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Abstract 

The goal of boosting algorithm is to maximize the minimum margin on sample set. Based on minimax theory, the 
goal can be converted into minimize the maximum edge. This idea motivates LPBoost and its variants (including 
TotalBoost, SoftBoost, ERLPBoost) which solve the optimization problem by linear programming. These 
algorithms ignore the strong classifier and just minimize the maximum edge of weak classifiers so that all the edges 
of weak classifier are at most γ .This paper shows that the edge of strong classifier may be higher than the 
maximum edge of weak classifiers and proposes a novel boosting algorithm which introduced strong classifier into 
the optimization problem and constrained the edges of both weak and strong classifiers no more than γ . 
Furthermore, we justified the reasonability of introducing strong classifier using minimax theory.  

We compared our algorithm with other approaches including AdaBoost, LPBoost, TotalBoost, SoftBoost, and 
ERLPBoost on the UCI benchmark dataset. In simulation studies we show that our algorithm converges faster than 
SoftBoost and ERLPBoost. In a benchmark comparison we illustrate the competiveness of our approach from the 
aspect of time consuming, and generalization error. 
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Introduction 

Boosting algorithms have shown considerable success 
in many fields, such as OCR (optical character 

recognition), face recognition, ranking or 
recommendation, text classification, natural language 
process. Boosting algorithms originated from PAC1, 2 
(Probably Approximately Correct) learning theory. 
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Kearns and Valiant (1989) postulated the boosting 
conjecture in the framework of PAC learning. In this 
method, a weak classifier (with success probability just 
a bit over 50 %) can be boosted into a strong one (strong 
classifier) in the sense that the training error of the new 
one would go to zero with a polynomial-time run time. 

The AdaBoost algorithm, proposed by Freund and 
Schapire3, 4, 5, is an efficient stage wise-optimum method, 
which boosts a series of simple and weak learners into 
one strong learner. The corrective update of sample 
distribution in AdaBoost can be view as a solution to 
minimize a relative entropy of current sample 
distribution versus uniform distribution, and this 
optimum problem is subject to some linear constraints 
that the edge of the last hypothesis is zero 6, 7. One of the 
important properties of AdaBoost is that it has a decent 
iteration bound and approximately maximizes the 
margin of the examples 8.Similar algorithms including 
LogitBoost 9, AdaBoostv*10, all of which can be viewed 
as “corrective” family of boosting algorithms that 
enforce only a single constraint at each iteration 6 (the 
edge of the hypothesis must be at most γ , where γ  is 
adapted). 

However, a natural idea is to constrain the edges of 
all past hypotheses to be at most γ  and otherwise 
minimize the relative entropy to the initial distribution. 
Basing on this idea, such algorithms (i.e. LPBoost11, 12, 
TotalBoost13) were proposed and are called totally 
corrective in the sense that they optimize their weight 
based on all past hypotheses. Moreover LPBoost and 
TotalBoost are provable maximizing the margin with 
linear program. Nevertheless, unlike LPBoost, in which 
the upper bound γ  on the edge is chosen to be as small 
as possible in each iteration, TotalBoost uses entropic 
regularization. Also, the γ  decreased more moderately 
in TotalBoost. 

Maximizing the hard margin is a provably approach 
for low generalization error 3 when the data is linearly 
separable. However, in case of inseparable data, 
maximizing the soft margin is a more robust and 
efficient choice. The soft margin maximization can be 
implemented via linear program with capping 
constraints for some small hard examples. Based on this 
idea, there are lots of boosting algorithms including 
AdaBoost with soft-margin 8, MadaBoost 14, v-arc 15, 16, 
SmoothBoost 17, 18, SoftBoost19, corrective ERLPBoost20, 
ERLPBoost21. This line of research culminated in 
SoftBoost and ERLPBoost, which both require 

2

ln( NO
δ

)  iteration bound within δ accuracy converging 

to the maximum minimum soft margin. More accurately, 

SoftBoost minimizes the relative entropy to the initial 
distribution subject to some linear constraints on the 
edges of all weak hypotheses in the past, and 
ERLPBoost added a factor 1η  of the relative entropy 

to the initial distribution and made a trade-off between 
maximizing the soft margin and minimizing the relative 
entropy which solves the main problem in SoftBoost: 
the generalization error decreases slowly in early 
iterations. 

