
A hybrid algorithm to minimize makespan for the permutation flow shop scheduling problem

Fardin Ahmadizar*
Department of Industrial Engineering, University of Kurdistan, Pasdaran Boulvard, Sanandaj, Iran

Farnaz Barzinpour
Department of Industrial Engineering, Iran University of Science and Technology, Narmak, Tehran 16846_13114, Iran

E-mail: barzinpour@iust.ac.ir

Abstract

This paper deals with the permutation flow shop scheduling problem. The objective is to minimize the maximum
completion time, or makespan. To solve this problem which has been proved to be strongly NP-hard, a combination
between an ant colony algorithm, a heuristic algorithm and a local search procedure is proposed and presented. The
hybrid approach is to use artificial ants to construct solutions by applying a stochastic greedy rule based on the
Gupta’s heuristic and pheromone trails. A local search is then performed to improve the performance quality of
constructed solutions. Once all ants have terminated their generations, the pheromone trails are modified according
to a global updating rule. The proposed algorithm is applied to benchmark problems taken from the literature and
compared with other metaheuristics. Computational experiments are given to demonstrate the superiority of the
algorithm in the quality of solution and CPU time.

Keywords: Permutation flow shop; Makespan; Ant colony optimization; Gupta’s heuristic; Local search.

* Corresponding author. Tel./fax: +98-871-6660073; E-mail: f.ahmadizar@uok.ac.ir

1. Introduction

One of the most well-known scheduling problems is the
classical flow shop problem, a multi-stage machine
scheduling problem. This scheduling problem has some
special cases such as the hybrid flow shop (see Refs. 1
and 2 for more details) and the permutation flow shop
problems. The problem of sequencing a set of jobs on a
set of machines in a permutation flow shop has been the
subject of extensive research because of its applications
in practice. For example, in a manufacturing or
assembly setting in which jobs have to be processed on
the same machines in the same sequence, if a material
handling system transports the jobs from one machine to
the next, then the same job sequence occurs on each
machine, i.e., the environment is treated as a
permutation flow shop3. Some exact algorithms have

been proposed over the years that guarantee to obtain an
optimal sequence to the permutation flow shop
scheduling problem (PFSP) (e.g., see Refs. 4–7).
Moreover, many heuristic algorithms have been
developed for the PFSP (e.g., see Refs. 8–15). As the
PFSP is a well-known NP-hard problem (Rinnooy Kan
in 1976 proved16 that the makespan minimization
problem is NP-complete and the flowtime minimization
one was proved17 by Garey et al. in 1976),
metaheuristics like tabu search (e.g., see Refs. 18–24),
genetic algorithms (e.g., see Refs. 25–31), simulated
annealing (e.g., see Refs. 32–35) and particle swarm
optimization algorithms (e.g., see Refs. 36–40) have
been used for solving the PFSP.

In recent years, ant colony optimization (ACO)
algorithms have been used for solving the combinatorial
optimization problems such as scheduling problems.

International Journal of Computational Intelligence Systems, Vol.3, No. 6 (December, 2010), 853-861

Published by Atlantis Press
 Copyright: the authors
 853

zegerkarssen
Texte tapé à la machine
Received: 15-06-2010
Accepted: 27-10-2010

F. Ahmadizar, F. Barzinpour

The pioneering work has been done41 by Dorigo in
1992, and an introduction to ACO algorithms has been
dealt by Dorigo et al.42 in 1996 and Dorigo and
Gambardella43 in 1997. An ACO algorithm is a
population-based, cooperative search procedure derived
from the foraging behavior of real ants. This behavior
enables ants to find shortest paths between their nest
and food sources. While walking from the nest to a food
source and vice versa, they deposit pheromones on the
ground. They can smell pheromone, and when choosing
their path, they tend to choose, in probability, paths
marked by strong pheromone concentrations.
Mimicking the foraging behavior of real ants, ACO
algorithms employ simple agents, called artificial ants,
which search for good solutions to a given
combinatorial optimization problem. An artificial ant
constructs a complete solution by starting with a null
solution and iteratively adding solution components
until a complete solution is constructed. The solution
construction process is stochastic and biased by the
pheromone trails dynamically modified at run-time.

