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Abstract 

A general framework for vehicle assessment is proposed based on both mass survey information and the evidential 
reasoning (ER) approach. Several methods for uncertainty and preference modeling are developed within the 
framework, including the measurement of uncertainty caused by missing information, the estimation of missing 
information in original surveys, the use of nonlinear functions for data mapping, and the use of nonlinear functions 
as utility function to combine distributed assessments into a single index. The results of the investigation show that 
various measures can be used to represent the different preferences of decision makers towards the same feedback 
from respondents.  Based on the ER approach, credible and informative analysis can be conducted through the 
complete understanding of the assessment problem in question and the full exploration of available information.  
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1. Introduction 

Uncertainty is one of the main concerns in most 
decision making processes and has been researched 
intensively1-6. Although the types and sources of 
uncertainty for various problems may be different, they 
share some common features7. As an empirical study, 
this paper is aimed to investigate pragmatic ways for 
handling uncertainty in assessment of vehicle attributes.  

Evaluating vehicle attributes is an important activity 
of a process which can help both OEMs (i.e., original 
equipment manufacturers) and consumers understand 
the quality and attractiveness of various vehicles. To 
facilitate vehicle attribute assessment, different types of 

surveys and tests may be conducted for gathering first-
hand data. These surveys and tests might be conducted 
internally by an OEM, independent specialist 
consultancy companies, consumer groups, or 
government departments.  

One example is the survey carried out by J.D. Power 
and Associates, Automotive Performance Execution 
And Layout Study (APEAL). It is a mail survey that 
asks the consumers what they like and don’t like about 
the various vehicle attributes listed on the questionnaire. 
It measures customer ratings on retail purchasers and 
lessees from randomly drawn samples on over 100 
vehicle attributes including ride and handling, engine 
and transmission, comfort and convenience and so on8. 
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In APEAL, vehicle attributes are rated using a ten point 
scale on which 1 might represent ‘unacceptable’ while 
10 might represent ‘outstanding’. To make the data as 
accessible as possible, experts at J. D. Power convert 
thousands of questions and answers into scores in a few 
categories, which are then aggregated to give vehicle 
attributes an overall score. This pivotal figure is then 
expressed as a percentage and an overall rating9. 

Another example is the rating listed in the Consumer 
Reports published by Consumers Union10-12. Consumer 
Reports rates the performance of the vehicles tested by 
the experts of Consumers Union at its specialized auto-
test facility and compiles regularly updated charts 
showing which models perform best and worst overall. 
Assessments of vehicles on many designated attributes 
are based on various scales among which an ordinal 5-
point scale may take the following form: 

 1 = “Poor” 
 2 = “Fair” 
 3 = “Good”, 
 4 = “Very Good” 
 5 = “Excellent” 

The examples show that to distinguish or rank 
vehicle attributes, more than one rating or survey on 
vehicles may be obtained (especially for big OEMs who 
might even have their own surveys on vehicles). It is 
obvious that each survey has its own style and specific 
attribute settings. The statements used in one survey 
may somewhat differ from those used in other surveys, 
although they may belong to the same or similar 
attributes.  

It is often the case that an analyst needs to use 
multiple surveys in assessing vehicle attributes. Hence, 
it is important to combine assessments from diverse 
surveys in order to produce comprehensive and 
consistent assessments. This requires transformation or 
mapping of survey data from various formats to a 
common format. While linear functions are most 
common and might perform well for certain 
transformations, a question arises as to whether 
nonlinear transformation functions might perform better 
in other cases. This forms one of the research questions 
investigated in this paper. It is likely that a subject 
(consumer or expert assessor) may not provide 
assessments for a vehicle on certain attributes. It is also 
possible that in a hierarchy of detailed vehicle attributes, 
there may be partial or no assessments on certain 

attributes. Such missing information can cause problems 
in follow-up analysis and need to be handled properly in 
order to provide reliable and non-distorted overall 
assessments on vehicles. This paper is devoted to 
investigating these issues for objective and consistent 
vehicle attribute assessment based on multiple surveys. 

In this paper, a general framework for vehicle 
attribute assessment is firstly constructed on the basis of 
the Evidential Reasoning (ER) approach. The procedure 
for constructing and using this general framework in 
assessment of vehicle attributes is discussed in Section 2. 
In Section 3, various methods for estimating missing 
information in surveys are investigated. Sections 4 and 
5 are devoted to studying the impacts of nonlinear 
mapping functions and utility functions on overall 
assessments. The application of these methods for 
dealing with uncertainty is demonstrated using a case 
study in Section 6, and the paper is concluded in 
Section 7. 

2. The General Assessment Framework and 
Related Issues 

The information propagation and aggregation in 
assessing vehicle attributes can be conducted using the 
Evidential Reasoning (ER) approach13. Based on 
different survey results or original ratings, the 
comprehensive assessments or overall ratings of vehicle 
attributes can be generated using the IDS Multi-criteria 
Assessor software14, which has been developed on the 
basis of the ER approach15. The ER approach and the 
IDS software provide a methodological basis and a tool 
for this research. 

As stated in Section 1, multiple surveys, different 
forms of questionnaires and various rating scales may 
be used for assessing vehicle attributes. It is usually 
desirable to take into account as much evidence as 
available and appropriate for vehicle assessment, 
including imprecise and incomplete information that 
may exist in surveys. Next, we propose and discuss a 
generic procedure for assessing and ranking vehicle 
attributes under the above-mentioned scenario. 