However, in total corrective family of algorithms, 
all of them update the sample distribution with weak 
classifiers ignoring the strong classifier. At each 
iteration in total corrective boosting algorithms, they 
just constrain the edges of existing weak classifiers to 
be at most γ even though the edge of strong classifier is 
larger than γ .It can be shown that the strong classifier 
edge is possibly larger than the maximum edge of all 
weak classifiers. Thus, a natural algorithm emerged: 
simply add edge constraint of strong classifier into 
edge-restraint conditions of ERLPBoost, which make 
the constraints stricter. Based on this, we proposed the 
StrongLPBoost which introduces the constraint of 
strong hypothesis to improve the convergence rate. 

Our new algorithm is most similar to ERLPBoost 
because their goals are both to optimize the soft margin 
with all past hypotheses on condition of minimizing 
relative entropy. The most important difference is that 
we use tighter constraints. An important result of our 
work is to show that this strategy may help to increase 
the convergence speed. 

The paper is organized as follows: in Section 2 we 
introduce the relevant notations, basic concepts and 
LPBoost. Section 3 deeply discusses the 4 problems 
existed in LPBoost and gives solution correspondingly 
before describing the detailed algorithms 
StrongLPBoost in Section 4.Finally, Section 5 contains 
our experimental evaluation of StrongLPBoost and its 
competitors. And the paper concludes with an outlook 
and discussion in Section 6. 

2. Preliminaries 

To conclude this section, we like to point the reader to 
Table 1 which summarizes our notations. And then 
some basic notations and relevant concepts about 
LPBoost will be presented in this section. Firstly, we 
will introduce two definitions: edge and margin, which 
are of a provable dual problem. 

The edge hγ of a weak classifier  on dataset ( )mh x
{( , ); 1 }m mx y m MΧ = ≤ ≤  is denoted by: 
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1
( )M

h m mm
d y h xγ

=
= ∑ m , where M  is sample dataset size, 

 is the weight of a sample ( ,md )m mx y , and 
.Similarly, error rate 

{ 1,1}my ∈ −

( ) { 1,1}mh x ∈ − hε  of  can be 

defined as: , then 

h

1
( (M

h m mm
d y h xε

=
= ≠∑ ))m hγ  is a 

affine transformation of hε  on : ( )nh x 1 1( )
2 2h d hε γ= − . 

Table 1.  Notation for margins, edges, and 
LPBoost 

Symbol Description 

X  Domain of examples 

M  Number of examples e in X 

( ,m m )x y  thm  example 

{ 1,1}my ∈ −  thm label 

d  Distribution on examples 

w  Distribution on hypotheses 

t  Iteration number 

T  Final number of iterations 

, ( )j
i j i iu y h x=  Convenient notation for 

combining labels and hypotheses

,{ }

1: ,
1:

i jU u

i M
j T

=

=
=

,

 

 
 
Error matrix 

, jui ,  ,iu i
thj row and column of 

matrix U 

thi

( ) { 1,1}t
mh x ∈ −  Prediction of hypothesis t  on 

example mx  
ρ  Margin value 
γ  Edge value 
ε  Precision parameter 

[0, ]Mφ ∈ ∝  Slack variable for soft margin 
problem 

ν  Capping parameter 

( ) [ 1,1]t
nH x ∈ −  Prediction of strong hypothesis 

 t
η  Entropy regularized parameter 

sign  Signal function 

If 1hγ = ,the weak classifier  has zero error, and 

in the case of a random classifier, 

( )mh x

0hγ = .Generally 

speaking, the higher the hγ , the more useful the 
classifier is. 

The final strong classifier of boosting algorithm is 
formed as:

1
( ) ( )T t

w m t mt
f x w h

=
= ∑ x , where T  is the 

number of the weak classifier, and t corresponds to the 
weight of weak classifier . We let 

w
th mρ  denote the 

margin of a sample ( , )m mx y  to wf , and 
( )m m w my f xρ = .As for the data set , its margin is the 

minimum margin of set. Generally speaking, the margin 
represents for the generalization ability of a classifier. 
Obviously, more training data gives 
better generalization, and maximizing the margin can 
improve the ability to generalize. 

