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Abstract 

This paper deals with the permutation flow shop scheduling problem. The objective is to minimize the maximum 
completion time, or makespan. To solve this problem which has been proved to be strongly NP-hard, a combination 
between an ant colony algorithm, a heuristic algorithm and a local search procedure is proposed and presented. The 
hybrid approach is to use artificial ants to construct solutions by applying a stochastic greedy rule based on the 
Gupta’s heuristic and pheromone trails. A local search is then performed to improve the performance quality of 
constructed solutions. Once all ants have terminated their generations, the pheromone trails are modified according 
to a global updating rule. The proposed algorithm is applied to benchmark problems taken from the literature and 
compared with other metaheuristics. Computational experiments are given to demonstrate the superiority of the 
algorithm in the quality of solution and CPU time. 
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1. Introduction 

One of the most well-known scheduling problems is the 
classical flow shop problem, a multi-stage machine 
scheduling problem. This scheduling problem has some 
special cases such as the hybrid flow shop (see Refs. 1 
and 2 for more details) and the permutation flow shop 
problems. The problem of sequencing a set of jobs on a 
set of machines in a permutation flow shop has been the 
subject of extensive research because of its applications 
in practice. For example, in a manufacturing or 
assembly setting in which jobs have to be processed on 
the same machines in the same sequence, if a material 
handling system transports the jobs from one machine to 
the next, then the same job sequence occurs on each 
machine, i.e., the environment is treated as a 
permutation flow shop3. Some exact algorithms have 

been proposed over the years that guarantee to obtain an 
optimal sequence to the permutation flow shop 
scheduling problem (PFSP) (e.g., see Refs. 4–7). 
Moreover, many heuristic algorithms have been 
developed for the PFSP (e.g., see Refs. 8–15). As the 
PFSP is a well-known NP-hard problem (Rinnooy Kan 
in 1976 proved16 that the makespan minimization 
problem is NP-complete and the flowtime minimization 
one was proved17 by Garey et al. in 1976), 
metaheuristics like tabu search (e.g., see Refs. 18–24), 
genetic algorithms (e.g., see Refs. 25–31), simulated 
annealing (e.g., see Refs. 32–35) and particle swarm 
optimization algorithms (e.g., see Refs. 36–40) have 
been used for solving the PFSP. 

In recent years, ant colony optimization (ACO) 
algorithms have been used for solving the combinatorial 
optimization problems such as scheduling problems. 
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The pioneering work has been done41 by Dorigo in 
1992, and an introduction to ACO algorithms has been 
dealt by Dorigo et al.42 in 1996 and Dorigo and 
Gambardella43 in 1997. An ACO algorithm is a 
population-based, cooperative search procedure derived 
from the foraging behavior of real ants. This behavior 
enables ants to find shortest paths between their nest 
and food sources. While walking from the nest to a food 
source and vice versa, they deposit pheromones on the 
ground. They can smell pheromone, and when choosing 
their path, they tend to choose, in probability, paths 
marked by strong pheromone concentrations. 
Mimicking the foraging behavior of real ants, ACO 
algorithms employ simple agents, called artificial ants, 
which search for good solutions to a given 
combinatorial optimization problem. An artificial ant 
constructs a complete solution by starting with a null 
solution and iteratively adding solution components 
until a complete solution is constructed. The solution 
construction process is stochastic and biased by the 
pheromone trails dynamically modified at run-time. 

To solve the PFSP with the objective of minimizing 
the makespan, the first ACO algorithm which is a max–
min ant system, called MMAS, has been proposed44 by 
Stutzle in 1998. Rajendran and Ziegler in 2004 have 
developed45 two ACO algorithms for the PFSP with the 
objective of minimizing the makespan/total flowtime of 
jobs; the first algorithm, called M-MMAS, has extended 
MMAS and the second one, called PACO, has 
developed M-MMAS. Moreover, two ACO algorithms 
have been proposed46 by Rajendran and Ziegler in 2005 
for minimizing the total flowtime. Ying and Liao in 
2004 have proposed47 an ant colony system, called 
ACS, for minimizing the makespan where a different 
representation of the pheromone trails is applied based 
on a disjunctive graph. An ACO algorithm has been 
developed48 by Gajpal and Rajendran in 2006 with the 
objective of minimizing the completion-time variance of 
jobs. Furthermore, some researchers have proposed 
ACO algorithms for solving the PFSP with the objective 
of minimizing two or more criteria (e.g., see Refs. 49–
52). 