2.1. Proposed generic procedure  

The proposed generic procedure includes six main steps 
as follows. 
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(1) Collect and validate data from all surveys for all 
related vehicles. 
(2) Construct a detailed vehicle attribute hierarchy. 
(3) Construct an attribute assessment hierarchy based on 
evidence aggregation logic and algorithms. 
(4) Transform survey data to assessments measured on a 
common scale using mapping functions. 
(5) Use the IDS software to aggregate all transformed 
assessments for a vehicle attribute. 
(6) Rank vehicle attributes based on overall assessments. 

These steps are normally followed in the above 
order, though there may be interactions between these 
steps in the process of vehicle assessment. For example, 
the order between step (3) and step (4) does not have to 
be followed strictly. Next, we discuss a general 
hierarchy structure for assessing different attributes of a 
vehicle. 

2.2. General hierarchy structure for attribute 
assessment  

Fig. 1 illustrates a general hierarchy for assessing 
vehicle attributes. A vehicle attribute might have 

information from multiple surveys and might have more 
than one related statement within a survey. Different 
criteria might be used to relate survey data to a vehicle 
attribute and hence assess that particular vehicle 
attribute. For example, a criterion could be that the 
mean rating for a survey statement of an OEM’s vehicle 
should be greater than the mean rating for that survey 
statement of a competitor OEM’s vehicle. The hierarchy 
incorporates sub-criteria within a criterion and the 
hierarchy could be expanded both horizontally and 
vertically. The ER approach, discussed in Sub-
section 2.4, is capable of handling complex hierarchies. 
The survey data is usually collected at the leaf node of a 
branch and then the ER approach is used to aggregate 
the data bottom-up for each vehicle attribute. 

As mentioned above, different surveys use different 
scales for obtaining ratings of the statements in the 
questionnaire. For aggregating survey information 
related to vehicle attributes, survey data have to be 
transformed to a common scale. In the next sub-section, 
we discuss a representative common scale that can be 
used for assessing vehicle attributes.  
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Fig. 1. A general hierarchical structure for attribute assessment 

2.3. The common scale 

Assessments on an attribute in various surveys may be 
measured on different scales, which may be judgmental, 
cardinal, or ordinal. Also, a scale may have various 

grades. As such, a common scale is employed in the 
general assessment framework, so that all assessments 
generated from various surveys can be measured on the 
same scale and direct comparisons among the 
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assessments can be made. For example, a viable 
common scale with an ordinal five grades from 1 to 5 is 
listed below. To take into account missing information, 
one more grade (unassigned priority) can be added to 
the common scale.  

 5 = “Top priority” 
 4 = “High priority” 
 3 = “Average priority” 
 2 = “Low priority” 
 1 = “No priority” 
 UN = “Unassigned priority” 

We use the above common scale for illustrating our 
results in the coming sections. 

2.4. The Evidential Reasoning algorithm and its 
logic  

The ER algorithm is developed on the basis of a multi-
attribute evaluation framework16 and the evidence 
combination rule of the Dempster-Shafer (D–S) theory17. 
It can be used to aggregate criteria of a multilevel 
structure. It is employed in the general assessment 
framework for propagating and aggregating information. 
The rationale and logic of the ER approach has been 
discussed in Refs. 15 and 18-20. 

The main function of the ER algorithm in the 
general assessment framework is to calculate the 
combined degrees of belief of a group of criteria for 
generating an assessment on their parent criterion using 
a group of recursive formulas. Such calculations are 
conducted from the lowest level to the top level in an 
assessment hierarchy as shown in Fig. 1, and eventually 
the overall assessment can be obtained in terms of a 
distributed assessment. To assist in ranking a series of 
vehicle attributes, the concept of expected utility may be 
used as an auxiliary measure.  

A general-purpose multiple criteria decision analysis 
tool, the Intelligent Decision System (IDS) software14 
can be used for this purpose, which is based on the 
Evidential Reasoning (ER) approach. IDS provides 
Windows-based graphical interfaces to support the 
building of decision models where all vehicle attributes 
can be assessed on a general hierarchy using a belief 
structure. The rank order of all vehicle attributes can be 
generated on the basis of utility scores. With the help of 
the IDS software, the general assessment framework can 
be employed efficiently and easily.  

Among the advantages of using this framework for 
assessing vehicle attributes, the explicit representation 
and propagation of uncertainty in the information 
aggregation process is of particular interest. By allowing 
imprecise and incomplete information to be modeled for 
assessment of vehicle attributes, the framework can be 
widely applicable and can produce transparent and 
reliable results in a consistent and transparent way. 
Imprecise and incomplete information in the assessment 
of vehicle attributes may be incurred from missing 
information in an original survey, from data 
transformation and representation, and so on. It is 
crucial to measure and express all types of uncertainty 
properly before the process of assessing vehicle 
attributes is started.  

As such, three related issues will be studied in more 
detail in the following sections. First, the measurement 
of uncertainty caused due to missing information in 
original surveys is studied. The estimation of missing 
information is also discussed for certain circumstances. 
Secondly, the possibility and properties of using 
nonlinear functions for data transformation are 
investigated. Thirdly, the properties of using nonlinear 
functions as utility function in aggregating distributed 
assessments into a single index are studied for the cross 
comparison and rank ordering of attributes. 

