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Abstract 

This paper presents a novel method for simultaneous feature selection and classification by incorporating a robust 
L1-norm into the objective function of Minimax Probability Machine (MPM). A fractional programming 
framework is derived by using a bound on the misclassification error involving the mean and covariance of the 
data. Furthermore, the problems are solved by the Quadratic Interpolation method. Experiments show that our 
methods can select fewer features to improve the generalization compared to MPM, which illustrates the 
effectiveness of the proposed algorithms. 
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1. Introduction 

Feature selection for classifiers is an important research 
tool with many applications1,2 in machine learning field. 
Feature selection has two main objectives: 1) to select a 
small feature subset and 2) to maintain high 
classification accuracy. This paper addresses the issue 
of constructing linear classifiers using a small number 
of features when data is summarized by its moments.  

Given the data set , 
{( , ) , 1, 1,2, }n

i i i iD x y x R y i m= ∈ = ± = L , finding useful 
features for a linear classifier  ( ) = sgn( )Tf x w x b−  is 
equivalent to searching for a sparse w, such that the 
most elements of w are zero. This can be understood as 
when the ith component of w is zero, the ith component 

of the observation vector x is irrelevant in deciding the 
class of x. Using the L0-norm of w, 

0
{ iw number of i w 0}≠=  , the problem of feature 

selection can be designed to minimize the L0-norm, but 
this problem is generally NP-hard3. A tractable convex 
approximation to the problem can be obtained by 
replacing the L0-norm with the L1-norm 

1w  . Therefore, 
the problem of feature selection for classifiers can be 
posed as: 

1,
min

. . ( ) 0, 1, 2, .

w b

T
i i

w

s t y w x b i m− ≥ = L

     (1)     

A solution to Eq. (1) yields the desired sparse weight 
vector w. The above formulation can be categorized as 
an embedded approach4, where the feature selection 
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process is embedded into the classification framework.  
Other feature selection methods for classifiers, like the 
filter approach and the wrapper approach5,6, are not 
discussed in this paper. The interested reader is referred 
to cited references for additional information on these 
methods. 

  Although Minimax Probability Machine (MPM)7 
has been recently shown to have advantages over other 
methods in the machine learning processes, the 
featureselection for MPM is still a novel and 
challenging subject. This paper develops a novel and 
critical extension algorithm for MPM by incorporating a 
robust L1-norm into the objective function of MPM to 
suppress the dimension of the input space and reduce 
the sensitivity to outliers. As a result, the problem can 
be solved by the Quadratic Interpolation (QI) algorithm8. 

2. Minimax Probability  Machine 

MPM provides a worst-case bound on the 
misclassification error of future data when data is 
summarized by its moments. Compared with traditional 
probability models, MPM avoids making assumptions 
with respect to the data distribution. 

Following is a simplified explanation of MPM. A 
more detailed description can be found in Ref. 7. Let 

 and  denote n dimension random vectors 
representing two classes of data, with means 

and covariance matrices   

and   respectively, where  and 

1X 2X

1 1 1~ ( , )X µ Σ 2 2~ ( , )X µ Σ2

1 2, ,nR∈µ µ 1 2, n nR ×Σ Σ ∈ . 
The objective of MPM is to formulate the hyper plane:   

}{),( bxwxbwH T == such that class  (or class ) is 

placed in the half space  
1X 2X

1( , ) { }TH w b x w x b= >  (or 

2 ( , ) { }TH w b x w x b= <  ) with maximal probability with 

respect to all distributions. This can be formulated as: 

1

2

, ,

1

2

max

inf Pr{ } ,

inf Pr{ } .

. .
w b

X

X

H

H

s t
α

γ

γ

γ

∈ ≥

∈ ≥

(2) 

where  represent the lower bounds of the accuracy for 
future data. Furthermore, Eq. (2) can be expressed as a 
second order cone program (SOCP)

γ

9. 