Χ

1

1 1,1 1,

,1 1,

1

...

...
... ... ... ... ...

...

w ... w

n

n

m m n

n

h h

1

n

d
x u u d

x u u

w

d

 

Fig. 1.  Error matrix 

It’s noteworthy that edges are linear in the 
distribution over samples and margins are linear in the 
distribution over the current set of hypotheses. This 
optimization problem of maximizing margin can be 
converted into linear programming 11, 12.According to 
Refs. 11 we give a brief introduction of LPBoost. Given 
a fixed ensemble H and training setΧ , the error matrix 

(as shown in Fig.1) contains entries U , ( )*i j j i iu h x y=  
such that 1iju =  if  and  if( )=j i ih x y 1ij = −u ( )j i ih x y≠ . 
In terms of U, the margin on sample i  corresponds to 

the dot product: ,
1

t

i j i j
j

w u w uρ
=

i= = ⋅∑ i .And the margin 

of a set of samples is denoted as: minS i w uγ = ⋅ ii  , i.e. 
the minimum margin of all the samples. The goal is to 
find a weight vector w  that obtains the largest possible 
margin subject to the constraints 

0 , 1j j
w w≥ j =∑ .This is a maxi-min problem where 

we choose w  to maximize Sγ  subject to 
0 , 1j j

w w≥ j =∑ .Fortunately, this problem can be 

turned into a linear programming problem as seen in  (1). 
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{1,..., }
max min *

. . 0, 1

ii mw

j j
j

w u

s t w w
∈

≥ =∑
i

                                 or 

,
1

max

. . . , 1,...,

0, 1

w
t

j i j
j

j j
j

s t w u for i

w w

ρ

ρ
=

≥ =

≥ =

∑

∑

m               (1) 

The task and objective of LPBoost have been 
presented in detail. For the issue (1), its dual problem 
can be proven as listed in (2) via Von-Neumann’s 
MiniMax theory 23. Additionally, the objective values of 
(1) and (2) satisfy equation (3). 

{1,2,..., }
min max *

. . 0, 1

jj td

i i
i

u d

s t d d
∈

≥ =∑
i

                            or  

,
1

min

. . , 1,...,

0, 1

d
m

i j i
i

i i
i

s t u d for j

d d

γ

γ
=

≤ =

≥ =

∑

∑

t               (2) 

* max min * * min max .i ji jdw
w u u dρ γ= = =i i    (3) 

Following (2), another boosting approach can be 
deduced, alternatively, the distribution over samples can 
be computed by linear programming, which maximizes 
the margin over all the base hypotheses. In dual problem 
(2), the goal is that finding ( , )d γ  to minimize γ  subject 
to the constraints  

and . Note that these notations or 

parameters have good natural explanation:  

means a score of weak classifier  on set .Thus, 
LPBoost tried to find a distribution of samples to 
minimize the edge of best weak classifier, which 
increases the weights of misclassification samples and 
decreases the weights of accurate classification samples. 

, , 1,..., ti i ji
d u jγ≤ =∑

1, 0i ii
d d= ≥∑

,i i ji
d u∑

jh Χ

The SoftBoost and ERLPBoost represent for latest 
research in the variants of LPBoost. In order to ignore 
the bad effect of noise or difficult samples, SoftBoost 
adds the slack variant iζ  for each ix  of these samples 

and maximizes the “soft margin”:
1

m

i
i

v
m

ρ ζ
=

− ∑  to form 

the new primal problem as shown (4). Note that the 
relationship between capping and the hinge loss has 
long been exploited by the SVM community 24, 25. 

Moreover, the relative entropy is introduced to 
ERLPBoost for updating the sample distribution 
smoothly and continually. The relative entropy is 
denoted as follow: 

0
0( , ) : ln
t

t t n
nn

n

d
d d d

d
Δ =∑ , 

where are distributions of samples in the different 
iterations. Then the dual problem is listed as (5). 