The skewness of evaluation rating may also be a 
source for uncertainty in both data survey and 
transformation stages. This type of uncertainty can be 
dealt with by using nonlinear functions as mapping 
function or as utility function in some circumstances as 
discussed in Sections 4 and 5.   

3. Missing Information 

3.1 Measurement of uncertainty 

Missing information often exists in a survey. There are 
basically two types of missing information in a survey. 
One is failed observation, which means that there is no 
valid information from a respondent. This may be 
because the respondent has no idea or simply refuses to 
give his or her opinion about all survey statements. The 
other is failed data or missing information in a valid 
observation, which means that a respondent does give 
valid responses to at least one, but not all, questions in a 
questionnaire. This might be because the respondent 
only has part of the knowledge required to answer the 
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full questionnaire or the questionnaire is time 
consuming to complete. In the former situation, the 
failed observation either can be taken as no information 
and be counted in the sample or can simply be deleted 
and not counted in the sample. In the latter situation, the 
observation with failed data or missing information 
should be taken into account as it is normal for a 
respondent to have only partial knowledge about a 
specific vehicle but still have interests to participate in 
the survey and provide what he or she knows. Note that 
we assume that the respondent does not deliberately (or 
by any other means) give incorrect response when he or 
she has the knowledge about the vehicle. 

For a single vehicle attribute, the total number of 
valid observations is the sample size, and the number of 
observations which have no valid response is the 
amount of missing information. The amount of missing 
information is divided by the sample size to give the 
level of missing information or unassigned belief degree 
which is defined as the measure of uncertainty in 
question. Based on this definition, uncertainty caused 
due to missing information can be determined by Eq. (1) 
as follows. 

s

ss

T
MTUN −

=                                 (1) 

where UN  — unassigned belief degree or the measure 
of uncertainty 

sT  — sample size for evaluation of a vehicle attribute 

sM   —  number of respondents who provide valid 
response for evaluation of a vehicle attribute.  

Sometimes criteria used for relating survey data to a 
vehicle attribute might need information from two or 
more vehicles. For example, relative position of two 
vehicles in a particular survey could be used for 
assessing the importance of an attribute. In such cases, 
Eq. (2) can be used for taking into account the impact of 
missing information for both vehicles. Note that Eq. (2) 
can be easily extended for taking into account data from 
more than two vehicles. 

2

22
2

1

11
1

s

ss
s

s

ss
s T

MT
T

MTUN −
⋅+

−
⋅= ϕϕ            (2) 

where UN  — unassigned belief degree or the measure 
of uncertainty for comparison of two vehicles 

1sT  — sample size for the first vehicle 

2sT  — sample size for the second vehicle 

1sM  — number of respondents who provide valid 
response for the first vehicle  

2sM  —  number of respondents who provide valid 
response for the second vehicle  

21, ss ϕϕ — the respective weights for the two vehicles in 
determining uncertainty, and 121 =+ ss ϕϕ . 

One can set 
2
1

21 == ss ϕϕ  if the impact of individual 

vehicle’s sample size is not to be accounted for or can 
set 

21

1
1

ss

s
s TT

T
+

=ϕ  and 
21

2
2

ss

s
s TT

T
+

=ϕ  if the impact of 

individual sample sizes is to be accounted for. Other 
methods of setting the weights 1sϕ  and 2sϕ  might be 
used according to individual circumstances and the 
preferences of the analyst. 

For example, if the sample size and the number of 
valid responses in a sample for an attribute of the first 
vehicle are 200 and 192 respectively, the level of 
missing information or the uncertainty in the evaluation 
on that attribute is 0.04 by Eq. (1). If we set 

2
1

21 == ss ϕϕ  and the sample size and the number of 

valid responses for the same attribute of the second 
vehicle are 240 and 228, the level of missing 
information or the uncertainty in the evaluation 
comparison of the two vehicles on the attribute is 0.045 
by Eq. (2).   

A special case in Eq. (2) that needs to be noted is 
that  or  or both are equal to 1. If  is equal to 

1 and  is equal to 0 or  is equal to 1 and  
is equal to 0, the uncertainty degree calculated using Eq. 
(2) may not be equal to 1 though it should be so. As in 
this case there must be no valid response for one of the 
two vehicles, the value of uncertainty obtained using Eq. 
(2) does not make sense if UN ≠ 1. In fact, if  or 

 is less than a certain threshold value, the 
corresponding UN should be artificially assigned to 1, 
which means that the comparison between the two 
vehicles is improper if there is a lack of valid 
information.  

1sT 2sT 1sT

1sM 2sT 2sM

1sM

2sM

3.2 Accommodating uncertainty in questionnaire 

In a large scale survey, it is normal to have some 
subjects who might not have complete knowledge about 
the survey or can not provide full confidence in some 
assessments. To accommodate such a scenario, we 
propose below a new form of questionnaire that would 
give more freedom and flexibility to the respondents 
and could result in the collection of original and better 
quality data.  
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In the proposed questionnaire, the uncertainty in the 
subjects’ response is explicitly captured by allowing the 
subject to provide a distributed assessment as shown in 
Table 1. An overall assessment on the attribute can then 
be calculated by Eq. (3) and Table 2. 