To solve the PFSP with the objective of minimizing
the makespan, the first ACO algorithm which is a max–
min ant system, called MMAS, has been proposed44 by
Stutzle in 1998. Rajendran and Ziegler in 2004 have
developed45 two ACO algorithms for the PFSP with the
objective of minimizing the makespan/total flowtime of
jobs; the first algorithm, called M-MMAS, has extended
MMAS and the second one, called PACO, has
developed M-MMAS. Moreover, two ACO algorithms
have been proposed46 by Rajendran and Ziegler in 2005
for minimizing the total flowtime. Ying and Liao in
2004 have proposed47 an ant colony system, called
ACS, for minimizing the makespan where a different
representation of the pheromone trails is applied based
on a disjunctive graph. An ACO algorithm has been
developed48 by Gajpal and Rajendran in 2006 with the
objective of minimizing the completion-time variance of
jobs. Furthermore, some researchers have proposed
ACO algorithms for solving the PFSP with the objective
of minimizing two or more criteria (e.g., see Refs. 49–
52).

In this paper, we present an efficient ant colony
algorithm (ACA) for the PFSP. In this algorithm, a
solution is constructed by applying a pseudo-stochastic
rule based on both the heuristic information calculated
using the Gupta’s heuristic53 and the pheromone trails.
An interesting local search is then performed to improve

the constructed solution. Once all ants have terminated
their generations, the pheromone trails are modified
using a new global updating rule. The proposed hybrid
algorithm is tested on a set of benchmark problems
proposed54 by Taillard in 1993, and then compared with
other metaheuristics. We would like to emphasize that
the goal of this paper is to propose a new ACO
algorithm that can compete with well-known ACO
algorithms available in the literature.

The rest of the paper is organized as follows. In Sec.
2, the problem statement is introduced. The proposed
algorithm is described in Sec. 3. Section 4 provides
computational results on the Taillard's benchmark
problems as well as performance comparisons with
other metaheuristics. Finally, the conclusions are
presented in Sec. 5.

2. PFSP Formulation

The PFSP consists in scheduling N different jobs (1, 2,
..., N) with given processing times on a set of M
machines (1, 2, ..., M), where the sequence of
processing a job on all machines is identical. Each job
has exactly one operation to be processed on each
machine. It is assumed that each job can be processed
on at most one machine at a time and that each machine
can process at most one job at a time. Furthermore,
preemption is not allowed, the jobs are available and
ready for processing at time zero, and the setup times
are sequence independent. A schedule of this type is
called a permutation schedule and defined with a
complete sequence of all jobs.

Assuming that each operation is to be processed as
soon as possible, for a given sequence of jobs the
completion times of the operations can be found as
follows. Let Pmj and Cmj be, respectively, the processing
time and the completion time of job j on machine m. In
this study, the objective of minimizing the maximum
completion time, or makespan, is considered. Given the
job permutation {1, 2, ..., N }, Cmj (m = 1, …, M; j = 1,
…, N) and makespan are then calculated as follows:

 1 1
1

, 1, 2, ..., ,
m

m a
a

C P m M


  (1)

 1 1
1

, 1, 2,..., ,
j

j b
b

C P j N


  (2)

Published by Atlantis Press
 Copyright: the authors
 854

 A hybrid algorithm to minimize …

     1 1max , ,

 2, ..., , 2, ..., ,
mj mjm j m jC C C P

m M j N
  

 
 (3)

 max .MNC C (4)

3. Proposed Hybrid Algorithm

The main idea in ACO algorithms is to mimic the
pheromone trails used by real ants searching for feed as
a medium for communication and feedback. In the ACA
proposed to solve the PSFP, each artificial ant starts
with an empty sequence and chooses one of the jobs.
Then, the ant iteratively appends an unscheduled job to
the partial sequence until a complete solution is
constructed. At each step, a job is chosen by applying a
transition rule based on the Gupta’s heuristic and the
pheromone trails. In other words, each ant builds a tour,
i.e., a feasible solution to the PSFP, by repeatedly
applying a pseudo-stochastic rule. This definition for
moving artificial ants has been used in most applications
of ACO to scheduling problems. The performance
quality of the constructed solution is then improved by
means of a local search procedure. Finally, once all ants
have terminated their tours, the pheromone trails are
modified according to a global updating rule in order to
make the search more directed.

The general structure of the proposed ACA is then
represented as follows:

Step 1. Initialize the pheromone trails, and set

parameters.
Step 2. While the termination condition is not met, do:

2.1. For each ant in the colony do:
(a) Construct a solution by repeatedly applying

the transition rule;
(b) Improve the solution by the local search;
(c) In case of an improved solution, update the

best solution constructed so far and the
corresponding objective value as well.

2.2. Modify the pheromone trails by applying the
global updating rule.

Step 3. Return the best solution found.