1

1 2

min

. . ( ) 1.

T T

w

T

w w w w

s t w µ µ

Σ + Σ

− =

2                (3) 

3. Feature Selection via MPM (S-MPM) 

In this section, we present a novel method for feature 
selection and classification simultaneously based on 
MPM. More specifically, we designed a feature 
selection framework such that the maximum 
misclassification Bayes error rate is minimized. This 
indicates that using as few  relevant features as possible 
minimizes the probability of misclassification error. 

3.1. Problem Definition 

Let 1γ α= −   and then MPM (2) can be equivalently 
expressed as: 

, ,

1 2

2 1

min

    . . sup Pr{ } ,

 sup Pr{ } .

w b

s t X H

X H

α
α

α

α

∈ ≤

∈ ≤

      (4) 

where α   is the  upper bound on the misclassification 
probability in a worst-case setting. This optimization 
exactly leads to minimizing the expected upper bound 
of the misclassification Bayes error for two class data. 
According to the above analysis, the feature selection 
for classifiers can be designed to minimize the L1-norm 
of w. Thus, we incorporate a robust L1-norm of w into 
the objective function of MPM (4) by weighting L1-
norm by λ−1   with a suitably chosen parameter 

)1,0(∈λ , which leads to a feature selection framework 
based on MPM, or S-MPM for short. 

1, ,

1 2

2 1

1 1 1 2 2 2

min (1 )

. . sup Pr{ } ,
sup Pr{ } ,
~ ( , ), ~ ( , ).

w b
w

s t X H
X H

X X

α
λ λα

α
α

µ µ

− +

∈ ≤
∈ ≤

Σ Σ

          (5) 

On the training dataset, the error rate of the classifier, 
with as few of the useful features as possible, is upper 
bounded byα  . Here the positive parameter λ is a scalar 
regularization parameter that controls the balance 
between the prediction accuracy and the number of 
selected features for the classifier.  Thus, the S-MPM 
classifier is a combination of the MPM and the L1-norm, 
where the MPM minimizes the upper bound of the 
misclassification error of predicting future data, and the 
L1-norm encourages sparseness for the classifier. 

3.2. Model Interpretation 

MPM is mainly focused on maximizing the probability 
of predicting future data, which is not explicitly 
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connected with the issue of the feature selection for 
classifiers and the generalization of the model as 
described here. We will show that S-MPM makes it 
possible to reduce the selected features and improve the 
generalization of the model. The advantage of doing so 
is twofold: 
(i) As a generalized model of MPM, S-MPM includes 
and expands the MPM; when λ= 1, Eq. (5) is equivalent 
to the MPM. Moreover, this model includes  another 
special model when λ= 0, which formulates feature 
selection using moments as proposed in Ref.10. 
(ii) S-MPM can effectively control the course of 
dimensionality and also reduce  the sensitivity for the 
classifier. Thus it improves the robustness to outliers 
due to including L1-norm in the objective function of S-
MPM model. 

3.3. Solving S-MPM Optimization 

For simplicity, we will assume that both   are 
positive definite. Our results can be extended to general 
positive semi-definite cases. 

1 2,Σ Σ

The following multivariate generalization of the 
Chebychev Cantelli inequality11 will be used in the 
sequel to derive an upper bound on the misclassification 
probability of a random vector taking values in a given 
half space. 
Lemma. Given , the mean 
and covariance of  X  be . Let  

, 0,nw R w b R X R∈ ≠ ∈ ∈£ ¬ n

nnn RR ×∈Σ∈ ,µ
},{),( nT RzbzwzbwH ∈<=  be a given half space. Then 

the following inequality holds: 
2

2Pr{ } .T

sX H
s w w

∈ ≥
+ Σ

                       (6) 

where . )0,max()(,)( xxwbs T =−= ++µ
Then, the expected upper bound of the misclassification 
error rate can be expressed as: 