∑
=

⋅=
m

j
jnjn BICBBI

1
,ζ                       (3) 

where BIn — the mean belief degree on grade n 
of an attribute ),,1( Nn L=

m — total number of respondents, 
BICBn,j — belief degree on grade n for an attribute 
given by respondent j, 
ζj — the weight of the jth respondent in evaluating an 

attribute, and . 1
1

=∑
=

m

j
jζ

 Typically, if all respondents are given the same 
importance, 

mj
1

=ζ . Table 1 takes a traditional survey 

format as a special case, where a respondent ticks only 
one box (with 100% degree of belief), and allows more 
flexible yet realistic answers to survey questions. The 
above-suggested format of questionnaire is only one 
example out of many possibilities. It can be designed to 
be more user-friendly but without losing its essential 
characteristics.  

3.3. Estimation of missing information  

In this subsection, we discuss some cases in which 
missing information on an attribute can be estimated as 
a function of related information on other attributes. We 
propose some functions for estimating the missing 
information in those cases. 

Table 1 Proposed model to account for uncertainty in assessment 

Survey Statement 
Assessment grade Worst (1) Poor (2) Average (3) Good (4) Excellent (5) Unsure (6) 
Degree of belief       

    Remark: please tick the box under a grade or give percentage values in the boxes under the grades that fit the 
statement. 

Table 2 Aggregation of assessments on a survey statement’s rating 

Grade Description Belief degree (%) Remark 
1 Worst BI1  
2 Poor BI2  
3 Average BI3  
4 Good BI4  
5 Excellent BI5  
6 Uncertainty BI6  

Total belief degree  0 ≤ and ≤ 100 % 
 

In a survey, there are often many attributes to be 
assessed which may be grouped in a hierarchy. There 
might also be cases where a set of attributes from 
various surveys are related in one way or other. In 
vehicle evaluation, for example, independent survey 
providers may disclose their survey results and OEMs 
may have their own evaluations, although statements for 
a similar attribute may be different in such various 
surveys.  If such relationships can be explicitly 
expressed in a hierarchy, the following approach can be 
used for estimating missing information from surveys.  

Suppose an attribute A can be expressed fully by a 
set of sub-attributes ai, i = 1, 2, …, k, and k ≥ 2. Then, 
the attribute A is dependent on its sub-attributes which 

are assumed to be mutually independent for assessment. 
Suppose assessments on attributes provided in survey(s) 
include missing information. It is also assumed that the 
same scale is used in the assessments. If different 
evaluation scales are used, assessments given on various 
scales can be transformed to a common scale using the 
mapping functions discussed in Section 4.  

Depending on the characters of missing information 
there could be six different cases to consider. The first 
case is one where all assessments are given. This is an 
ideal case and does not require any estimation of 
missing information. The second case is one where 
neither a parent attribute nor its sub-attributes are 
assessed. In this case, there might be no need or it might 
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be inappropriate to estimate missing information simply 
because of the complete lack of information. The other 
four cases are discussed in detail below. 

Case 1 — Assessment on the high level (or parent) 
attribute is unknown, but all assessments on its sub-
attributes are known. 

Eq. (4) can be used to estimate the unknown 
assessment of attribute A. 

∑
=

⋅=
k

i
jiij avAt

1
,ω       j = 1, 2, ……, N      (4) 

where Atj — estimated assessment value on the jth grade 
of the attribute A 
ωi — weight of the ith sub-attribute in the assessment on 

its parent attribute, and ∑  
=

=
k

i
i

1

1ω

avi, j — assessment value on the jth grade of the ith sub-
attribute ai

k — number of sub-attributes related to the same parent 
attribute A 
N — number of grades on the assessment scale 

In this case, the estimated assessment on A is of full 
confidence as long as the assessments on ai, i = 1, 2, …, 
k are of full confidence. More precisely, the estimated 
assessment on A determined by Eq. (4) has the same 
confidence degree as the sub-attributes. 

Case 2 — Assessment on the parent attribute is 
unknown, and some assessments on its sub-attributes 
are known. 

If there are s out of k sub-attributes with unknown 
assessments, there will be obviously s degrees of 
freedom in estimating the unknown assessments. In 
other words, s conditions are needed to estimate the 
unknown assessments. If s conditions indeed exist and 
can be identified, the estimation of the unknown 
assessments can be uniquely made with full confidence. 
Otherwise, necessary conditions have to be subjectively 
established and the confidence of the estimation may 
vary according to the reliability of the subjective 
conditions established.  

For example, if the weights of the related sub-
attributes can be generated by a fuzzy AHP procedure21, 
the weighted average of known assessments can be used 
as the estimation of the unknown assessments. Among a 
variety of ways for establishing the necessary conditions, 
the following Eq. (5) is a simple and convenient one. 