3.1. Transition rule

Let τij and ηij be, respectively, the pheromone trail and
the heuristic information which denote the desire of
placing job j in the position i of a sequence. The
pheromone trails form a kind of adaptive memory of

previously found solutions, whereas the heuristic
information represents a priori information about the
problem instance definition provided by a source
different from the ants. At the beginning of the ACA, a
fixed value τ0 is assigned to all initial pheromone trails.
Then, at run-time, these intensities are regularly
modified with regard to the quality of solutions found.

While constructing a solution, an ant k at the current
position i (i = 1, ..., N) chooses the next job j by
applying a pseudo-stochastic rule. This transition rule
depends on q0, a parameter between 0 and 1,
determining the relative importance of exploitation
versus exploration. A random number q uniformly
distributed in [0, 1] is then generated. If q  q0, the
unscheduled job j is selected as follows (see Refs. 43
and 55 for more details):

    arg max ,ij ijj
 

     
 (5)

where  and β are two positive parameters denoting the
relative importance of the pheromone trail versus the
heuristic information. In this case, the job with the
maximum desirability of placing in the position i is
chosen (exploitation). Otherwise, an unscheduled job j
is selected according to a probability distribution as
follows (exploration):

   
   

, ,

k
i

ij ijk k
ij i

iu iu
u N

p j N

 

 

 

 


 


 (6)

where k
iN is the feasible neighborhood of ant k in the

position i, that is, the set of jobs that the ant has not yet
selected.

3.2. Heuristic information

In this study, the heuristic information is calculated
using the Gupta’s heuristic53, a heuristic approach for
the PFSP with the objective of minimizing the
makespan. In this heuristic method, the jobs are ordered
in descending order of Sj, in which:

  11 1

,
min

 1, 2,..., ,

j
j

mj m jm M

e
S

P P

j N

  


  



 (7)

where,

Published by Atlantis Press
 Copyright: the authors
 855

F. Ahmadizar, F. Barzinpour

11, if

.
1, otherwise

j Mj

j

P P
e

 


 (8)

The Gupta’s heuristic is a generalization of the
Johnson’s rule for M > 2. Without loss of generality, it
can be considered that all of the processing times are at
least one. Clearly,

 0.5 0.5, 1, 2, ..., .jS j N    (9)

In view of the fact that the heuristic information
should be positive and from the above inequality, the
heuristic information may then be calculated as follows:

 0.51, , 1,2,..., .ij jS i j N    (10)

Note that according to Eq. (10) the desirability of
placing a job in all positions of a sequence is the same
in regard to the heuristic information. Since jobs are
chosen from the first position to the last one, if job j has
higher ηij (or Sj) than another one, it will be sequenced
in the first positions with a higher probability (in case of
the same pheromone trails). But, based on the Gupta’s
heuristic, if job j has higher Sj than another one, it will
certainly be sequenced first.

3.3. Local search procedure

A new local search procedure is developed in order to
improve constructed solutions. When a complete
sequence of jobs is generated by an ant (before globally
updating the pheromone trails), this procedure is applied
on the sequence by moving a job to another position
without any change in the other sequence.

As searching a large neighborhood requires more
computational time, the proposed local search is based
on the trade off between the performance quality of
solutions (after conducting local search) and the number
of algorithm iterations, i.e., the number of solutions
constructed by ants. To handle this issue, we use a
threshold parameter Pr denoting the probability that
each of the jobs is chosen to move to the other positions.
Higher value of Pr suggests that the number of solutions
evaluated in neighborhood of the current solution is
likely further, that is, more computational efforts are
required. In other words, Pr determines the relative
importance of the local search procedure versus the
ACO algorithm. In order to achieve a good trade off, we
set Pr equal to 0.01 (based on preliminary experiments).

The proposed local search procedure is then
represented as follows:

Step 1. For each job j (j = 1, ..., N) do:
1.1. Generate a random number R uniformly

distributed in [0, 1];
1.2. If R  Pr, then for each position i (i = 1, ..., N)

do:
If job j is not in the position i, then:

(a) Insert it in this position without any change
in the other sequence;

(b) Compute the makespan of the newly
generated solution.

Step 2. Determine the best sequence that has been
obtained.

Step 3. If the makespan is improved, replace the current
sequence by the best one found.

