68E-02 

pPSO 1.38E+03 2.40E+03 4.24E+05 

ImPSO 7.71E+01 6.26E+02 2.01E+05 100

nCSIA 3.20E-01 2.41E+00 9.88E+00 

pPSO 1.39E+04 2.46E+04 3.75E+07 

ImPSO 7.70E+03 1.82E+04 2.57E+07 1000

nCSIA 3.82E+00 2.42E+01 1.11E+03 

Table 7. Results of function 6 with expanding domain 
f6 Algo. Best Mean STD 

pPSO 0 4.53 6.53 

ImPSO 0 3.33E-02 3.33E-02 1 

nCSIA 0 0 0 

pPSO 0 1.03E+01 5.08E+01 

ImPSO 4 1.03E+01 1.55E+01 10 

nCSIA 0 1.33E-01 1.20E-01 

pPSO 1.10E+01 1.55E+05 4.05E+10 

ImPSO 4 1.13E+01 1.71E+01 100
 

nCSIA 0 1.00E+00 1.45E+00 

pPSO 1.41E+06 3.04E+07 9.23E+14 

ImPSO 1 1.01E+01 1.88E+01 1000 

nCSIA 0 3.40E+00 7.28E+00 

f1 Algo. Best Mean STD 

pPSO 5.32E-06 6.95E-06 7.95E-13 

ImPSO 8.39E-14 2.96E-11 1.11E-20 1 

nCSIA 1.10E-09 5.88E-09 6.34E-17

pPSO 5.27E-06 6.91E-06 8.80E-13

ImPSO 3.13E-03 8.46E-02 6.89E-0310 

nCSIA 1.20E-07 7.66E-07 7.26E-13

pPSO 7.10E-06 8.00E+04 1.41E+10

ImPSO 4.26E-03 1.20E-01 2.82E-02100 

nCSIA 9.77E-06 5.37E-05 9.71E-10

pPSO 7.28E+05 3.33E+07 1.25E+15

ImPSO 1.32E-03 1.70E-01 9.54E-021000

nCSIA 1.14E-03 5.12E-03 1.28E-05
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Table 8. Results of function 10 with expanding domain 
f10 Algo. Best Mean STD 

pPSO 3.12E-07 1.21E-02 1.27E-02 
ImPSO 2.02E-14 9.36E-03 8.20E-05 1 
nCSIA 2.04E-08 6.23E-03 1.23E-04 
pPSO 3.33E-07 1.09E+01 5.25E+02 

ImPSO 6.59E-04 2.44E-02 3.80E-04 10 

nCSIA 7.05E-07 7.80E-03 1.01E-04 

pPSO 8.28E+01 2.18E+03 8.78E+06 

ImPSO 2.12E-04 1.62E-02 1.28E-04 100
 

nCSIA 1.29E-04 1.41E-02 3.10E-04 

pPSO 3.00E+01 2.43E+05 8.96E+10 

ImPSO 2.81E-03 1.96E+04 4.44E+09 1000 

nCSIA 3.41E-03 2.28E-02 1.84E-04 

Table 9. Results of function 11 with expanding domain 
f11 Algo. Best Mean STD 

pPSO 3.84E+00 9.78E+00 2.04E+01 
ImPSO 2.22E-06 3.07E+00 1.37E+01 1 
nCSIA 1.61E-11 2.83E+00 5.44E+00 
pPSO 3.75E+00 1.06E+01 2.15E+01 

ImPSO 6.11E+00 1.67E+01 3.45E+01 10 

nCSIA 6.64E-10 6.69E-01 1.31E+00 

pPSO 1.19E+01 6.56E+10 5.54E+22 

ImPSO 4.48E+00 1.48E+01 3.76E+01 100
 

nCSIA 3.64E-07 7.70E-01 1.56E+00 

pPSO 1.02E+12 4.40E+15 2.22E+32 

ImPSO 7.30E+00 1.52E+01 5.20E+01 1000 

nCSIA 1.56E-04 1.94E+00 2.50E+00 

Table 10. Results of function 12 with expanding domain 
f12 Algo. Best Mean STD 

pPSO 8.05E-07 1.29E-02 5.27E-04 
ImPSO 7.71E-13 7.32E-04 7.77E-06 1 
nCSIA 3.81E-11 3.06E-10 9.19E-20 
pPSO 5.95E-07 2.06E+00 5.18E+01 

ImPSO 1.94E-03 2.18E+01 4.06E+02 10 

nCSIA 7.40E-20 6.18E-03 3.21E-04 

pPSO 1.68E+01 9.71E+10 4.82E+22 

ImPSO 1.59E-01 2.62E+01 5.67E+02 100
 

nCSIA 1.25E-19 1.31E-02 1.32E-03 

pPSO 1.78E+12 6.93E+15 2.33E+32 

ImPSO 2.39E-01 2.93E+01 4.94E+02 1000 

nCSIA 1.10E-19 1.25E-02 3.94E-04 

Table 11. Results of function 1 with increasing dimension 

Table 12. Results of function 4 with increasing dimension 
f4 Algo. Best Mean STD 

pPSO 1.79E+00 6.52E+00 1.37E+01 
ImPSO 1.36E-01 1.74E+00 3.88E+00 30 
nCSIA 1.68E-02 7.05E-02 4.03E-03 
pPSO 2.18E+01 2.77E+01 1.56E+01 