0 , td d

, , 1
max

. . . , 1,..., ;
0;
0, 1;

m

iw v i

i i

i

j j
j

v
m

s t w u i m

w w

ρ
ρ ζ

ρ ζ
ζ

=

−

≥ − =

≥

≥ =

∑

∑

                     (4) 

0

,

,
1

min . ( , )

. . , 1 ;

0 , 1;

t

t

d

m

i j i
i

j j
j

d d

s t u d for j t

vd d
m

γ
γ η

γ
=

+ Δ

≤ ≤ ≤

≤ ≤ =

∑

∑

          (5) 

3. Proposition of StrongLPBoost 

3.1. Strong classifier and LPBoost 

Following the dual problems (2) and (5), we can see that 
only one weak classifier with maximum edge was chose 
to minimize the edge when updating the distribution d . 
Their convergence rates can be improved by tightening 
the constraints of the optimization problem. The edge of 
strong classifier may be larger than the maximum bound 
of the weak classifiers. Thus, we can convert the strong 
classifier into a new weak one to add to the edge 
constraints of ERLPBoost and make the constraints 
stricter. In this way, the convergence speed can be 
accelerated. 

We employ formal methods to describe it in detail. 
Referring to the above notations and definitions, the 
new notations defined as follows: 

min
1

min ( ( ) ) 1 ;
m

j j i i i
i

h x y d for j to tγ
=

= =∑  
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max
1

max ( ( ) ) 1
m

j j i i i
i

h x y d for j to tγ
=

= =∑ ; 

1
( ) ( ) ;

t

i j i
j

jH x h x w
=

= ∑  

1 ( )
'( )

1 ( )
i

i
i

if H x
H x

if H x
>⎧

= ⎨− ≤⎩

0
0

; 

Obviously, all the edges of the hypotheses satisfy 
inequation (6), but how about ( )iH x  and '( )iH x ? 

min max
1

( ) , 1,...,
m

j i i i
i

h x y d for j mγ γ
=

≤ ≤ =∑        (6) 

For the ( )iH x , we deduce like (7): 

1 1 1

1 1

( ) ( )

( )

m m t

i i i j i j i i
i i j

t m

j j i i i
j i

H x d y h x w d y

w h x d y

= = =

= =

=

=

∑ ∑∑

∑ ∑
            (7) 

Incorporating with (6), we can obtain (8): 

min max
1

( )
m

i i i
i

H x d yγ γ
=

≤ ∑ ≤                          (8) 

From inequation (8), we can find that the edge of 
strong classifier ( )iH x is lower than the maximum edge 
of the weak classifiers. Using this logic, the error of 
final strong classifier is higher than minimum error of 
the weak ones. However, this conclusion conflicts with 
LPBoost and runs counter to the boosting theory. Thus, 
what’s wrong with the above conclusion and deduction? 
Close inspection shows that the final strong classifier 
should not be ( )iH x  but '( )iH x .Alternatively, '( )iH x  
maybe not satisfy the inequation (9). Once the edge of 
strong classifier was found to may be higher than the 
weak, a natural algorithm emerged: simply adding the 
edge constraint of strong classifier to the LPBoost, 
which makes constrains tighter. And then, the 
convergence rate is improved further. The experiment 
section gives painstaking experimental verification. 

'
min max

1
( )

m

i i i
i

H x d yγ γ
=

≤ ∑ ≤                                (9) 

3.2. Strong classifier and minimax theory 

This section shows the necessity of introducing the 
strong classifier from the point of minimax theory. The 
goal of boosting algorithm is to maximize the margin 
over sample set25, and this maximizing problem(left side 
of the equation (10)) can be converted into the minimax 
problem(right side of the equation (10)) according to the 

equation (3). In more specific terms, the minimax 
problem can be solved by two steps: the first is to find 
the weak classifier with maximum edge, and then, 
adjusting the weight d over samples to minimize the 
edge of classifier j  (where arg max .jj

j = iu d ). All of the 

existing variants of LPBoost (including SoftBoost, 
ERLPBoost) basing on this idea find a weak classifier 
with maximum edge to minimize its edge. 

max min * * min max * *
d dw w

w U d w U d=      (10) 