As an example, let us consider the application of the

above local search procedure to a very simple instance
consisting of five jobs. Assume that the current
constructed sequence is given as
S: 1, 2, 3, 4, 5.
Considering job 1, we generate a random number R. Let
the random number generated be 0.138217. Since R >
Pr, this job is not chosen to move to the other positions.
Considering job 2, let the random number generated be
0.002198. Since R  Pr, job 2 is chosen to move to the
other positions. Therefore, the solutions that have to be
evaluated in neighborhood of the current solution are
given as
NS1: 2, 1, 3, 4, 5
NS2: 1, 3, 2, 4, 5
NS3: 1, 3, 4, 2, 5
NS4: 1, 3, 4, 5, 2.
After generating each of these solutions, its objective
function value is computed.
Considering the other jobs, let the random numbers
generated be 0.913474, 0.754551 and 0.094834,
respectively. As seen, none of these jobs is chosen to
move.
Now, the best of the four locally generated solutions is
compared to the current sequence and if there is an
improvement, S is replaced by the former. Otherwise,
the current sequence is not changed.

3.4. Global updating of the pheromone trails

As mentioned earlier, a kind of adaptive memory of
previously found solutions is formed by means of the
pheromone trails. The global updating rule is proposed
to increase the pheromone values on solution
components that have been found in good solutions and

Published by Atlantis Press
 Copyright: the authors
 856

 A hybrid algorithm to minimize …

hence, such components are more likely to be used by
the ants in the next iterations of the algorithm.

Once all ants have built their solutions (and after
performing the local search), each pheromone trail that
is compatible to the sequence of ant k (for each ant in
the colony) is modified by applying a new global
updating rule as follows:

   1

max

1 ,ij ij k

Z

C
      (11)

where , a parameter between 0 and 1, is the pheromone
trail evaporation rate, max

kC is the makespan of the
complete sequence of ant k, and Z1 is a nonnegative
parameter determining the relative importance of the
solutions found in the current iteration. As seen, if the
performance quality of a solution is higher (i.e., its
corresponding makespan is smaller) than another
solution, a greater amount of pheromone is deposited on
solution components compatible to the former.

Then, each pheromone trail compatible to the best
solution obtained so far is updated according to Eq.
(12).

   2

max

1 ,ij ij best

Z

C
      (12)

where max
bestC is the makespan of the best solution up to

the current iteration and Z2 is a positive parameter
determining the relative importance of the best solution.

4. Computational Results

The proposed algorithm has been coded in Visual C++
and run on a Pentium 4, 2 GHz PC with 256 MB
memory. To evaluate the ACA, we select 120
benchmark problems from Taillard54 in 12 different
sizes: from 20 jobs and 5 machines to 500 jobs and 20
machines (denoted as Ta001 to Ta120). Taillard has
produced a set of problems for the PSFP to minimize
the makespan. In order to propose problems that are as
difficult as possible, Taillard has generated many
instances of problems in different sizes and then chosen
10 instances for each size of problems. Therefore, there
are 10 instances for each problem size and 120 problem
instances in all. Integer processing times have been
generated from the uniform distribution [1, 99] for each
instance. Subsequently, each of these instances is given
with the following information: initial value of the
random generator’s seed, a lower bound and an upper

bound of the optimal makespan. In recent years, it has
been shown that the Taillard’s solutions are equal or
near to the optimum.

4.1. Parameter settings

For setting the algorithm parameters, seven different ant
size (1, 5, 10, 20, 30, 50 and 70), different values of q0
(0.8, 0.85, 0.9, 0.95 and 0.99), different values of  and
β (0.1, 0.5, 1, 1.5 and 2), different values of Z1 (0, 1, 2, 5
and 10) and different values of Z2 (1, 2, 5, 10 and 15)
have been considered. In addition, parameter  has been
tested between 0.05 and 0.3 in increments of 0.05. We
set the initial pheromone τ0 equal to 610 . In the
preliminary experiments, the following values of the
parameters have been superior and used for all further
studies: ant size = 5, q0 = 0.99,  = β = 1,  = 0.25, Z1 =
2 and Z2 = 10. The algorithm terminates when the total
number of iterations in Step 2 (in Sec. 3) reaches 1000.

4.2. Contribution of the proposed local search

An important question that may arise is whether the
local search procedure really enhances the performance
of the ACO algorithm, i.e., whether the algorithm does
not perform better without local search but with
constructing an additional number of solutions. To show
the effect of the proposed local search, an experimental
test has been conducted: some of the difficult problem
instances (those with M = 20) have been solved with
(ACA) and without (ACA-LS) local search. Table 1
provides the minimum, average and maximum
makespan achieved by the ACA and ACA-LS over five
runs (UB denotes Taillard’s upper bound). It should be
noted that, to make a fair comparison, for ACA-LS has
been allowed the same CPU time as the algorithm with
local search. As seen, the ACA is significantly better
than the version without local search.