In this paper, we present an efficient ant colony 
algorithm (ACA) for the PFSP. In this algorithm, a 
solution is constructed by applying a pseudo-stochastic 
rule based on both the heuristic information calculated 
using the Gupta’s heuristic53 and the pheromone trails. 
An interesting local search is then performed to improve 

the constructed solution. Once all ants have terminated 
their generations, the pheromone trails are modified 
using a new global updating rule. The proposed hybrid 
algorithm is tested on a set of benchmark problems 
proposed54 by Taillard in 1993, and then compared with 
other metaheuristics. We would like to emphasize that 
the goal of this paper is to propose a new ACO 
algorithm that can compete with well-known ACO 
algorithms available in the literature. 

The rest of the paper is organized as follows. In Sec. 
2, the problem statement is introduced. The proposed 
algorithm is described in Sec. 3. Section 4 provides 
computational results on the Taillard's benchmark 
problems as well as performance comparisons with 
other metaheuristics. Finally, the conclusions are 
presented in Sec. 5. 

2. PFSP Formulation 

The PFSP consists in scheduling N different jobs (1, 2, 
..., N) with given processing times on a set of M 
machines (1, 2, ..., M), where the sequence of 
processing a job on all machines is identical. Each job 
has exactly one operation to be processed on each 
machine. It is assumed that each job can be processed 
on at most one machine at a time and that each machine 
can process at most one job at a time. Furthermore, 
preemption is not allowed, the jobs are available and 
ready for processing at time zero, and the setup times 
are sequence independent. A schedule of this type is 
called a permutation schedule and defined with a 
complete sequence of all jobs. 

Assuming that each operation is to be processed as 
soon as possible, for a given sequence of jobs the 
completion times of the operations can be found as 
follows. Let Pmj and Cmj be, respectively, the processing 
time and the completion time of job j on machine m. In 
this study, the objective of minimizing the maximum 
completion time, or makespan, is considered. Given the 
job permutation {1, 2, ..., N }, Cmj (m = 1, …, M; j = 1, 
…, N) and makespan are then calculated as follows: 

 1 1
1

,      1, 2, ..., ,
m

m a
a

C P m M


   (1) 

 1 1
1

,      1, 2,..., ,
j

j b
b

C P j N


   (2) 
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     1 1max , ,

                    2, ..., ,   2, ..., ,
mj mjm j m jC C C P

m M j N
  

 
 (3) 

 max .MNC C  (4) 

3. Proposed Hybrid Algorithm 

The main idea in ACO algorithms is to mimic the 
pheromone trails used by real ants searching for feed as 
a medium for communication and feedback. In the ACA 
proposed to solve the PSFP, each artificial ant starts 
with an empty sequence and chooses one of the jobs. 
Then, the ant iteratively appends an unscheduled job to 
the partial sequence until a complete solution is 
constructed. At each step, a job is chosen by applying a 
transition rule based on the Gupta’s heuristic and the 
pheromone trails. In other words, each ant builds a tour, 
i.e., a feasible solution to the PSFP, by repeatedly 
applying a pseudo-stochastic rule. This definition for 
moving artificial ants has been used in most applications 
of ACO to scheduling problems. The performance 
quality of the constructed solution is then improved by 
means of a local search procedure. Finally, once all ants 
have terminated their tours, the pheromone trails are 
modified according to a global updating rule in order to 
make the search more directed. 

The general structure of the proposed ACA is then 
represented as follows: 
 
Step 1. Initialize the pheromone trails, and set 

parameters. 
Step 2. While the termination condition is not met, do: 

2.1. For each ant in the colony do: 
(a) Construct a solution by repeatedly applying 

the transition rule; 
(b) Improve the solution by the local search; 
(c) In case of an improved solution, update the 

best solution constructed so far and the 
corresponding objective value as well. 