We expand minimax equation (3) to equation (10) 
which can be proved to still hold via Von-Neumann’s 
MiniMax theory 21, 26.Different with (3), equation (10) 
employ weighted mixed strategy rather than pure 
strategy. Observe that when d  in the left side and w  in 
the right side are values of base vector, we arrive at the 
equation (3). Obviously, equation (10) is better than (3) 
because the mixed strategy is more practical than pure 
strategy. In terms of (10), its left side is weighted 
combination of margin over examples, and the right side 
is weighted combination of edge over hypotheses. In 
this respect, strong classifier can be representative for 
combination of weak hypotheses. Consequently, it is 
reasonable to introduce the strong classifier into the 
equation (3). Specifically, when strong classifier H is 
converted into a new weak classifier , and add the 

into the cost matrix and solve the optimum problem 
(5). 

'h
'h

4. StrongLPBoost 

In the minimax problem that motivates the main 
algorithm of this paper, StrongLPBoost, a constraint of 
strong classifier is added to the constraint of linear 
programming (5). The modified linear programming 
problem is defined as minimizing problem (11) after 
appending the edge constraints of '( )iH x  to the dual 
problem. The pseudo-code is shown in Fig.2.  
StrongLPBoost minimizes the relative entropy to initial 
distribution of samples when maximizing the soft 
margin. 

At each iteration, weak hypothesis  is generated 
via calling oracle with parameter , and then, new  
and  can be obtained by solving the (11) and (5) 
respectively. The problem (11) only devotes to the 
update of sample distribution and (5) is employed to get 

th
1td − td

tw
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1 1

1. :
1. Input : {( , ),...,( , )},

0;
; 1,

,
: ( )

m m

StrongLPBoost
S x y x y

MaxIter
oracle d

ε δ
η ν

=
>

≤ ≤

Algorithm-

desirederror: confidence: ，

trade of faceor: noise rate:0

maximum iteration:

weak classifier generator ，

weak classifier

0 0

,

.
2.Initialize:

, ( ) 1
3. 1

( )
,

{ }
( )

min
t

t

t

t

d

H

d err t
for t to MaxIter

a oracle d
h

H H h
b

γ

δ ε =
=

= ∪

 generating 

a new weak classifier 

s set:

:uniform distribution， = 。

call with parameter 

；

Solve the linear programming problem：
0

,
1

1

1

0

. ( , )

. . , 1 ;

( ) ;

0 , 1;

. ( , )
( )

LPBoo

t

m

i j i
i

m
t

i i i
i

j j
j

t

t t

d d

st u d for j t

f x yd

vd d
m

d
d d

c

γ η

γ

γ

δ γ η

=

−

=

+ Δ

≤ ≤ ≤

≤

≤ ≤ =

= + Δ

∑

∑

∑
update distribution ,

；

Compute the optimum weights of classifiers 

with margin maximizing algorithm in 

1

1
2

;

st w

( ) ( ( )),

( ( ( ) ))
( ) 1 ;

( ) ( )

4.Output :
LPBoost w

( ) ( (

t
t q

q
q

t
i i

i

t t

q
final q

break

f x sign w h x

f x y
err t

n
f if

end

f x sign w h

εδ δ

=

−

=

==
= −

− <

=

∑

∑

：

compute the optimum weights of classifiers

 with margin maximizing algorithm in ：

1
)) ,

where : the number of weak classifier

t

q
x

t
=
∑

；

 

Fig. 2.  StrongLPBoost algorithm pseudo-code. 

the weights of hypotheses. Thus, we can get the current 

strong classifier:
1

( ) ( )
t

t q
q

q

f x w h
=

= ∑

0

,

,
1

1
1

min ( , )

. . , 1 ;

' ( ) ;

0 , 1;

t

t

d

m

i j i
i

m

t i i i
i

j j
j

d d

s t u d for j

H x y d

vd d
m

γ
γ η

γ

γ

=

−
=

+ ⋅Δ

t≤ ≤ ≤

≤

≤ ≤ =

∑

∑

∑

                             (11) 

On one hand, our iteration bound for StrongLPBoost 
is the same to the bound proven for ERLPBoost since 
this algorithm just does the work on making the 
constraints of ERLPBoost tighter. On the other hand, 
the tighter constraints make d faster to reach to the ideal 
distribution than ERLPBoost, that is to say it needs at 

most 2

1( ln )NO
vε

 iterations to reach the optimum soft 

margin with ε  error rate, where  is the number of 
noise. 

v

5. Experiment 

In order to evaluate the performance of our new 
algorithm, we made an extensive comparison among the 
original AdaBoost, LPBoost, SoftBoost and ERLPBoost 
using decision tree as the weak classifier algorithm. 

