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Abstract 

Multi-step-ahead prediction of tunnel surrounding rock displacement is an effective way to ensure the safe and 
economical construction of tunnels. This paper presents a multi-step-ahead prediction model, which is based on support 
vector machine (SVM), for tunnel surrounding rock displacement prediction. To improve the training efficiency of 
SVM, shuffled complex evolution algorithm (SCE-UA) is also performed through some exponential transformation. 
The data from the Chijiangchong tunnel are used to examine the performance of the prediction model. Results show that 
SVM is generally better than artificial neural network (ANN). This indicates that SVM is a feasible and effective 
multi-step method for tunnel surrounding rock displacement prediction. 
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 1. INTRODUCTION 

Many problems, such as tunnel surrounding rock 
deformation and tunnel lining crack, may lead to the 
instability of the tunnel during tunnel construction. It is 
important to obtain reliable estimates of potential tunneling 
problems as early as possible. Statistical Process Control is 
an essential element for quality assurance1. The 
displacement statistics and analysis of the tunnel 

surrounding rock is the most common way to estimate the 
conditions of the tunnel. The lack of effective displacement 
prediction may result in increased cost and delays. 
Moreover, based on the displacement of tunnel surrounding 
rock, project managers identify the tunnel conditions and 
effectively operate their constructed facilities, for example, 
the appropriateness of support quantity and type can be 
determined. Furthermore, some potential danger occasions 
can be avoided by necessary emergency measures in 
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advance. There are many literatures devoted to the 
displacement prediction of tunnel surrounding rock2-3.  

For many engineering application, it is required that 
time series values be predicted many time-steps into the 
future. Many researches have applied multi-step-ahead (MS) 
techniques to deal with their problems. Cheng et al.4 
proposed a multi-step-ahead prediction model to predict a 
long-term discharge in the hydropower system. In the model, 
dynamic spline interpolation with multilayer adaptive 
time-delay neural network had improved the prediction 
accuracy. Parlos et al.5 presented multi-step-ahead 
predictions for highly complex systems, and then they 
attempted to improve the prediction accuracy with dynamic 
recurrent neural networks. Lee and Billings6 presented 
multi-step ahead predictions for solving the non-linear time 
series examples. Chevillon and Hendry7 used 
non-parametric direct multi-step-ahead to predict economic 
processes, particularly for a non-stationary data generating 
process. Other researches for multi-step-ahead can be found 
in the studies by Liu et al.8and Yu et al.9  

It is also essential to provide a dependable displacement 
of tunnel surrounding rock for planning, and management 
activities during tunnel construction. However, there are 
some changes in the ground conditions during tunnel 
construction, and thus it is very difficult to predict the 
displacement of tunnel surrounding rock accurately. Support 
vector machines (SVM) is a relatively new kind of learning 
machine which has been applied successfully in solving 
various time series forecasting problems.10-11 Other 
literatures on SVM can also be found in the studies by Xu et 
al.12 and Reyaz-Ahmed et al.13 Their numerical results 
indicate that SVM shows much resistance to the overfitting 
problem and can provide a high generalization performance.  

These successful applications suggest that SVM is an 
acceptable tool to provide accurate displacement prediction 
of tunnel surrounding rock. However, the performance of 
SVM highly relies on the parameters and there is a need to 
determine the values of parameters. Many literatures have 
proved that the proper choice of the parameters in SVM will 
greatly affect its performance. Improper parameter values 
could result in the overfitting or underfitting of the training 
data points.14 To optimize the parameters in SVM, 
grid-search15-16 is the most reliable method which tries 
values of each parameter across the specified search range 

using geometric steps. However, grid searcher requires too 
many evaluations at many points within the grid for each 
parameter. Quick and effective tools have been paid more 
attentions to improving the efficiency of the parameter 
optimization in SVM. Lorena et al.17 proposed genetic 
algorithms to select the proper parameter values for SVM. 
Ohn et al.18 presented a new kernel function to determine 
appropriate parameters in SVM. Hou and Li19 identified the 
parameters in SVM by using evolution strategy with 
covariance matrix adaptation. Lin et al.20 presented SVM for 
hydrological prediction and a shuffled complex evolution 
algorithm (SCE-UA) was used to identify appropriate 
parameters in SVM. Thus, this paper applies SCE-UA to 
find the appropriate parameters for SVM. 