2.2. Modify the pheromone trails by applying the 
global updating rule. 

Step 3. Return the best solution found. 

3.1. Transition rule 

Let τij and ηij be, respectively, the pheromone trail and 
the heuristic information which denote the desire of 
placing job j in the position i of a sequence. The 
pheromone trails form a kind of adaptive memory of 

previously found solutions, whereas the heuristic 
information represents a priori information about the 
problem instance definition provided by a source 
different from the ants. At the beginning of the ACA, a 
fixed value τ0 is assigned to all initial pheromone trails. 
Then, at run-time, these intensities are regularly 
modified with regard to the quality of solutions found. 

While constructing a solution, an ant k at the current 
position i (i = 1, ..., N) chooses the next job j by 
applying a pseudo-stochastic rule. This transition rule 
depends on q0, a parameter between 0 and 1, 
determining the relative importance of exploitation 
versus exploration. A random number q uniformly 
distributed in [0, 1] is then generated. If q  q0, the 
unscheduled job j is selected as follows (see Refs. 43 
and 55 for more details): 

    arg max ,ij ijj
 

     
 (5) 

where  and β are two positive parameters denoting the 
relative importance of the pheromone trail versus the 
heuristic information. In this case, the job with the 
maximum desirability of placing in the position i is 
chosen (exploitation). Otherwise, an unscheduled job j 
is selected according to a probability distribution as 
follows (exploration): 

 
   
   

,      ,

k
i

ij ijk k
ij i

iu iu
u N

p j N

 

 

 

 


 


 (6) 

where k
iN  is the feasible neighborhood of ant k in the 

position i, that is, the set of jobs that the ant has not yet 
selected. 

3.2. Heuristic information 

In this study, the heuristic information is calculated 
using the Gupta’s heuristic53, a heuristic approach for 
the PFSP with the objective of minimizing the 
makespan. In this heuristic method, the jobs are ordered 
in descending order of Sj, in which: 

  11 1

,
min

                                      1, 2,..., ,

j
j

mj m jm M

e
S

P P

j N

  


  



 (7) 

where, 
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11,         if 

.
1,      otherwise

j Mj

j

P P
e

 


 (8) 

The Gupta’s heuristic is a generalization of the 
Johnson’s rule for M > 2. Without loss of generality, it 
can be considered that all of the processing times are at 
least one. Clearly, 

 0.5 0.5,      1, 2, ..., .jS j N     (9) 

In view of the fact that the heuristic information 
should be positive and from the above inequality, the 
heuristic information may then be calculated as follows: 

 0.51,      , 1,2,..., .ij jS i j N     (10) 

Note that according to Eq. (10) the desirability of 
placing a job in all positions of a sequence is the same 
in regard to the heuristic information. Since jobs are 
chosen from the first position to the last one, if job j has 
higher ηij (or Sj) than another one, it will be sequenced 
in the first positions with a higher probability (in case of 
the same pheromone trails). But, based on the Gupta’s 
heuristic, if job j has higher Sj than another one, it will 
certainly be sequenced first. 

3.3. Local search procedure 

A new local search procedure is developed in order to 
improve constructed solutions. When a complete 
sequence of jobs is generated by an ant (before globally 
updating the pheromone trails), this procedure is applied 
on the sequence by moving a job to another position 
without any change in the other sequence. 

As searching a large neighborhood requires more 
computational time, the proposed local search is based 
on the trade off between the performance quality of 
solutions (after conducting local search) and the number 
of algorithm iterations, i.e., the number of solutions 
constructed by ants. To handle this issue, we use a 
threshold parameter Pr denoting the probability that 
each of the jobs is chosen to move to the other positions. 
Higher value of Pr suggests that the number of solutions 
evaluated in neighborhood of the current solution is 
likely further, that is, more computational efforts are 
required. In other words, Pr determines the relative 
importance of the local search procedure versus the 
ACO algorithm. In order to achieve a good trade off, we 
set Pr equal to 0.01 (based on preliminary experiments). 