Table 1. Computational results with and without local search.

 ACA ACA-LS
Instance N|M UB Min Average Max Min Average Max
Ta051 50|20 3886 3946 3985.2 4014 3992 4060.0 4128

Ta081 100|20 6330 6450 6494.4 6539 6527 6582.0 6625

Ta101 200|20 11393 11518 11577.8 11617 11635 11687.0 11813

4.3. Performance analysis of the algorithm

Due to the stochastic nature of the proposed algorithm,
for each size of problem, we have tested each of the

Published by Atlantis Press
 Copyright: the authors
 857

F. Ahmadizar, F. Barzinpour

problem instances for five trials. The best trial has been
chosen and the ten instances for the same problem size
have been averaged. It should be noted that, if the
makespan of an obtained solution is Cmax, the solution
quality is then measured by the mean percentage
difference from Taillard’s upper bound as follows:

 max UB
Quality 100.

UB

C 
  (13)

The final results are shown in Table 2, which gives a
comparison with ACS, simulated annealing (SA) and
genetic algorithm (GA) (best values are indicated in
boldface). ACS, proposed47 by Ying and Liao, is an
implementation of ant colony system, a particular
version of ACO proposed43 by Dorigo and Gambardella.
Ying and Liao have represented the PFSP by a
disjunctive graph and proposed a pheromone model
based on this graph, i.e., used a new definition for
moving artificial ants. They have tested each of the
problem instances for five trials and chosen the best
one. The results of ACS have then been compared with
those of other metaheuristics such as SA and GA
proposed25 by Reeves.

Table 2. Comparison of the ACA with
ACS, GA and SA.

N|M ACA ACS GA SA
20|5 0.368 1.19 1.61 1.27
20|10 0.831 1.70 2.29 1.71
20|20 0.944 1.60 1.95 0.86
50|5 0.085 0.43 0.45 0.78
50|10 1.241 1.89 2.28 1.98
50|20 1.990 2.71 3.44 2.86
100|5 0.070 0.22 0.23 0.56
100|10 1.059 1.22 1.25 1.33
100|20 1.833 2.22 2.91 2.32
200|10 0.434 0.64 0.50 0.83
200|20 1.236 1.30 1.35 1.74
500|20 1.444 1.68 -0.22 0.85

Average 0.961 1.40 1.50 1.42

Moreover, Table 3 gives a comparison with other

well-known ACO algorithms to minimize the makespan
for the PFSP from the literature such as MMAS, M-
MMAS and PACO. MMAS, proposed44 by Stutzle, is
an implementation of max–min ant system, another
particular version of ACO (see Ref. 55 for more
details). M-MMAS as well as PACO has been
proposed45 by Rajendran and Ziegler. M-MMAS has

extended MMAS by incorporating the concept of
summation rule and a new local search procedure, and
PACO has developed M-MMAS. The results of M-
MMAS and PACO have been compared with those of
MMAS. In these algorithms, 9 problems with different
sizes have been considered and each of the problem
instances has been tested for one trial. In other words,
the three large size problems, 200 jobs and 10 machines,
200 jobs and 20 machines, and 500 jobs and 20
machines, have not been examined in those methods.

Table 3. Comparison of the ACA with
MMAS, M-MMAS and PACO.

N|M ACA MMAS
M-

MMAS
PACO

20|5 0.368 0.408 0.762 0.704
20|10 0.831 0.591 0.890 0.843
20|20 0.944 0.410 0.721 0.720
50|5 0.085 0.145 0.144 0.090

50|10 1.241 2.193 1.118 0.746
50|20 1.990 2.475 2.013 1.855
100|5 0.070 0.196 0.084 0.072
100|10 1.059 0.928 0.451 0.404
100|20 1.833 2.238 1.030 0.985

Average 0.936 1.065 0.801 0.713

For the mean percentage deviation, an average of

0.961 in all of the problem sizes (and 0.936 in 9
problem sizes) with a maximum 1.99 has been achieved
by the ACA. It is shown that in most problem sizes, the
deviation from the optimal solution is low in the
proposed algorithm. It can be seen that the ACA is
superior in all problem sizes compared to ACS, in 11
out of 12 problem sizes compared to GA (except for 500
jobs and 20 machines) and in 10 out of 12 problem sizes
compared to SA (except for 20 jobs and 20 machines,
and 500 jobs and 20 machines). The ACA is also
superior in 6 out of 9 problem sizes compared to
MMAS, in 5 out of 9 problem sizes compared to M-
MMAS and in 4 out of 9 problem sizes compared to
PACO. On an average, the ACA outperforms ACS, GA,
SA and MMAS, whereas M-MMAS and PACO
outperform the ACA.