∑
∈

====
22

221 ,
2

,,,
1

Ii
jijkjkjk av

I
avavav

s
L

 

                 k1, k2, ……, ks∈I1                         (5) 
where I1 — subscript set for the sub-attributes with 
unknown assessments 
I2 — subscript set for the sub-attributes with known 
assessments 
|I2| — number of sub-attributes in I2

jiav ,2  
— known assessment on the jth grade of 

sub-attribute  2i
With s given conditions, the assessment on the 

unknown attribute A can be made using Eq. (6). 

ji
Ii

i
Ii

jiij avavAt ,, 1

11

1

22

22
⋅+⋅= ∑∑

∈∈

ωω  

j = 1, 2, ……, N                              (6) 
It is hard to determine the confidence of the 

estimation given by Eq. (6), if s ≠ 0. However for each 
estimate, under certain conditions, it is possible to 
determine an interval within which the true value might 
exist. As the value of each grade avi, j is defined in the 
closed interval [0, 1], Eq. (7) gives the maximum 
estimate of Atj by setting all 

11 jijiav  = 1 for 
11 , and Eq. (8) gives the minimum estimate of At

max
, av=

Ii ∈ j 
by setting all  = 0 for , respectively. jiav ,1 11 Ii ∈

∑∑
∈∈

⋅+⋅=
11

11

22

22

max
,,

max

Ii
jii

Ii
jiij avavAt ωω    

                         j = 1, 2, ……, N                              (7) 

∑∑
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⋅+⋅=
11

11

22

22

min
,,

min

Ii
jii

Ii
jiij avavAt ωω  

                      j = 1, 2, ……, N                               (8) 
where  — maximum estimate of Atmax

jAt j
min
jAt  — minimum estimate of Atj

At the extreme points of = 1 and  = 0,  
we have, 

max
1 jiav min

,1 jiav

∑∑
∈∈

+⋅=
11

1

22

22 ,
max

Ii
i

Ii
jiij avAt ωω  

j = 1, 2, ……, N 

∑
∈

⋅=
22

22 ,
min

Ii
jiij avAt ω  

j = 1, 2, ……, N 
Therefore, we have the estimation interval 

[ ] for j  with confidence. 
Alternatively, we have the following relationship:  

maxmin , jj AtAt At

10 maxmin ≤≤≤≤ jjj AtAtAt  

In a similar way and based on Eqs. (7) and (8), the 
estimation interval for each unknown sub-attribute can 
be deduced to give Eqs. (9) and (10) respectively. 
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kh ∈ I1 or 1 ≤ h ≤ s 
where  — maximum estimate of  max

, jkh
av jkh

av ,

min
, jkh

av
 
— minimum estimate of  jkh

av ,

For given s and s ≥ 1, we can select any unknown 
sub-attribute and determine its estimation interval using 
Eqs. (7) and (8) or (9) and (10), depending on whether 
or not the selected sub-attribute has sub-attributes of its 
own or not. Then, based on the same rationale and the 
estimation interval of the first estimated sub-attribute, 
the estimation interval for the second unknown 
sub-attribute can be determined using Eqs. (7) and (8) or 
(9) and (10) again. This process can be repeated until 
the estimation intervals for the s + 1 (i.e., s 
sub-attributes and one parent attribute) unknown 
attributes are obtained.  

For example, suppose a parent attribute A has six 
sub-attributes ai, i = 1, 2, …, 6 and the sub-attributes 
from a1 to a4 have complete assessment information as 
shown in Table 3, while the remaining two 
sub-attributes have unknown assessments. The 
estimated values and the estimation intervals of 
assessments for the last two sub–attributes and the 

parent attribute are calculated using Eqs. (5) to (10) and 
are listed in Table 3. As the estimation intervals for all 
the grades of the two unknown sub-attributes are outside 
the rational interval [0, 1] of the grade definition, the 
applicable estimation intervals need to be adjusted into 
the closed interval [0, 1].  

It is interesting to note that in the tests we conducted, 
the applicable estimation intervals, after adjustment, for 
all the sub-attributes are equal to the complete closed 
interval [0, 1,]. This is in fact the nature of Eqs. (9) and 
(10). Therefore, Eqs. (9) and (10) or to guess the 
estimation interval of an unknown sub-attribute is 
actually meaningless in this case. However, the 
estimation interval of the unknown parent attribute is 
relatively small and stable. In many cases, the 
estimation interval for the parent attribute is of 
importance and is used for determining the final 
assessment interval of a detailed vehicle attribute or the 
vehicle itself under uncertainty.   

Case 3 — Assessment on the parent attribute is 
known, and some assessments on its sub-attributes are 
unknown. 

If there are s out of k sub-attributes with unknown 
assessments, there will obviously be (s-1) degrees of 
freedom in estimating unknown assessments. If (s - 1) 
conditions are met, the unknown assessments can be 
estimated with confidence. Otherwise, necessary 
conditions have to be subjectively established and the 
confidence of the estimation obtained under these 
conditions may vary according to the reliability of the 
subjective conditions established.  

Table 3 The maximum and minimum values of missing assessments 

Attribute Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 ω Remark 
At (value) 0.0175 0.1475 0.33 0.4125 0.0925 
At (interval) [0.01, 0.31] [0.11, 0.41] [0.24, 0.54] [0.27, 0.57] [0.07, 0.37] 

 Predicted 

a1 0.1 0.2 0.6 0.1 0 0.1 known 
a2 0 0 0 0.8 0.2 0.2 known 
a3 0 0.3 0.6 0 0.1 0.3 known 
a4 0 0 0 1 0 0.1 known 
a5 (value) 0.025 0.125 0.3 0.475 0.075 
a5 (interval) [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] 0.05 Predicted 

a6 (value) 0.025 0.125 0.3 0.475 0.075 
a6 (interval) [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] 0.25 Predicted 
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For example, if we assume that each grade value of 
the unknown sub-attributes are equally correlated to the 
grade values of the parent attribute and the known sub-
attributes, and 

jkjkjk s
avavav ,,, 21

=== L

 k1, k2, ……, ks ∈ I1                         (11) 
Eq. (12) can be used to estimate the grade values of the 
unknown sub-attributes. 