5.1.   Experiment Setup 

As previously used in Refs.8,18,19, except for Spiral 
and Banana datasets, all of our experiments utilize data 
from 9 benchmark data sets derived from the UCI and 
DELVE benchmark repository: banana ,breast cancer, 
diabetes, german, heart, image segment, ringnorm, new-
thyroid, twonorm, waveform, spiral. However, these 
datasets can not be used as experiment data before 
preprocessing them as follows: 

(1) A random partition into two classes is necessary 
for the data set that is not used for binary classification 
originally. 

(2)We remove the samples with missing value so 
that all the attributes of the samples have values. 

(3)The symbolic or nominal attributes in samples 
are mapped into the number from 1 to N, here N is the 
number of attribute values. 

Finally, the experiment data descriptions are shown 
as Table II. Basing on the two dimensional Spiral and 
Banana datasets (Seen in Fig.3), it's more convenient to 
observe the differences of several boosting algorithms 
over edge, margin and iteration bound. x . 

All the weak classifiers in these boosting algorithms 
are single decision tree. On each training set 5-fold-
cross validation is used to train and test model for every   
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Table 2.  Dataset description in the experiments 

dataset Attribute 
number 

Original 
attribute 
number 

Sample 
size for 
each class 

Sample 
size 

banana 2 2 1000/1000 2000 
breast 
cancer 

10 2 357/212 569 

heart 14 2 150//120 270 
image 
segment 

19 7 990/1320 2310 

ringnorm 21 2 3700/3700 7400 
flare sonar 11 3 323/646 969 
splice 60 3 1535/1655 3290 
new-thyroid 5 3 150/75 215 
titanic 4 4 1316/885 2201 
twonorm 21 2 3700/3700 7400 
waveform 21 3 2000/2000 6000 
spiral 3 2 900/900 1800 
german 20 2 700//300 1000 
Diabetes 8 2 500/268 768 

dataset (Training: Test=60%:40%). This method will 
make this comparison more robust and the results more 
reliable. For the algorithm basing on soft margin, we 

set: 0.01ε = , 0.05v =  and 2 ln N
v

η
ε

= . 

5.2.  Accuracy   

Firstly, we evaluate the accuracy of StrongLPBoost 
comparing with other 4 boosting algorithms over 11 
datasets. In Table III the average generalization 
performance (with standard deviation) over the 11 
datasets with 5 models for every boosting algorithm are 
shown. For the purpose of more extensive comparison, 
we introduce other evaluation criterions (including 
recall, fscore, fp_rate, specificity, matthews24,29,30).It’s 
difficult to list all the results of 5 algorithms, so we just 
show the results of AdaBoost, LPBoost, StrongLPBoost 
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Fig. 3.  Dataset of Spiral and Banana 
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Table 3.  Accuracy of 5 algorithms over 11 datasets: the mean and variance of 5-fold-cross validation 

Data set AdaBoost LPBoost SoftBoost ERLPBoost StrongLPBoost 

banana 1 1 1 1 1 
breast cancer 0.9571±0.0005 0.9607±0.0009 0.9446±0.0008 0.9732±0.0007 0.9643±0.0007 
heart 0.8259±0.0023 0.7667±0.0049 0.7889±0.0013 0.763±0.0006 0.7907±0.0007 

image segment 0.9230±0.0003 0.9572±0.0001 0.8865±0.0045 0.9752±0.001 0.9804±0.0002 

ringnorm 0.745±0.0016 0.6495±0.0006 0.693±0.0087 0.638±0.0019 0.8825±0.0007 
new-thyroid 0.8837±0.003 0.907±0.006 0.8977±0.0031 0.9023±0.0046 0.9395±0.0019 