Another criterion to evaluate algorithms is the
computational time. Since only the CPU times of ACS
are provided by the literature, we compare the time
results in Table 4. ACS has been coded in Visual C++
and run on an AMD 700 MHz PC, which is
approximately two to three times slower than a 2 GHz

Published by Atlantis Press
 Copyright: the authors
 858

 A hybrid algorithm to minimize …

Pentium 4 PC. Therefore, to make a fair comparison, the
CPU times of ACS reported in Ref. 47 have been
divided by the transformation factor three in Table 4.
With regard to this matter, it is seen that in all of the
different sizes the proposed algorithm is much faster
than ACS. Finally, it can be seen that the proposed
algorithm can get very good solutions at a reasonable
CPU time.

Table 4. Comparison of the
CPU times (in seconds).

N|M ACA ACS
20|5 0.44 3.67

20|10 0.50 4.00
20|20 0.63 5.33
50|5 2.77 14.67

50|10 3.73 18.00
50|20 5.91 24.33
100|5 14.15 54.33
100|10 21.93 65.67
100|20 37.79 88.00
200|10 141.52 275.33
200|20 254.06 631.67
500|20 3744.25 5133.00

Average 352.31 526.5

5. Conclusions

In this paper, an efficient ant colony optimization
algorithm is developed to solve the permutation flow
shop scheduling problem with the objective of
minimizing makespan. At first, an initial value is
assigned to all pheromone trails. Each artificial ant
constructs a solution by applying a pseudo-stochastic
rule based on both the Gupta’s heuristic and the
pheromone trails. Then, the constructed solution is
improved by the proposed local search procedure. Once
all ants have terminated their generations, the
pheromone trails are modified using the global updating
rule. To evaluate the performance of the proposed
hybrid algorithm, it has been tested on the benchmark
problems due to Taillard, and then compared with other
ant colony optimization algorithms, genetic algorithm
and simulated annealing available in the literature. The
results are given to show the power of the proposed
approach for producing very good solutions at a
reasonable CPU time. The results incite the extension of
the algorithm for other scheduling problems.

References

1. I. Ribas, R. Leisten and J. M. Framinan, Review and
classification of hybrid flow shop scheduling problems
from a production system and a solutions procedure
perspective, Comput. Oper. Res. 37 (2010) 1439–1454.

2. C. Kahraman, O. Engin, I. Kaya and M. K. Yilmaz, An
application of effective genetic algorithms for Solving
Hybrid Flow Shop Scheduling Problems, Int. J. Comput.
Int. Sys. 1(2) (2008) 134–147.

3. M. Pinedo, Planning and Scheduling in Manufacturing
and Services (Springer Series in Operations Research,
Springer, 2005).

4. E. Ignall and L. Schrage, Application of the branch-and-
bound technique to some flowshop scheduling problems,
Oper. Res. 13 (1965) 400–412.

5. Z. A. Lomnicki, A branch and bound algorithm for the
exact solution of the three-machine scheduling problem,
Oper. Res. Quarterly 16(1) (1965) 89–100.

6. S. P. Bansal, Minimizing the sum of completion times of
n-jobs over M-machines in a flowshop — a branch and
bound approach, AIIE Trans. 9 (1977) 306–311.

7. E. F. Stafford, On the development of a mixed integer
linear programming model for the flowshop sequencing
problem, J. Oper. Res. Soc. 39 (1988) 1163–1174.

8. M. Nawaz, Jr. E. E. Enscore and I. Ham, A heuristic
algorithm for the m-machine, n-job flow shop sequencing
problem, OMEGA–Int. J. Manage. S. 11(1) (1983) 91–
95.

9. C. Rajendran and H. Ziegler, An efficient heuristic for
scheduling in a flowshop to minimize total weighted
flowtime of jobs, Eur. J. Oper. Res. 103 (1997) 129–138.

10. J. M. Framinan, R. Leisten and R. Ruiz-Usano, Efficient
heuristics for flowshop sequencing with the objectives of
makespan and flowtime minimization, Eur. J. Oper. Res.
141 (2002) 559–569.

11. J. M. Framinan and R. Leisten, A heuristic for scheduling
a permutation flowshop with makespan objective subject
to maximum tardiness, Int. J. Prod. Econ. 99 (2006) 28–
40.