∑
∑

∈

∈
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−

=

11

1

22

22 ,

,

Ii
i

Ii
jiij

jk

avAt
av

h ω

ω
             

kh ∈ I1                                     (12) 

Eq. (6) is used to pair with the (s-1) given conditions 
expressed in Eq. (11) to form s equations. The 
estimation intervals of these s unknown sub-attributes 
can be determined using Eqs. (9) and (10) in which both 

 
and should be substituted by Atmin

jAt max
jAt j. The 

parent attribute with six sub-attributes as discussed in 
Case 2 is used to demonstrate the estimation of the two 
unknown sub-attributes. At this time, suppose the 
assessment on the parent attribute is known as shown in 
Table 4. As both 

 
and 

 
are substituted by 

At

min
jAt max

jAt
j in Eqs. (9) and (10), the estimation intervals for a5 

and a6 are reduced to a smaller range after adjustment or 
deleting void area produced by Eqs. (9) and (10). 

Table 4 The estimation values of missing assessments for two sub-attributes 

Attribute Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 ω Remark 
At  0.0175 0.1475 0.33 0.4125 0.0925  known 
a1 0.1 0.2 0.6 0.1 0 0.1 known 
a2 0 0 0 0.8 0.2 0.2 known 
a3 0 0.3 0.6 0 0.1 0.3 known 
a4 0 0 0 1 0 0.1 known 
a5 (value) 0.025 0.125 0.3 0.475 0.075 
a5 (interval) [0, 0.15] [0, 0.75] [0, 1] [0, 1] [0, 0.45] 0.05 Predicted 

a6 (value) 0.025 0.125 0.3 0.475 0.075 
a6 (interval) [0, 0.03] [0, 0.15] [0.16, 0.36] [0.37, 0.57] [0, 0.09] 0.25 Predicted 

 

Case 4 — Assessment on the parent attribute is 
known, but all the assessments on its sub-attributes are 
unknown. 

Generally speaking, for any given sub-attribute h, its 
unknown assessments can be determined by Eq. (13), 
assuming that all other sub-attributes are guessed in 
advance.  
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h = 1, 2, …, k; j = 1, 2, ……, N              (13) 
Similar to Case 3, if we assume that each grade 

value of the unknown sub-attributes is equally 
correlated to the grade values of the parent attribute and 
Eq. (11) is used as the necessary (k – 1) conditions, 
Eq.(14) can be used to estimate the grade values of the 
unknown sub-attributes..  

jjh Atav =,  
h = 1, 2, …, k; j = 1, 2, ……, N                   (14) 

To obtain the maximum estimation value of avh,j, let 
all other avi,j = 0, i = 1, 2, …, k and i ≠ h in Eq. (13). 
Then, we have 

],1min[max
,

h

j
jh
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ω
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h = 1, 2, …, k;  j = 1, 2, …, N              (15) 
Similarly, to obtain the minimum estimation value 

of avh,j, let all other avi,j = 1, i = 1, 2, …, k and i ≠ h. 
Eq.(13) gives 
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     h = 1, 2, …, k; j = 1, 2, …, N            (16) 
To demonstrate Eqs. (14) – (16), the example 

employed in Case 2 and Case 3 is again used for Case 4 
with only assessment for the parent attribute being given 
as shown in Table 5. It is interesting to find that the 
applicable estimation intervals after adjustment are 
likely to fall into a closed interval that is smaller than [0, 
1]. 
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Table 5 The estimation values of missing assessments for all sub-attributes 

Attribute Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 ω Remark 
At  0.0175 0.1475 0.33 0.4125 0.0925  known 
a1(value) 0.018  0.148  0.330  0.413  0.093  
a1 (interval) [0, 0.175] [0, 1] [0, 1] [0, 1] [0, 0.925] 0.1  Predicted 

a2(value) 0.018  0.148  0.330  0.413  0.093  
a2 (interval) [0, 0.088] [0, 0.738] [0, 1] [0, 1] [0, 0.463] 0.2 Predicted 

a3(value) 0.018  0.148  0.330  0.413  0.093  
a3 (interval) [0, 0.058] [0, 0.492] [0, 1] [0, 1] [0, 0.308] 0.3 Predicted 

a4(value) 0.018  0.148  0.330  0.413  0.093  
a4 (interval) [0, 0.175] [0, 1] [0, 1] [0, 1] [0, 0.925] 0.1 Predicted 

a5 (value) 0.018  0.148  0.330  0.413  0.093  
a5 (interval) [0, 0.35] [0, 1] [0, 1] [0, 1] [0, 1] 0.05 Predicted 

a6 (value) 0.018  0.148  0.330  0.413  0.093  
a6 (interval) [0, 0.07] [0, 0.59] [0, 1] [0, 1] [0, 0.37] 0.25 Predicted 

 

Except for Case 1, there might be multiple solutions 
for all the other three cases. Additional conditions or 
constraints are therefore needed for finding a specific 
solution in each of these three cases. In Eqs. (5) to (16), 
we assumed that all unknown assessments are equal. 
This is the simplest yet viable assumption for estimating 
missing information and it is most likely to generate the 
mean values for missing assessments. Without doubt, if 
more dedicated conditions can be established under 
specific circumstances, better estimates for unknown 
assessments can be generated with confidence. 