This paper is organized as follows. In Section 2, we 
describe the MS prediction problem on the displacement of 
tunnel surrounding. In Section 3 we introduce the SVM 
model for regression, and parameters optimization with 
SCE-UA. In Section 4, some computational results are 
discussed and lastly, the conclusions are provided in section 
5.  

 2. MODEL DEVELOPMENTS 

The properties of the displacement prediction of tunnel 
surrounding with MS techniques not only depend on the 
observation values but also on the previous prediction. Thus, 
the recursive relation between inputs and outputs in MS 
prediction can be defined as the following: 
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Where p is the number of steps ahead of p-step-ahead 
prediction model F(·) ( the horizon of MS prediction ), m is 

defined as the number of the inputs, ptx +ˆ which has a “hat” 

represents an estimate of the output at time-step t+p and 

mptx −+ without a “hat” represents an observation. Obviously, 

if p < m, the model inputs consists of observation and 
prediction values, and if p ≥ m, it consists of all prediction 
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values. The structure of MS technique can be described in 
Fig.1. 

 
Fig.1 Structure of MS technique 

The model is recursively used to predict time series 
values of many timesteps into the future. Assume the inputs 

of the current prediction are ),,( 1−+−+ ptmpt xx L , the 

output is ptx +ˆ . Considering m observations, some values of 

the inputs cannot be acquired directly from the observations 
but from the outputs of previous predictions. When p < m, 
the model inputs consist of observation and prediction 
values, the inputs should 

be )ˆ,ˆ,,,( 1,1 −++−+ ptttmpt xxxx LL . When p ≥ m, all the 

inputs come from the outputs of previous predictions, the 

inputs should be )ˆ,ˆ,,ˆ( 12 −+−+−+ ptptmpt xxx L . In the same 

way, the prediction process continues until all the prediction 

values are attained. For example, if let m=5, it means that 
the number of inputs ( in this study, it is also the number of 
observations ) is 5. p is the number of steps which will 
increase with the prediction process. At first, X=[x1, x2, x3, x4, 
x5] as input variables are used to predict x6 (now p=1). Then, 
X=[ x2, x3, x4, x5, x6] are selected as input variables to predict 
x7 (now p=2). Since the value of x6 is not from observations 
but the output of the preceding prediction, the inputs for 

predicting x7 should be ]ˆ,,,,[ 65432 xxxxxX = . Similarly, 

when predicting x11 (now p=6 > m ), the inputs are from x6  

to x10 and the five values are all from the previous prediction. 
Thus, the input variables for predicting x11 

are ]ˆ,ˆ,ˆ,ˆ,ˆ[ 109876 xxxxxX = . In the same way, ptxx +⋅⋅⋅ ˆ,,ˆ12  

can be obtained by MS technique. 

 3. SVM FOR TUNNEL SURROUNDING ROCK 
DISPLACEMENT PREDICTION  

SVM is a learning machine which shows high generalization 
ability by using a set of high dimensional linear functions, 
and thus it can capture reliability data patterns more easily 
than other models. 

 3.1. SVM for regression 

Given a data set skyx kk ,...2,1},,{ =  m
k Rx ∈  is the 

input vector and n
k Ry ∈  is the desire value. SVM 

estimates the function by the following function: 

nm RbRxwbxwxf ∈∈+>=< ,,,,)(    (2) 

Here, >< xw,  is the feature of the inputs. The 

coefficients w and b are estimated by minimizing the 
regularized risk function. 

][
2
1 2 fRCwMinJ emp⋅+=                 (3) 
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The first term 
2

2
1 w  is called the regularized term 

which is used as a measurement of function flatness. The 

second term ][ fRemp  is the so-called loss function to 

measuring the empirical error. C is a regularization constant 
determining the trade-off between the training error and the 
generalization performance.  