12. P. J. Kalczynski and J. Kamburowski, An improved NEH
heuristic to minimize makespan in permutation flow
shops, Comput. Oper. Res. 35 (2008) 3001–3008.

13. D. Laha and S. C. Sarin, A heuristic to minimize total
flow time in permutation flow shop, OMEGA–Int. J.
Manage. S. 37 (2009) 734–739.

14. X. Li, Q. Wang and C. Wu, Efficient composite
heuristics for total flowtime minimization in permutation
flowshops, OMEGA–Int. J. Manage. S. 37 (2009) 155–
164.

15. I. Ribas, R. Companys and X. Tort-Martorell, Comparing
three-step heuristics for the permutation flow shop
problem, Comput. Oper. Res. 37 (2010) 2062–2070.

16. A. H. G. Rinnooy Kan, Machine Scheduling Problems:
Classification, Complexity, and Computations (Martinus
Nijhoff, The Hague, 1976).

Published by Atlantis Press
 Copyright: the authors
 859

F. Ahmadizar, F. Barzinpour

17. M. R. Garey, D. S. Johnson and R. Sethi, The complexity
of flowshop and jobshop scheduling, Math. Oper. Res. 1
(1976) 117–129.

18. C. R. Reeves, Improving the efficiency of tabu search for
machine sequencing problem, J. Oper. Res. Soc. 44(4)
(1993) 375–382.

19. E. Nowicki and C. Smutnicki, A fast tabu search
algorithm for the permutation flowshop problem, Eur. J.
Oper. Res. 91 (1996) 160–175.

20. M. Ben-Daya and M. Al-Fawzan, A tabu search approach
for the flow shop scheduling problem, Eur. J. Oper. Res.
109 (1998) 88–95.

21. J. Grabowski and J. Pempera, New block properties for
the permutation flow-shop problem with application in
TS, J. Oper. Res. Soc. 52 (2001) 210–220.

22. J. P. Watson, L. Barbulescu, L. D. Whitley and A. E.
Howe, Contrasting structured and random permutation
flowshop scheduling problems: Search space topology
and algorithm performance, ORSA J. Comput. 14(2)
(2002) 98–123.

23. J. Grabowski and M. Wodecki, A very fast tabu search
algorithm for the permutation flowshop problem with
makespan criterion, Comput. Oper. Res. 31(11) (2004)
1891–1909.

24. B. Eksioglu, S. D. Eksioglu and P. Jain, A tabu search
algorithm for the flowshop scheduling problem with
changing neighborhoods, Comput. Ind. Eng. 54 (2008) 1–
11.

25. C. R. Reeves, A genetic algorithm for flowshop
sequencing, Comput. Oper. Res. 22(1) (1995) 5–13.

26. T. Murata H. Ishibuchi and H. Tanaka, Genetic
algorithms for flowshop scheduling problems, Comput.
Ind. Eng. 30(4) (1996) 1061–1071.

27. C. R. Reeves and T. Yamada, Genetic algorithms, path
relinking and the flowshop sequencing problem, Evol.
Comput. 6 (1998) 45–60.

28. M. S. Nagano, R. Ruiz and L. A. N. Lorena, A
Constructive Genetic Algorithm for permutation
flowshop scheduling, Comput. Ind. Eng. 55 (2008) 195–
207.

29. Y. Zhang, X. Li and Q. Wang, Hybrid genetic algorithm
for permutation flowshop scheduling problems with total
flowtime minimization, Eur. J. Oper. Res. 196 (2009)
869–876.

30. L. Y. Tseng and Y. T. Lin, A hybrid genetic local search
algorithm for the permutation flowshop scheduling
problem, Eur. J. Oper. Res. 198 (2009) 84–92.

31. G. I. Zobolas, C. D. Tarantilis and G. Ioannou,
Minimizing makespan in permutation flow shop
scheduling problems using a hybrid metaheuristic
algorithm, Comput. Oper. Res. 36 (2009) 1249–1267.

32. I. Osman and C. Potts, Simulated annealing for
permutation flow shop scheduling, OMEGA–Int. J.
Manage. S. 17(6) (1989) 551–557.

33. F. Ogbu and D. Smith, The application of the simulated
annealing algorithm to the solution of the n/m/Cmax

flowshop problem, Comput. Oper. Res. 17(3) (1990)
243–253.

34. F. Ogbu and D. Smith, Simulated annealing for the
permutation flow-shop problem, OMEGA–Int. J.
Manage. S. 19(1) (1991) 64–67.