In the next section, we investigate and discuss the 
affects of non-linear mapping functions for transforming 
survey data on to the common scale. 

4. Mapping Function 

As discussed in previous section, in many circumstances, 
there is a need for transforming assessments from an 
original survey to a desired scale which may differ from 
the evaluation scale used in the original survey. Linear 
mapping functions such as the one shown in Fig. 2 are 
the simplest ones. However, there are also various non-
linear functions that could be used for data 
transformation. To demonstrate some properties of non-
linear functions for data transformation, a quadratic 
function  is taken as an example 
in this section. 

cbxaxxf ++= 2)(

 
 

  

 

 

 

 

 

 

 1 2 3 4 5 Original Scale A 

Desired 
Scale B 

1 

2 

3 

4 

5 Mapping 
Function 

Anchoring 
point

 

Fig. 2. Linear mapping from one scale to another 
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In a quadratic function, there could be at most three 
unknown parameters a, b and c and hence three 
conditions are needed to determine a quadratic function. 
For simplicity, we assume that the anchoring point and 
the top rank point of a mapping function are the same in 
original scale A and desired scale B. In other words, the 
lowest grade in the original scale A for a survey is 
mapped to the lowest grade in the desired scale B and 
the highest grade in the original scale A is mapped to 
the highest grade in the desired scale B, as shown in Fig. 
2. Furthermore, we assume that the middle point of 
assessment on the original scale is mapped into t on the 
desired scale. Based on these assumptions, the 
following relationship can be established. 

)()()(),( 2 tcxtbxtatxf ++=   (17) 
where x — independent variable which stands for the 
assessment grade on the original scale 
t — value of  at the middle point x),( txf m m of the 
original scale, which is a parameter used to control the 
shape of the parabola 

),( txf  — assessment on the desired scale 
corresponding to x, given the parameter t 

Assuming that the original scale A and the desired 
scale B have five assessment grades as shown in Fig. 2, 
the values for the parameters in Eq. (17) would then be: 

4
3)( tta −

= ,  
2

73)( −
=

ttb ,  
4

515)( ttc −
= . 

Fig. 3 shows a set of parabolas following Eq. (17) with 
xm = 3 as the middle point in the original scale. Note that, 
if t = 3, then a = 0 and c = 0, and f (x) becomes a 
straight line or a linear function as shown in Fig. 3. If 
t < 3, the grades between the lowest and highest grades 
on the desired scale are devaluated in comparison with 
the corresponding grades on the original scale. If t > 3, 
the grades between the lowest and highest grades on the 
desired scale are appreciated in comparison with the 
corresponding grades on an original scale.  

The extents of devaluation or appreciation are quite 
different for different grades between the lowest and 
highest grades. These properties can be used to reduce 
or enlarge the range of assessments. For example, 
suppose that the original evaluations for six attributes 
are as shown in Table 6. A number in a column under a 
grade is the belief degree of the grade assessed for the 
corresponding attribute. The mean grade in the last 
column for an attribute is the average of grade numbers 
(i.e., 1 for the lowest grade and 5 for the highest grade) 
multiplied by corresponding belief degrees. 

Take t = 2 for example. a(t) = 0.25, b(t) = -0.5 and 
c(t) = 1.25, and the mapping function becomes a convex 
curve. The five grades 1, 2, 3, 4 and 5 on the original 
scale are mapped to 1, 1.25, 2, 3.25 and 5 respectively 
on the desired scale. To find the belief degrees of an 
assessment on each grade on the desired scale, 
piecewise linear approach can be employed.  

0 1 2 3 4 5 6
0

1

2

3

4

5

6

t = 3

t = 3.5

t = 4

t = 2.5

t = 2

 
Fig. 3. Parabolas of the quadratic function with different value for parameter t 
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If a grade on the original scale coincides with a 
grade on the desired scale after mapping, then the belief 
degree of the grade for an attribute on the original scale 
is directly transformed to the grade on the desired scale. 
Otherwise, if a grade on the original scale moves to a 
place in between two adjacent grades, say Grade h and 
Grade h+1, on the desired scale after mapping, then the 
belief degree of the grade for an attribute on the original 
scale is transformed to the grades on the desired scale in 
the following way. 

Suppose that Bo represent the belief degree of a 
grade for an attribute on the original scale before 
mapping. The grade on the original scale is mapped to a 
place Gd between Grade h and Grade h+1 on the desired 
scale. Then,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−×=
+ hh

h
h GdGd

GdGdBoBd
1
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hh
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h GdGd

GdGdBoBd
−
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+

+
1

1
 

where: Bdh, Bdh+1 — belief degrees of Grade h and h+1 
for an attribute on the desired scale respectively after 
mapping 

Gdh, Gdh+1 — scale values of Grade h and h+1 on the 
desired scale respectively 
Gd — scale values between Grade h and Grade h+1 on 
the desired scale after mapping, which is mapped from 
the grade on the original scale  

After executing above calculations for all belief 
degrees of assessments on an attribute, the belief 
degrees of assessments on each grade on the desired 
scale for the same attribute should be added up to give 
the total that is the data in each cell in Table 7.  