Because the cost function for building the model ignores 
any training data close to the model prediction (within a 
threshold ε), introduction of relaxation variables ξ, ξ* is 
used to cope with infeasible constraints of the optimization 
problem. To get the estimation of w and b, the Eq.(3) can be 
transformed to the following function (4) 
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By introducing kernel function K(xi，xj) the Eq.(6) can be 
rewritten as follows: 

∑
=
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where K(xi，xj) is the so-called kernel function which is 
proven to simplify the use of a mapping. The value of K(xi，

xj) is equal to the inner product of two vectors. xi and xj  in 
the feature space φ(xi ) and φ(xj ), that is, K(xi, xj ) = 

φ(xi )•φ(xj ). By the use of kernels, all necessary 
computations can be performed directly in input space, 
without having to compute the map φ(x). For more details 
can be seen in the studies by Vapnik 11 and  Cao et al 21. 

 3.2. Applying SVM in tunnel surrounding rock 
displacement prediction 

Since the rock mass is heterogeneous and the advance 
deformation rate is not a constant, the displacement 
prediction of tunnel surrounding rock is a difficult task. We 
attempt to use MS techniques to estimate the future 
displacements with the historical data. Referring to previous 
literatures, 22 it is feasible that the number of the inputs is set 
to 5. Here, we apply the displacement of the first five data to 
predict the displacement of the 6th data. Then the data (from 
the 2nd data to the 6th prediction value) are used as input to 
predict the 7th data. The rest can be done in the same manner. 
The prediction process of MS based on SVM can be 
described in Fig 2. 

 

Fig. 2 The prediction process of MS based on SVM 

 3.3. SCE-UA for parameters optimization in SVM 

It is appropriate to apply SVM for predicting the tunnel 
surrounding rock displacement. However, there are two key 
factors which will directly affect the ability of SVM. One is 
the selection of the kernel function; the other is the 
identification of the parameters C, ε and σ. Most of the 
previous researches suggested that RBF kernel function was 
reasonable for SVM for regression. In this study, SCE-UA 
algorithm23 is applied to optimize the parameter(C, ε and σ) 
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in SVM. 
The SCE-UA algorithm has been successfully used in the 
area of surface and sub-surface hydrology for the calibration 
of rainfall-runoff models and identification of parameters of 
aquifer formation24. The SCE-UA algorithm combines the 
strengths of the simplex procedure of Nelder and Mead25 
with: 1) the concept of controlled random search after work 
of Price26; 2) competitive evolution after Holland27; and 3) 
the concept of complex shuffling23, 28. The synthesis of these 
three concepts makes the SCE-UA algorithm not only 
effective and robust but also flexible and efficient.  

A general description of the steps of the SCE-UA 
algorithm is given below (more detailed information can be 
found in the studies by Duan et al. 23, 28 and Nunoo et al.29). 

Step 1 Select s points randomly from the feasible 
solution space;  

Step 2 Sort the s points in increasing order such that the 
first point represents the smallest function value. 

Step 3 Partition the s points into p complexes, each 
containing v points. The complexes are partitioned 
such that the first complex contains every p(j-1)+1 
ranked point, the hth complex contains every 
p(j-1)+h ranked point, and so on, where j=1,2,... 
h... v. 

Step 4 Evolve the complexes with the competitive 
complex evolution (CCE) algorithm (which will 
be elaborated later). 

Step 5 Combine the points in all evolved complex into a 
single sample population; Sort the population in 
increasing order and shuffle (i.e. re-partition) them 
into p complexes according to procedure specified 
in Step 3.  

Step 6 If convergence criteria are satisfied stop the 
calculation, otherwise, continue. 

Step 7 If the minimum number of complexes required in 
the population pmin is less than p, remove the 
smallest complex and set p=p-1, s=pv and return 
to Step 4. If pmin=p, return to Step 4 without 
reducing population size p. 

One key component in the SCE-UA is the CCE 
algorithm. The CCE procedure employs the simplex 
downhill search method of Nelder and Mead25 in the 
generation of the offspring. The algorithm is summarized 
from the works23, 28, 29 as follows. 