2Pr{ } .
T

T

w wX H
s w w

∑
∉ ≤

+ Σ
                    (7) 

Using Eq. (7),  constraint for class  in Eq. (5) can be 
handled by setting 

1X

1
1 2 2

1 1

Pr{ } .
( )

T

T T

w wX H
w b w w

α
µ +

Σ
∈ ≤ ≤

− + Σ
    (8) 

which results in two constraints: 

1 1
1 , 01

T T Tw b w w w bαµ µ
α
−

− ≥ ⋅ Σ − ≥ .       (9) 

Let /(1 )α −α = η  . Similarly, applying (7) to the other 
constraint, Eq. (5) can be formulated as: 

1, ,

1 1

2 2

1 2

min (1 )

. . ( ),

( ),

0, 0.

w b

T T

T T

T T

w

s t w w w b

w w b w

w b b w

α
λ λα

η µ

η µ

µ µ

− +

Σ ≤ −

Σ ≤ −

− ≥ − ≥

               (10) 

Let . Without loss 
of generality, we can restrict w such that:  
and . Furthermore, by introducing two 

vectors   such that 

nnTT RCCCCCC ×∈=∑=∑ 21222111 ,,,
11 ≥−bwTµ

12 ≥− µTwb
0, 0, , nu v u v R≥ ≥ ∈ ,w u v= −  

then ),(
1

vuew += Τ  finally, the problem (10) can be 
formulated as: 

2

2, , ,

1 1

2 2

1

2

min (1 ) ( )
1

. . ( ) (( ) ),

( ) ( ( )

( ) 1,

  ( ) 1, , 0.

T

u v b

T T

T T

T

T

e u v

),

s t C u v u v b

C u v b u v

u v b

b u v u v

η

η
− λ + + λ

+ η

− ≤ η − µ −

− ≤ η − − µ

− µ − ≥

− − µ ≥ ≥

     (11) 

This is a fractional programming that minimizes the 
sum of convex-convex ratios. However, finding its 
global optima in general has been shown to be difficult12.  
In recent years, although some progress in the special 
structure of the objective function has been made, most 
of the corresponding algorithms apply only to the sum 
of linear ratios. To the best of our knowledge, as of 
today there have been no reports of an effective method 
for globally solving the sum of nonlinear ratios 
problems. 

In this paper, we have solved the problem using the 
Quadratic parabolic Interpolation algorithm8. More 
precisely, in Eq. (11), if we fix η to a specific value 
within (0,1), the optimization (11) is equivalent to 
minimizing L1-norm and becomes a SOCP. If we denote 
the value of the optimization as a function, the above 
procedure corresponds to finding an optimal η to 
minimize. This means finding the minimum point by 
updating a three-point pattern ),,( 321 ηηη repeatedly. The 

new η denoted by kη   is given by the quadratic 
interpolation from the three-point pattern. Then a new 
three-point pattern is constructed by  kη   and two of 

1 2 3, ,η η η  . This method has been shown to converge 
super-linearly to a local optimum point8. The algorithm 
is described below: 
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(i) Given  and taking , . 0ε >
1 2 3η < η < η 1 2 3, , (0,1)η η η ∈

 Let k=0 and  
2

2( ) (1 ) ( ) .
1

Tf e u v η
η = −λ + + λ

+η
        (12) 

(ii)  Let  
2 2 2 2 2 2
2 3 1 3 1 2 1 2 3

1 3 2 1 3

) ( ) ( ) ( ) ( ) ( )1
2 ) ( ) ( ) ( ) ( ) (k

f f
f f

η −η η + η −η η + η −η η
η = ⋅

η η η + η η η + η η η2 3 1 2

(
( - - - )

f
f . 

                                                                                 (13) 
(iii) Solve the Eq.(11) and calculate ( )kf η . 
  If 1 2 1, ( ) ( ) , ( ) (k k kand f f f fη < η < η η < η η < η2 ) ,  

then 3 2 2: , : kη =η η = η , namely, use 1 2( , , )kη η η  as 
new 1 2 3( , , )η η η in the new iteration. 