The proposed local search procedure is then 
represented as follows: 

Step 1. For each job j (j = 1, ..., N) do: 
1.1. Generate a random number R uniformly 

distributed in [0, 1]; 
1.2. If R  Pr, then for each position i (i = 1, ..., N) 

do: 
If job j is not in the position i, then: 

(a) Insert it in this position without any change 
in the other sequence; 

(b) Compute the makespan of the newly 
generated solution. 

Step 2. Determine the best sequence that has been 
obtained. 

Step 3. If the makespan is improved, replace the current 
sequence by the best one found. 

 
As an example, let us consider the application of the 

above local search procedure to a very simple instance 
consisting of five jobs. Assume that the current 
constructed sequence is given as 
S: 1, 2, 3, 4, 5. 
Considering job 1, we generate a random number R. Let 
the random number generated be 0.138217. Since R > 
Pr, this job is not chosen to move to the other positions. 
Considering job 2, let the random number generated be 
0.002198. Since R  Pr, job 2 is chosen to move to the 
other positions. Therefore, the solutions that have to be 
evaluated in neighborhood of the current solution are 
given as 
NS1: 2, 1, 3, 4, 5 
NS2: 1, 3, 2, 4, 5 
NS3: 1, 3, 4, 2, 5 
NS4: 1, 3, 4, 5, 2. 
After generating each of these solutions, its objective 
function value is computed. 
Considering the other jobs, let the random numbers 
generated be 0.913474, 0.754551 and 0.094834, 
respectively. As seen, none of these jobs is chosen to 
move. 
Now, the best of the four locally generated solutions is 
compared to the current sequence and if there is an 
improvement, S is replaced by the former. Otherwise, 
the current sequence is not changed. 

3.4. Global updating of the pheromone trails 

As mentioned earlier, a kind of adaptive memory of 
previously found solutions is formed by means of the 
pheromone trails. The global updating rule is proposed 
to increase the pheromone values on solution 
components that have been found in good solutions and 
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hence, such components are more likely to be used by 
the ants in the next iterations of the algorithm. 

Once all ants have built their solutions (and after 
performing the local search), each pheromone trail that 
is compatible to the sequence of ant k (for each ant in 
the colony) is modified by applying a new global 
updating rule as follows: 

   1

max

1 ,ij ij k

Z

C
       (11) 

where , a parameter between 0 and 1, is the pheromone 
trail evaporation rate, max

kC  is the makespan of the 
complete sequence of ant k, and Z1 is a nonnegative 
parameter determining the relative importance of the 
solutions found in the current iteration. As seen, if the 
performance quality of a solution is higher (i.e., its 
corresponding makespan is smaller) than another 
solution, a greater amount of pheromone is deposited on 
solution components compatible to the former. 

Then, each pheromone trail compatible to the best 
solution obtained so far is updated according to Eq. 
(12). 

   2

max

1 ,ij ij best

Z

C
       (12) 

where max
bestC  is the makespan of the best solution up to 

the current iteration and Z2 is a positive parameter 
determining the relative importance of the best solution. 

4. Computational Results 

The proposed algorithm has been coded in Visual C++ 
and run on a Pentium 4, 2 GHz PC with 256 MB 
memory. To evaluate the ACA, we select 120 
benchmark problems from Taillard54 in 12 different 
sizes: from 20 jobs and 5 machines to 500 jobs and 20 
machines (denoted as Ta001 to Ta120). Taillard has 
produced a set of problems for the PSFP to minimize 
the makespan. In order to propose problems that are as 
difficult as possible, Taillard has generated many 
instances of problems in different sizes and then chosen 
10 instances for each size of problems. Therefore, there 
are 10 instances for each problem size and 120 problem 
instances in all. Integer processing times have been 
generated from the uniform distribution [1, 99] for each 
instance. Subsequently, each of these instances is given 
with the following information: initial value of the 
random generator’s seed, a lower bound and an upper 

bound of the optimal makespan. In recent years, it has 
been shown that the Taillard’s solutions are equal or 
near to the optimum. 