twonorm 0.9455±0.0001 0.9480±0.0001 0.8920±0.0062 0.947±0.0013 0.9480±0.0003 

waveform 0.9259±0 0.9275±0.0001 0.92±0.0002 0.9250±0.0002 0.9270±0.0002 

german 0.742±0.0001 0.733±0.0009 0.7360±0.0004 0.7360±0.0006 0.75±0.0006 
diabetes 0.7519±0.0004 0.7299±0.0009 0.7143±0.0026 0.7091±0.0013 0.7495±0.0012 
spiral 0.8094±0.0001 0.8094±0.0005 0.7819±0.002 0.8075±0.0007 0.8169±0.0002 

(Note that:Bold marking the statistics of the StrongLPBoost and underscores marking the weaker results comparing with the 
other algorithms) 

Table 4.  Six evaluation criterions of 3 algorithms over 11 datasets: the average value of 5-fold-cross validation 

 accuracy recall fscore fp_rate specificity matthews 
Data set ab lb sb ab lb sb ab lb sb ab lb sb ab lb sb ab lb sb 

banana 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

breast 
cancer 

0.957 0.961 0.964 0.955 0.963 0.967 0.966 0.967 0.972 0.04 0.04 0.041 0.961 0.956 0.959 0.958 0.959 0.963

heart 0.826 0.767 0.791 0.826 0.808 0.812 0.846 0.7875 0.82 0.167 0.284 0.257 0.833 0.716 0.726 0.83 0.76 0.81 
image 
segment 

0.923 0.957 0.98 0.921 0.978 0.981 0.933 0.978 0.983 0.072 0.028 0.0195 0.928 0.972 0.981 0.928 0.975 0.98 

ringnorm 0.745 0.65 0.883 0.705 0.604 0.879 0.783 0.733 0.887 0.163 0.174 0.114 0.837 0.826 0.886 0.771 0.715 0.883

new-
thyroid 

0.884 0.907 0.94 0.881 0.915 0.949 0.92 0.937 0.957 0.089 0.083 0.083 0.911 0.918 0.918 0.896 0.916 0.933

twonorm 0.946 0.948 0.948 0.95 0.947 0.943 0.944 0.948 0.947 0.0.058 0.043 0.047 0.942 0.957 0.953 0.946 0.948 0.948

wavefor
m 

0.926 0.928 0.927 0.931 0.922 0.93 0.931 0.93 0.93 0.0712 0.0665 0.076 0.929 0.934 0.924 0.93 0.928 0.927

german 0.742 0.733 0.75 0.76 0.793 0.802 0.834 0.815 0.827 0.359 0.437 0.398 0.641 0.563 0.603 0.7005 0.6778 0.702

diabetes 0.752 0.73 0.75 0.781 0.796 0.78 0.819 0.792 0.813 0.921 0.374 0.410 0.679 0.626 0.743 0.73 0.711 0.724

spiral 0.809 0.809 0.817 0.814 0.809 0.819 0.811 0.813 0.819 0.192 0.187 0.182 0.808 0.813 0.818 0.811 0.811 0.818

(Note that bold marking the statistics of the StrongLPBoost and underscores marking the weaker results comparing with the other 
algorithms;ab=AdaBoost,lb=LPBoost,sb=StrongLPBoost) 

(As seen in Table 4).Note that except for the heart and 
diabetes datasets, the performance of StrongLPBoost is 
better than other boosting algorithms in almost all cases. 
For the two datasets, even though StrongLPBoost 
perform not as good as to AdaBoost, experimental 
results still show the competiveness compared with 
other variants of LPBoost. 