  If 2 3 2, ( ) ( ) , ( ) (k k kand f f f fη < η < η η < η η < η3 ) , 
then 1 2 2: , : kη = η η = η , namely, use 2 3( , , )kη η η as 
new  in the new iteration. k:=k+1. 1 2 3( , , )η η η

(iv) If 
1( ) ( )k kf f −η − η < ε , then obtain kη , keep w,b in 

memory, then stop, else (ii). 

4. Feature Selection for Fisher Discriminants via 
MPM (FS-MPM) 

In this section, we  describe the design of the feature 
selection for the Fisher discriminant classifier13 based 
on MPM. Using the above notation, let    
define the difference between the class conditional 
random vectors, and then X  lies in the halfspace. We 
can derive the Fisher discriminant classifier based on S-
MPM (called FS-MPM) by considering the following 
formulation. 

1 2X X X= −

, ,
min

. . sup Pr{ } ~ ( , ).
w b

s t X H X
α

α

α µ ∑∉ ≤ £ ¬
        (14) 

Similarly, we incorporate a robust L1-norm into of w the 
objective function of the Eq. (14), and then the problem 
can be formulated as: 

1, ,
min (1 )

. . sup Pr{ } , ~ ( , ).
w b

w

s t X H X
α

− λ + λα

∉ ≤ α µ Σ
        (15) 

As  and  are independent, the mean of X  is 

   and covariance is   . Using 
the Chebychev bound (6), the constraint of Eq. (15) can 
be lower bounded by 

1X 2X

21 µµµ −= 21 Σ+Σ=Σ

2Pr{ } , 0.
( )

T
T

T T

w wX H w
w w w+

Σ
∉ ≤ ≤ α µ ≥

µ + Σ
       (16) 

which results in two constraints: 

1 , 0T T Tw w w w−α .µ ≥ ⋅ Σ µ ≥
α

               (17) 

Finally,   FS-MPM (15) can be reformulated as: 

1, ,

1

min (1 )

. . ,
1

0.

w b

T

T

w

s t w w w

w

α
− λ + λα

α TΣ ≤ µ
− α

µ ≥

                       (18) 

A similar analysis is carried out for Eq. (18), and then 
Eq. (18) involves solving the following problem 

2

2, , ,
min (1 ) ( )

1

. . ( ) (( ) ),

( ) 1, , 0.

T

u v b

T

T

e u v

s t C u v u v

u v u v

η

ηλ λ
η

Tη µ

µ

− + +
+

− ≤ −

− ≥ ≥

             (19) 

Here ,0,0, ≥≥−= vuvuw TCC=Σ  ,  and nnRC ×∈
/(1 )α −α = η  . This is also a nonlinear fractional 

programming. Here, the QI method is also used to find 
the local solution of the problem (19). 

5. Experimental Design and Results 

In order to evaluate the proposed algorithms, we  
compared our algorithms with the original MPM in 7 
real data sets (Wine, Ionosphere, Hepatitis, Sonar, Spam, 
German credit, Australian credit) from the UCI machine 
learning repository14. These data sets have 13, 34, 19, 60, 
57, 20 and 14 features, respectively. 

5.1. Experimental Design 

We used the following performance measurements to 
evaluate our methods: 
(i) Test-Set Accuracy (TSA): including Test-Set 

Accuracy on Class 1 (TSA1), on Class 2 (TSA2) 
and   on both classes (TSA). 

(ii)  The Number of selected features (NSFs);  
(iii)  Receiver Operating Characteristic (ROC)15,16. The 
ROC curve plots a series of true positive rates (TPR) 
versus false positive rates (FPR). Moreover, when the 
ROC curves are generated with good shapes and evenly 
distributed along their length, they can be used to 
evaluate learning algorithms by using the area under the 
curve.  The larger the area under the curve, the higher 
the sensitivity for a given specificity that results in 
better performance of the method. 