4.1. Parameter settings 

For setting the algorithm parameters, seven different ant 
size (1, 5, 10, 20, 30, 50 and 70), different values of q0 
(0.8, 0.85, 0.9, 0.95 and 0.99), different values of  and 
β (0.1, 0.5, 1, 1.5 and 2), different values of Z1 (0, 1, 2, 5 
and 10) and different values of Z2 (1, 2, 5, 10 and 15) 
have been considered. In addition, parameter  has been 
tested between 0.05 and 0.3 in increments of 0.05. We 
set the initial pheromone τ0 equal to 610 . In the 
preliminary experiments, the following values of the 
parameters have been superior and used for all further 
studies: ant size = 5, q0 = 0.99,  = β = 1,  = 0.25, Z1 = 
2 and Z2 = 10. The algorithm terminates when the total 
number of iterations in Step 2 (in Sec. 3) reaches 1000. 

4.2. Contribution of the proposed local search 

An important question that may arise is whether the 
local search procedure really enhances the performance 
of the ACO algorithm, i.e., whether the algorithm does 
not perform better without local search but with 
constructing an additional number of solutions. To show 
the effect of the proposed local search, an experimental 
test has been conducted: some of the difficult problem 
instances (those with M = 20) have been solved with 
(ACA) and without (ACA-LS) local search. Table 1 
provides the minimum, average and maximum 
makespan achieved by the ACA and ACA-LS over five 
runs (UB denotes Taillard’s upper bound). It should be 
noted that, to make a fair comparison, for ACA-LS has 
been allowed the same CPU time as the algorithm with 
local search. As seen, the ACA is significantly better 
than the version without local search. 

Table 1.  Computational results with and without local search. 

    ACA   ACA-LS 
Instance N|M UB Min Average Max  Min Average Max
Ta051 50|20 3886 3946 3985.2 4014  3992 4060.0 4128

Ta081 100|20 6330 6450 6494.4 6539  6527 6582.0 6625

Ta101 200|20 11393 11518 11577.8 11617  11635 11687.0 11813

4.3. Performance analysis of the algorithm 

Due to the stochastic nature of the proposed algorithm, 
for each size of problem, we have tested each of the 
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problem instances for five trials. The best trial has been 
chosen and the ten instances for the same problem size 
have been averaged. It should be noted that, if the 
makespan of an obtained solution is Cmax, the solution 
quality is then measured by the mean percentage 
difference from Taillard’s upper bound as follows: 

 max UB
Quality 100.

UB

C 
   (13) 

The final results are shown in Table 2, which gives a 
comparison with ACS, simulated annealing (SA) and 
genetic algorithm (GA) (best values are indicated in 
boldface). ACS, proposed47 by Ying and Liao, is an 
implementation of ant colony system, a particular 
version of ACO proposed43 by Dorigo and Gambardella. 
Ying and Liao have represented the PFSP by a 
disjunctive graph and proposed a pheromone model 
based on this graph, i.e., used a new definition for 
moving artificial ants. They have tested each of the 
problem instances for five trials and chosen the best 
one. The results of ACS have then been compared with 
those of other metaheuristics such as SA and GA 
proposed25 by Reeves. 

Table 2.  Comparison of the ACA with 
ACS, GA and SA. 

N|M ACA ACS GA SA 
20|5 0.368 1.19 1.61 1.27 
20|10 0.831 1.70 2.29 1.71 
20|20 0.944 1.60 1.95 0.86 
50|5 0.085 0.43 0.45 0.78 
50|10 1.241 1.89 2.28 1.98 
50|20 1.990 2.71 3.44 2.86 
100|5 0.070 0.22 0.23 0.56 
100|10 1.059 1.22 1.25 1.33 
100|20 1.833 2.22 2.91 2.32 
200|10 0.434 0.64 0.50 0.83 
200|20 1.236 1.30 1.35 1.74 
500|20 1.444 1.68 -0.22 0.85 

Average 0.961 1.40 1.50 1.42 

 
Moreover, Table 3 gives a comparison with other 

well-known ACO algorithms to minimize the makespan 
for the PFSP from the literature such as MMAS, M-
MMAS and PACO. MMAS, proposed44 by Stutzle, is 
an implementation of max–min ant system, another 
particular version of ACO (see Ref. 55 for more 
details). M-MMAS as well as PACO has been 
proposed45 by Rajendran and Ziegler. M-MMAS has 

extended MMAS by incorporating the concept of 
summation rule and a new local search procedure, and 
PACO has developed M-MMAS. The results of M-
MMAS and PACO have been compared with those of 
MMAS. In these algorithms, 9 problems with different 
sizes have been considered and each of the problem 
instances has been tested for one trial. In other words, 
the three large size problems, 200 jobs and 10 machines, 
200 jobs and 20 machines, and 500 jobs and 20 
machines, have not been examined in those methods. 