35. H. Ishibuchi, S. Misaki and H. Tanaka, Modified
simulated annealing algorithms for the flow shop
sequencing problems, Eur. J. Oper. Res. 81 (1995) 388–
398.

36. C. J. Liao, C. T. Tseng and P. Luarn, A discrete version
of particle swarm optimization for flowshop scheduling
problems, Comput. Oper. Res. 34 (2007) 3099–3111.

37. M. F. Tasgetiren, Y. C. Liang, M. Sevkli and G.
Gencyilmaz, A particle swarm optimization algorithm for
makespan and total flowtime minimization in the
permutation flowshop sequencing problem, Eur. J. Oper.
Res. 177 (2007) 1930–1947.

38. B. Jarboui, S. Ibrahim, P. Siarry and A. Rebai, A
combinatorial particle swarm optimization for solving
permutation flowshop problems, Comput. Ind. Eng. 54
(2008) 526–538.

39. Z. Lian, X. Gu and B. Jiao, A novel particle swarm
optimization algorithm for permutation flow-shop
scheduling to minimize makespan, Chaos Soliton. Fract.
35 (2008) 851–861.

40. J. Zhang, C. Zhang and S. Liang, The circular discrete
particle swarm optimization algorithm for flow shop
scheduling problem, Expert Syst. Appl. 37 (2010) 5827–
5834.

41. M. Dorigo, Optimization, learning and natural
algorithm, in Italian (PhD thesis, DEI, Politecnico di
Milano, Itally, 1992).

42. M. Dorigo, V. Maniezzo and A. Colorni, The ant system:
Optimization by a colony of cooperating agents, IEEE T.
Syst. Man Cy. B 26 (1996) 29–41.

43. M. Dorigo and L. M. Gambardella, Ant colony system: A
cooperative learning approach to the traveling salesman
problem, IEEE T. Evolut. Comput. l (1997) 53–66.

44. T. Stutzle, An ant approach for the flow shop problem, in
Proc. 6th Eur. Cong. Intelligent Techniques and Soft
Computing, EUFIT ’98 (Aachen: Verlag Mainz 3, 1998),
pp. 1560–1564.

45. C. Rajendran and H. Ziegler, Ant-colony algorithms for
permutation flowshop scheduling to minimize
makespan/total flowtime of jobs, Eur. J. Oper. Res. 155
(2004) 426–438.

46. C. Rajendran and H. Ziegler, Two ant-colony algorithms
for minimizing total flowtime in permutation flowshops,
Comput. Ind. Eng. 48 (2005) 789–797.

47. K. C. Ying and C. J. Liao, An ant colony system for
permutation flow-shop sequencing, Comput. Oper. Res.
31 (2004) 791–801.

48. Y. Gajpal and C. Rajendran, An ant-colony optimization
algorithm for minimizing the completion-time variance
of jobs in flowshops, Int. J. Prod. Econ. 101 (2006) 259–
272.

Published by Atlantis Press
 Copyright: the authors
 860

 A hybrid algorithm to minimize …

49. V. T’kindt, N. Monmarche, F. Tercinet and D. Laugt, An
Ant Colony Optimization algorithm to solve a 2-machine
bicriteria flowshop scheduling problem, Eur. J. Oper.
Res. 142 (2002) 250–257.

50. B. M. T. Lin, C. Y. Lu, S. J. Shyu and C. Y. Tsai,
Development of new features of ant colony optimization
for flowshop scheduling, Int. J. Prod. Econ. 112 (2008)
742–755.

51. B. Yagmahan and M. M. Yenisey, Ant colony
optimization for multi-objective flow shop scheduling
problem, Comput. Ind. Eng. 54 (2008) 411–420.

52. B. Yagmahan and M. M. Yenisey, A multi-objective ant
colony system algorithm for flow shop scheduling
problem, Expert Syst. Appl. 37 (2010) 1361–1368.

53. J. N. D. Gupta, Heuristic algorithms for multistage
flowshop scheduling problem, AIIE Trans. 4 (1972) 11–
18.

54. E. Taillard, Benchmarks for basic scheduling problems,
Eur. J. Oper. Res. 64 (1993) 278–285.

55. M. Dorigo and T. Stutzle, The Ant Colony Optimization
Metaheuristic: Algorithms, Applications, and Advances,
in Handbook of Metaheuristics, eds. F. Glover and G.
Kochenberger (Kluwer Academic Publishers, 2003), pp.
251–285.

Published by Atlantis Press
 Copyright: the authors
 861