The experimental results are obtained by averaging 
10-fold cross-validation for each dataset. The 
experiments use SeDuMi17 as a solver, and the results 
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are given in Table 1-7 respectively. The ROC curves are 
illustrated in Fig. 1-7. The optimal parameter (para.) λ 
of Eq. (11) and Eq. (19) is tuned by 5-fold cross-
validation on the training set to maximize the test 
accuracy. 

5.2. Experimental Results 

Tables 1-7 summarize the test set accuracies, the 
number of selected features and the optimal parameter 
values. 

(i) TSA analysis. We compared only the performance 
of the S-MPM (11) with   MPM (2). The results 
presented in Tables 1-6 show that S-MPM achieves 
noticeably better performance than MPM in Sonar, 
Ionosphere, Hepatitis, Wine, Spam and German credit 
datasets, especially, for Wine dataset. In Table 7, our 
models are very close to MPM for Australian credit 
dataset. 

(ii) Comparison of the feature selection. Tables 1-6 
show that S-MPM can always select fewer features than 
MPM but improve the test accuracy in all 6 datasets, 
with the exception of the Australian credit data.  In 
Table 7, we observe that our models and MPM show no 
significant difference in terms of the feature selection 
comparison in the Australian credit data. 

By analyzing the results of the simulations, we 
observed that our models were able to always select 
fewer features, and the TSAs were consistently better 
than the ones for MPM in 6 of the analyzed datasets: 
Ionosphere, Wine, Sonar, Spam and German credit 
datasets. This means that our models can maintain high 
test accuracy by removing a few irrelevant features 
compared to the MPM in most of the data set. 

(iii) ROC curve analysis. Figs. 1-6 illustrate that the 
S-MPM performs significantly better than  MPM in 6  
datasets: Sonar, Ionosphere, Hepatitis, Wine, Spam and 
German credit datasets, as shown by the fact that the S-
MPM curve is noticeably above the one for  MPM. In 
Fig. 7, two curves are very close in the Australian credit 
dataset. In addition, not all the portions of the ROC 
curve are of great interest. In general, those with a small 
FPR and a high TPR are most important. In light of this, 
we show the critical portions of Figs. 1-6 with more 
detail when the FPR is in the range of [0, 0.3] and the 
TPR is in the range of [0.7, 1.0], respectively. This 
again demonstrates the superiority of the S-MPM. 

In summary, the experimental results demonstrate 
that our algorithms achieve better performances by 

removing a few irrelevant features than MPM in terms 
of the TSA comparison, ROC curve analysis and NSFs 
criterion in the majority of the datasets. Effectively 
reducing the number of dimensionality will greatly 
decrease the computational complexity and reduce the 
memory requirement. 

Table 1   TSAs and NSFs for Sonar . 

Sonar           TSA          TSA1        TSA2      NSFs        Para. 
MPM           0.545        1.000          0.000         60             -- 
S-MPM        0.787         0.911        0.762       5              0.90 
FS-MPM       0.818        ----            ----           54            0.90 

 Table 2   TSAs and NSFs for  Ionosphere. 

Ionosphere       TSA          TSA1        TSA2      NSFs        Para. 
MPM              0.615        1.000           0.000         34             -- 
S-MPM           0.870        0.920          0.880          5            0.90 
FS-MPM          0.930        ----            ----             12            0.60 

Table 3   TSAs and NSFs for  Hepatitis. 

Hepatitis        TSA          TSA1        TSA2      NSFs        Para. 
MPM              0.535        0.800         0.000        19             -- 
S-MPM           0.635        0.600        0.650          9            0.90 
FS-MPM         0.500        ----            ----            5             0.20 

Table 4   TSAs and NSFs for  Wine. 