Table 3.  Comparison of the ACA with 
MMAS, M-MMAS and PACO. 

N|M ACA MMAS 
M-

MMAS 
PACO

20|5 0.368 0.408 0.762 0.704 
20|10 0.831 0.591 0.890 0.843 
20|20 0.944 0.410 0.721 0.720 
50|5 0.085 0.145 0.144 0.090 

50|10 1.241 2.193 1.118 0.746 
50|20 1.990 2.475 2.013 1.855 
100|5 0.070 0.196 0.084 0.072 
100|10 1.059 0.928 0.451 0.404 
100|20 1.833 2.238 1.030 0.985 

Average 0.936 1.065 0.801 0.713 

 
For the mean percentage deviation, an average of 

0.961 in all of the problem sizes (and 0.936 in 9 
problem sizes) with a maximum 1.99 has been achieved 
by the ACA. It is shown that in most problem sizes, the 
deviation from the optimal solution is low in the 
proposed algorithm. It can be seen that the ACA is 
superior in all problem sizes compared to ACS, in 11 
out of 12 problem sizes compared to GA (except for 500 
jobs and 20 machines) and in 10 out of 12 problem sizes 
compared to SA (except for 20 jobs and 20 machines, 
and 500 jobs and 20 machines). The ACA is also 
superior in 6 out of 9 problem sizes compared to 
MMAS, in 5 out of 9 problem sizes compared to M-
MMAS and in 4 out of 9 problem sizes compared to 
PACO. On an average, the ACA outperforms ACS, GA, 
SA and MMAS, whereas M-MMAS and PACO 
outperform the ACA. 

Another criterion to evaluate algorithms is the 
computational time. Since only the CPU times of ACS 
are provided by the literature, we compare the time 
results in Table 4. ACS has been coded in Visual C++ 
and run on an AMD 700 MHz PC, which is 
approximately two to three times slower than a 2 GHz 
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Pentium 4 PC. Therefore, to make a fair comparison, the 
CPU times of ACS reported in Ref. 47 have been 
divided by the transformation factor three in Table 4. 
With regard to this matter, it is seen that in all of the 
different sizes the proposed algorithm is much faster 
than ACS. Finally, it can be seen that the proposed 
algorithm can get very good solutions at a reasonable 
CPU time. 

Table 4.  Comparison of the 
CPU times (in seconds). 

N|M ACA ACS 
20|5 0.44 3.67 

20|10 0.50 4.00 
20|20 0.63 5.33 
50|5 2.77 14.67 

50|10 3.73 18.00 
50|20 5.91 24.33 
100|5 14.15 54.33 
100|10 21.93 65.67 
100|20 37.79 88.00 
200|10 141.52 275.33 
200|20 254.06 631.67 
500|20 3744.25 5133.00 

Average 352.31 526.5 

 

5. Conclusions 

In this paper, an efficient ant colony optimization 
algorithm is developed to solve the permutation flow 
shop scheduling problem with the objective of 
minimizing makespan. At first, an initial value is 
assigned to all pheromone trails. Each artificial ant 
constructs a solution by applying a pseudo-stochastic 
rule based on both the Gupta’s heuristic and the 
pheromone trails. Then, the constructed solution is 
improved by the proposed local search procedure. Once 
all ants have terminated their generations, the 
pheromone trails are modified using the global updating 
rule. To evaluate the performance of the proposed 
hybrid algorithm, it has been tested on the benchmark 
problems due to Taillard, and then compared with other 
ant colony optimization algorithms, genetic algorithm 
and simulated annealing available in the literature. The 
results are given to show the power of the proposed 
approach for producing very good solutions at a 
reasonable CPU time. The results incite the extension of 
the algorithm for other scheduling problems. 
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