Step 1 Construct a sub-complex by randomly selecting q 
points from the complex according to a 
trapezoidal probability distribution. The 
probability distribution is specified such that the 
better point has the higher chance of being chosen. 

Step 2 Identify the worst point of the sub-complex and 
compute the centroid of the sub-complex by 
excluding the worst point. 

Step 3 Attempt a reflection step by reflecting the worst 
point through the centroid (see Fig.3). If the newly 
generated point is within the feasible space, go to 
Step 4, otherwise, randomly generate a point 
within the feasible space and go to Step 6. 

 

Fig. 3An example of reflection point 

Step 4 If the newly generated point is better than the 
worst point, replace it with the new point and then 
go to Step 7, otherwise, go to Step 6. 

Step 5 Attempt a contraction step by computing a 
halfway point between the centroid and the worst 
point (see Fig.4). If the contracted point is better 
than the worst point, replace it with the contraction 
point and go to Step 7. Otherwise, go to Step 6. 
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Fig. 4 An example of contracted point 

Step 6 Randomly generate a point within the feasible 
space. Replace the worst point by the new point. 

Step 7 Repeat Steps 2-6 α times, where α ≥1 is the 
number of consecutive offspring generated by the 
same sub-complex. 

Step 8 Repeat Steps 1-7 β times, where β ≥1 is the 
number of evolution steps taken by each complex 
before complexes are shuffled. 

 4. CASE STUDY 

The Chijiangchong tunnel of the Wuhan-Guangzhou railway, 
which is a high-speed rail line connecting Wuhan city with 
Guangzhou city in China, is chosen as the study site. The 
length of the tunnel is about 385m and its location is from 
DK1659+720 to DK1660+105 of the Wuhan-Guangzhou 
railway. We have chosen three sections, which are uniformly 
distributed throughout the tunnel, to acquire the data on the 
tunnel surrounding rock displacement. In general, the 
measurement frequency should be once per day at the 
beginning of the experiment and the frequency may be once 
every other day later. 30 It is due to that the deformation rate 
in the beginning of the experiments is obviously more than 
one in the later. Thus, in this paper, the measurement 
frequency is one every day in the beginning thirteen days. 
Then the frequency is once every other day after the 
thirteenth day. The experiment continued until the tunnel 
surrounding rock displacement is almost stable. Here, we 

took the difference of two consecutive measurements < 
0.1mm as the termination condition. Thus, we acquired three 
sets of data and each set with thirty-two samples from the 
experiment from Sep 8 to Oct 28, 2007.  

 4.1. Parameter Identification 

In this paper, the data is divided into training samples, 
testing samples and inspection samples according to the 
three sets. That is, the data from the first section and the 
third section are used for training and testing, the data from 
the second section are used for inspection. To reduce the 
search space，Due to RBF kernel function employed in SVM, 
previous literature15 suggested that the constraints of the 
three parameters were ]2,2[ 55−∈C , ]2,2[ 113 −−∈ε , and 

]2,0[∈σ . Then SVM is trained using SCE-UA algorithm. 
Here an objective function should be considered: 

2/1

1
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=
∑ =

pn

yy
n

i ii
                  (8) 

where n is the number of testing samples, p is the number of 
model parameters. 

For the practical prediction model of the tunnel 
surrounding rock displacement, the three parameters values 
were selected through the SCE-UA algorithm. Fig. 5 shows 
the convergence of the calculation. Then, the optimal values 
are attained as C =6.4371, ε =0.0032, σ =1.4129. 

 
Fig. 5 The convergence of the calculations 
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 4.2. The determination of the number of 
prediction steps 

The further prediction is very important for tunnel 
construction. However, the more steps there are, the poorer 
the prediction accuracies become. Due to the lack of 
measurements in input horizon, MS prediction technique 
needs the recursive use of single-step (SS) predictors for 
reaching the end-point. Thus, even small errors from 
preceding predictions are accumulated and propagated, then 
resulting in poor prediction accuracy in following 
predictions. To weight the number of prediction steps and 
accuracy, the data from the first section and the third section 
have been used to determine the number of prediction steps. 
Fig. 6 demonstrates the prediction errors of SVM under 
various prediction steps. 