Wine             TSA          TSA1        TSA2      NSFs        Para. 
MPM             0.350        0.447        0.444        13             -- 
S-MPM          0.900        0.900        0.890         2            0.50 
FS-MPM        1.000        ----            ----             4            0.50 

Table 5   TSAs and NSFs for  Spam. 

Spam             TSA          TSA1        TSA2      NSFs        Para. 
MPM             0.500        1.000         0.000        57             -- 
S-MPM          0.846        0.802         0.800         12            0.90 
FS-MPM        1.000        ----            ----              4              0.50 

Table 6   TSAs and NSFs for  German credit. 

German         TSA          TSA1        TSA2      NSFs        Para. 
MPM             0.478        0.871          0.087        20             -- 
S-MPM          0.730        0.809         0.639         7             0.50 
FS-MPM        0.750        ----            ----              4             0.50 

Table 7   TSAs and NSFs for  German credit. 

German         TSA          TSA1        TSA2      NSFs        Para. 
MPM             0.939        0.875          0.994        14             -- 
S-MPM          0.928        0.849         0.996         14            0.50 
FS-MPM        1.000        ----            ----              9              0.50 
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Fig. 1.  ROC curves of Sonar. 

 

Fig.2. ROC curves of Hepatitis. 

 

Fig. 3. ROC curves of Ionosphere. 

 

Fig. 4. ROC curves of Wine. 

 

Fig. 5. ROC curves of Spam. 

 
                 Fig. 6. ROC curves of German credit.  

 
Fig. 7. ROC curves of Australian credit.  

6. Conclusion and Remarks 

This paper proposes two feature selections for MPM by 
incorporating a robust L1-norm into the objective 
function of MPM to accomplish feature selection and 
classifier training simultaneously, and demonstrates 
their performances on public datasets. Through detailed 
comparisons, our models always select the least number 
of features and maintain  high test accuracy. This 
indicates that the proposed models are superior to the 
MPM in most datasets, and simulation results show also 
the effectiveness of the proposed algorithms. 

The approach in this paper can also be extended to 
formulate nonlinear version using very few support 
vectors. Assume that the discriminating hyper plane be,  

}{ | ( )Tx k x bβ = , which divides the feature space into 
two subsets   and  }{ | ( )Tx k x bβ > }{ | ( )Tx k x bβ <  , 
where the kernel  k is a function obeying the Mercer 
conditions18. We would like to find a decision hyper 
plane utilizing very small number of these vectors or, in 
other words, the goal is to find sparse vector β , which 
can be approximated by the L1-norm of β  . 

Assume that   be a random vector 

corresponding to class 1 while   be another 

random vector belong to class 2. Let the means of   

and  be  

1 ( )Xk k= 1

22 ( )Xk k=

1k

2k 1k   and  2k   respectively and the covariance 

be 1∑   and 2∑   respectively.  Using the Chebychev 
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bound (6), the feature selection for nonlinear MPM can 
be formulated as: 

1, ,

1 1

2 2

1 2

min (1 )

. . ( ),
1

( )
1

0, 0.

b

T T

T T

T T

,

s t k

b k

k b b k

α β
− λ β + λα

α
β Σ β ≤ β −

− α

α
β Σ β ≤ −β

− α
β − ≥ −β ≥

b

2

omputational Intelligence 

3
E Trans. on Information Theory, 

4
ax Probability Machine. IJPRAI, 

5

 profiling data. 

6 is, 

7
nces in 

8
ry and Algorithms. (3rd Edition, IIIE 

Transactions,2008). 

014(1960). 

           (20) 

A similar analysis is carried out for nonlinear S-MPM. 
It can also be reformulated as a fractional programming 
which can be solved by the QI algorithm. We believe 
that this can have significant advantages for data-mining 
problems. 
     In this paper, we have only considered the binary 
cases because multi-class problems can be easily 
approached via standard techniques, such as the one vs. 
others and the one vs. one technique. 
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