5.3. Margin and iteration bound 

Next, we compare the four maximizing margin 
algorithms from the aspects of the weak classifier 
relevance, margin, accuracy and iteration number. In 
order to make it easier to compare StrongLPBoost with 
SoftBoost and ERLPBoost, we use the Banana dataset 
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Fig. 4 Soft margin of LPBoost，SoftBoost，ERLPBoost and StrongLPBoost over Banana dataset 
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Fig. 5 .Accuracy rates of the LPBoost, SoftBoost, ERLPBoost and StrongLPBoost over Banana dataset 

in this experiment similar with the work by18, 19. Note 
that the reason we leave out AdaBoost is that it is not 
based on margin maximizing theory. Fig. 4 and Fig. 5 
are the experimental result of 4 algorithms over Banana 

dataset at a time. Fig. 4 shows the margin value along 
with iteration number. The result shows that 
StrongLPBoost has the best convergence rate; 
ERLPBoost and LPBoost have similar convergence 
speed and the convergence of SoftBoost is worse when 
compared with other 3 boosting algorithms. Fig. 5 

describes the accuracy boosting with the iteration about 
four algorithms. From the two figures, it can be seen 
that StrongLPBoost has fast convergence speed to close 
to the optimum soft margin with a small quantity of 

weak classifiers. 

5.4. Strong classifier edge constraint and 
convergence 

In this subsection, we show that the edge constraint of 
strong classifier has an impact on convergence. Here, 
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Fig. 6. Edges of ' ( )H x ,  and ( )H x γ  before adding the strong classifier ' ( )H x  
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Fig. 7. Edges of ' ( )H x ,  and ( )H x γ  after adding the strong classifier ' ( )H x  
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Fig. 8. Accuracy convergence rate before and after adding the strong classifier ' ( )H x  
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the experimental data is based on spiral dataset (The 
reason why not using banana dataset is that four 
boosting algorithms are so easy to converge to the 
optimum of soft margin that it’s difficult to observe the 
convergence change after adding strong classifier edge 
constraint.). Fig. 6 shows the edges of ' ( )H x , 
H ( )x andγ  along with iteration before adding the edge 
constraint of ' ( )H x .Red curve represents for the edge 
of ' ( )H x ,however, the edge of ( )H x  and γ  approach 
zero( ) after solving the dual problem(5) at each 
iteration. Similar with our conclusion in section 3, the 
edge of 

610−

( )H x (blue curve) is always lower thanγ , and 
moreover, the edge of ' ( )H x  may be lower and higher 

thanγ . When the edge constraints of ' ( )H x  are added, 
the three edges are shown as Fig. 7, they all approach 
zero. Then, we can see that ' ( )H x  takes effect. The 
convergence changes after adding ' ( )H x ’s edge 
constraint are shown in Fig. 8. 

5.5. Strong classifier and weak classifier 
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Fig. 9. Edges of ' ( )H x , ( )H x  and γ  before adding the strong classifier ' ( )H x  
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Fig. 10. Weak classifiers (thin) and strong classifier (thick) generated by SoftBoost over Banana dataset 

Finally, this experiment shows how the constraint of 
strong classifier influences the weak classifier. In order 
to simplify the experiment, 800 samples in banana 
dataset are used. Fig. 9 shows the 15 weak classifiers in 
the 20 iterations generated by SoftBoost. There are 
amounts of relevance and redundancy during the 20 
classifiers. On the contrary, there are just seven weak 
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6. 

classifiers generated by StrongLPBoost as shown in Fig. 
10. 

Conclusion 

In this paper, we firstly review the research progress of 
boosting algorithm, and analysis the LPBoost and its 
variants from the point of minimax theory. The existing 
algorithms based on LPBoost originated from the 
minimax of pure strategy. The new distribution of 
samples is computed via solving the problem of 
minimizing the edge of weak classifier with maximum 
edge. And then, we expand the minimax from pure 
strategy to mixed strategy because the mixed strategy is 
more practical compared with pure strategy. According 
to the minimax of mixed strategy and ERLPBoost, we 
proposed a new boosting algorithm of simply adding the 
edge constraint of strong classifier to the problem of 
minimizing the maximum edge. Finally, we evaluate the 
StrongLPBoost with the experiments over the 
benchmark data sets and the experimental results show 
that the new algorithm of this paper has the higher 
convergence rate and accuracy compared with the 
popular boosting algorithms. 

Our future work will concentrate on a continuing 
improvement of selection on weak classifiers for noisy 
real world applications, in addition, a further analysis of 
relation between strong classifier edge and margin 
convergence. Moreover, it is interesting to see how the 
techniques established in this work can be applied to 
find the support samples.  
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