 
Fig. 6 Comparison of various prediction steps ahead 

From Fig. 6, we can see there are both increasing trends 
of RMSEs of the displacement predictions on two sections 
as the increase of the step ahead. Especially, it can be 
observed that when the number of prediction steps is more 
than 7, the prediction errors increase greatly. Therefore, the 
number of prediction steps ahead is determined as 7 in this 
study. 

 4.3. Results 

To further analyze the characteristic of the MS prediction 
for the tunnel surrounding rock, we select the 6th to the 12th 
of the data from the second section as test bed I (note: the 
first five data as the inputs), and the 27th to 33rd of the data 
from the second section as test bed II. Here, the two test 

beds reflect respectively two typical cases, one is the phase 
that tunnel surrounding displacement increases obviously, 
and the other is the phase that tunnel surrounding 
displacement changes smoothly.  

Then to evaluate the performance of the proposed model, 
a standard artificial neural network (ANN) model with 
three-layer is also introduced in this paper. To get a good 
comparison, the same input and output variables of ANN 
should be the same to the SVM. Then a scaled conjugate 
gradient algorithm31 is employed for training. To prevent 
overtraining and improve the generalization ability, the 
hidden neurons are generally optimized by a trial and error 
procedure. In this study, the final ANN architecture consists 
of five hidden neurons that yield the best performance. Then, 
we compare the performance of the SVM with that of ANN 
by using RMSE. Fig. 7 depicts the prediction performance 
of the two models on the two test beds. It can be found that 
two models obtain more accurate values at the former data 
than the latter data in each test bed. It is can be attributed to 
the fact MS predictor is based on the recursive use of SS 
predictor for reaching the end-point in the horizon. The 
prediction errors at the beginning of the horizon accumulate 
and propagate till to the end prediction. It is true that the 
prediction errors increase, however, in some real-world 
applications, especially for the displacement prediction of 
tunnel surrounding rock which has a relatively smaller 
period, moreover, it requires enough time for taking 
measures to combat the danger occasions. Thus it is 
acceptable to adapt to MS techniques to predict the future 
displacements. 

 
(a) Test bed I 
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(b) Test bed II 

Fig. 7 Comparison between the performances of SVM and ANN 

The relationship between observations and predictions 
for the two test beds can be also illustrated in Fig. 8. It is 
obvious that the errors from SVM models generally are 
smaller than that of ANN. This can be explained that SVM 
uses the structural risk minimization principle to minimize 
the generalization error, while ANN uses the empirical risk 
minimization principle to minimize the training error. 
Furthermore, SVM always seeks to find the global solution 
while ANN may tend to fall into a local optimal solution. 
Therefore, it is feasible to solve the displacement prediction 
of tunnel surrounding rock with our model. 

 

Fig. 8 Comparison between the prediction errors of SVM and ANN 

 5. CONCLUSIONS 

Proving accurate displacement prediction in advance is one 
of the key aspects for identifying the potential danger 
occasions and reducing losses as possible during tunnel 
construction. If the long-time displacement prediction can 
be provided, there will be enough time for project managers 
to carry out some effective measures. Thus, the objective of 
this study is to develop a MS prediction model (SVM) for 
displacement prediction of surrounding rock. To improve 
the training efficiency of SVM, a SCE-UA algorithm is 
implemented for optimizing the parameters in SVM. 
Consider the fact that long-time prediction by MS technique 
will worsen the prediction errors. To determine the number 
of prediction steps, an experiment from the Chijiangchong 
tunnel is applied and the number of prediction steps is 
determined as 7 in this study. Then, the performance of the 
proposed method is also evaluated by the data. Results show 
that the proposed SVM model can provide better 
performance in most situations than ANN. Thus, SVM can 
be a potential tool for tunnel surrounding rock displacement 
prediction. 
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