ImPSO 1.96E+01 3.10E+01 2.30E+01 60 

nCSIA 2.97E+00 6.41E+00 3.98E+00 

pPSO 3.10E+01 3.97E+01 2.64E+01 

ImPSO 2.99E+01 4.19E+01 3.51E+01 90
 

nCSIA 8.46E+00 1.19E+01 4.65E+00 

pPSO 3.27E+01 4.51E+01 1.70E+01 

ImPSO 3.98E+01 4.87E+01 2.58E+01 120

nCSIA 1.18E+01 1.62E+01 3.30E+00 

Table 13. Results of function 6 with increasing dimension 
f6 Algo. Best Mean STD 

pPSO 0 4.53 6.53 
ImPSO 0 3.33E-02 3.33E-02 30 
nCSIA 0 0 0 
pPSO 3.00E+01 5.94E+01 6.14E+02 

ImPSO 4.10E+01 7.23E+01 3.40E+02 60 

nCSIA 1.00E+00 4.47E+00 3.98E+00 

pPSO 2.12E+02 4.07E+02 1.61E+04 

ImPSO 1.20E+02 2.12E+02 1.74E+03 90
 

nCSIA 1.10E+01 2.17E+01 4.05E+01 

pPSO 6.64E+02 2.29E+03 8.29E+05 

ImPSO 2.58E+02 4.40E+02 1.13E+04 120 

nCSIA 2.90E+01 5.70E+01 2.37E+02 

f1 Algo. Best Mean STD 
pPSO 5.32E-06 6.95E-06 7.95E-13 
ImPSO 8.39E-14 2.96E-11 1.11E-20 30 
nCSIA 1.10E-09 5.88E-09 6.34E-17 
pPSO 3.66E-05 4.37E-05 4.26E-11 

ImPSO 7.19E+00 1.59E+01 3.64E+0160 

nCSIA 1.99E-05 5.21E-05 9.62E-10 

pPSO 1.13E+00 9.26E+01 1.04E+04

ImPSO 3.04E+01 6.58E+01 3.45E+0290
 

nCSIA 3.03E-03 6.55E-03 5.43E-06 

pPSO 5.81E+02 1.12E+03 1.86E+05

ImPSO 7.70E+01 1.45E+02 1.82E+03120 

nCSIA 6.48E-02 1.19E-01 6.93E-04 
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Table 14. Results of function 10 with increasing dimension 
f10 Algo. Best Mean STD 

pPSO 3.12E-07 1.21E-02 1.27E-02 
ImPSO 2.02E-14 9.36E-03 8.20E-05 30 

nCSIA 2.04E-08 6.23E-03 1.23E-04 
pPSO 5.98E-01 2.68E+00 6.94E+00 

ImPSO 1.96E-01 3.53E-01 8.82E-03 60 

nCSIA 1.15E-04 4.51E-03 3.71E-05 

pPSO 9.91E+00 3.98E+01 3.87E+02 

ImPSO 2.46E-01 6.81E-01 1.70E-02 90
 

nCSIA 6.21E-03 1.68E-02 4.13E-05 

pPSO 6.68E+01 1.55E+02 1.90E+03 

ImPSO 6.31E-01 8.38E-01 9.26E-03 120 

nCSIA 4.22E-02 7.72E-02 2.98E-04 

Table 15. Results of function 11 with increasing dimension 
f11 Algo. Best Mean STD 

pPSO 3.84E+00 9.78E+00 2.04E+01 
ImPSO 2.22E-06 3.07E+00 1.37E+01 30 
nCSIA 1.61E-11 2.83E+00 5.44E+00 
pPSO 8.57E+00 1.46E+01 1.50E+01 

ImPSO 1.48E+01 2.81E+01 7.25E+01 60 

nCSIA 9.15E-01 4.02E+00 3.27E+00 

pPSO 8.52E+00 1.45E+01 9.46E+00 

ImPSO 3.45E+01 8.52E+01 8.28E+03 90
 

nCSIA 3.11E+00 5.00E+00 1.43E+00 

pPSO 1.22E+01 2.20E+01 1.38E+02 

ImPSO 4.90E+01 4.16E+02 2.48E+05 120 

nCSIA 3.38E+00 5.79E+00 1.68E+00 

Table 16. Results of function 12 with increasing dimension 
f12 Algo. Best Mean STD 

pPSO 8.05E-07 1.29E-02 5.27E-04 
ImPSO 7.71E-13 7.32E-04 7.77E-06 30 
nCSIA 3.81E-11 3.06E-10 9.19E-20 
pPSO 7.35E-01 2.87E+01 5.36E+02 

ImPSO 8.22E+01 1.19E+02 7.09E+02 60 

nCSIA 1.31E-07 1.74E-01 3.24E-01 

pPSO 6.57E+01 1.19E+02 4.82E+02 

ImPSO 1.49E+02 5.77E+02 5.11E+05 90
 

nCSIA 7.41E-04 8.79E-02 8.88E-02 

pPSO 1.75E+02 1.10E+03 1.08E+07 

ImPSO 2.91E+02 4.86E+03 1.21E+07 120 

nCSIA 3.74E-01 2.28E+01 5.25E+02 
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