As expected in the example of data mapping from 
Table 6 to Table 7, after transformation, all the ratings 
are devaluated or shifted towards lower grades. The 
distribution range of the mean grades over the six 
attributes is also changed from [3.6, 4] on the original 
scale to [2.85, 3.4625] on the desired scale after 
mapping. It means that the distribution of the average 
ratings has been dispersed by the mapping function.   

However, it is noticeable that the rank order of the 
six attributes based on the mean grades has changed 
after mapping in this example. Therefore, only when a 
nonlinear mapping function truly reflects a desired 
evaluation transformation, this approach can be used. 

Table 6   Assessments on the original scale 

Attribute Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Mean 
a1 0 0 0.6 0.2 0.2 3.6 
a2 0 0.2 0.2 0.3 0.3 3.7 
a3 0 0 0.2 0.8 0 3.8 
a4 0 0.1 0.1 0.7 0.1 3.8 
a5 0 0.15 0.15 0.3 0.4 3.95 
a6 0 0 0 1 0 4 

Table 7 Assessments on the desired scale using quadratic mapping function with t =2 

Attribute Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Mean 
a1 0 0.6 0.15 0.05 0.2 2.85 
a2 0.15 0.25 0.225 0.075 0.3 3.125 
a3 0 0.2 0.6 0.2 0 3 
a4 0.075 0.125 0.525 0.175 0.1 3.1 
a5 0.1125 0.1875 0.225 0.075 0.4 3.4625 
a6 0 0 0.75 0.25 0 3.25 

 

To use a nonlinear mapping function without 
altering the rank order of a group of alternatives, the 

nonlinear mapping function should be applied to the 
mean grades instead of every individual grades. For 
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example, if the same quadratic function with t = 2 is 
used to map the mean grades of the six attributes listed 
in Table 6, the rank order of their mean grades after 
mapping will be the same as the ranking before 
mapping. The mean grades before and after mapping are 
listed in the two columns under Example 1 in Table 8, 
which shows that the distribution interval for the mean 

grades is changed from [3.6, 4] to [2.69, 3.25].  To 
further demonstrate this property of non-linear function, 
a ten attribute example, named Example 2, is also given 
in Table 8. By comparison of the two columns under 
Example 2, the distribution interval is changed from 
[3.03, 4] to [2.03, 3.25]. However, the relative rankings 
of the attributes are not changed in both examples.  

Table 8 Mean grade transformation using nonlinear mapping function 

Example 1 Example 2 
Alternative Mean grade before 

mapping 
Mean grade after 

mapping 
Mean grade before 

mapping 
Mean grade after 

mapping 
a1 3.6 2.69 3.03 2.0302 
a2 3.7 2.8225 3.08 2.0816 
a3 3.8 2.96 3.19 2.1990 
a4 3.8 2.96 3.26 2.2769 
a5 3.95 3.1756 3.3 2.3225 
a6 4 3.25 3.36 2.3924 
a7   3.4 2.44 
a8   3.5 2.5625 
a9   3.59 2.6770 
a10   4 3.25 

Interval [3.6, 4] [2.69, 3.25] [3.03, 4] [2.03, 3.25] 
 

These examples show that a nonlinear function used 
to transform evaluation data plays an important part in 
changing the distribution range. This property can be 
used to change the distribution pattern of assessments to 
a desirable one. Apart from the quadratic function 
discussed in this section, other types of nonlinear 
functions can also be used as mapping function. Some 
properties of the cubic function will be discussed in the 
next section. It is important to choose an appropriate 
nonlinear function as the mapping function. Such a 
choice is domain specific and requires expert 
knowledge.  

5. Utility Function 

The concept of expected utility has been introduced in 
the ER approach for rank ordering when the distributed 
overall assessments are not sufficient to show 
differences in ranking. As an auxiliary measure, utility 
is applied to the general vehicle assessment framework 
to help intuitively rank the detailed attributes or vehicles. 
Suppose u(Hj) is the utility of the grade Hj with 

u(Hj+1) > u(Hj)     if Hj+1 is preferred to Hj       (18) 
If all assessments are complete and precise, the 

expected utility of an alternative A can be calculated by 

                     (19) ∑
=

=
N

j
jj HuAu

1

)()( β

where Hj — jth grade on an evaluation scale, j = 1, 
2, …, N 
βj — belief degree evaluated on grade Hj

u(A) — expected utility of the alternative A. 
u(Hj) may be estimated using probability assignment 

methods22-23 or by constructing regression models using 
partial rankings or pairwise comparisons20. In most 
cases, a linear function of u(Hj) may be preferred 
because of its simplicity, although a nonlinear function 
may also be used to calculate utility in certain 
circumstances. It should be noted, however, that a utility 
function is used to capture the decision maker’s 
preferences and as such it should be constructed using 
preference information provided by the decision maker. 
In this section, a cubic function is used to demonstrate 
the features of nonlinear functions in dealing with 
uncertainty and preference in assessment propagation 
and aggregation. A general cubic function can be 
expressed as follows. 

dcxbxaxxf +++= 23)(                (20) 
As there are four unknown parameters a, b, c and d 

in Eq. (20), four conditions need to be given to 
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determine the cubic function. Among various ways of 
giving the four conditions, for illustration purpose, 
fixing the middle point and the two ends of the 
definition interval for the utility function is a 
straightaway selection. The fourth condition could be 
determination of the slope at any one of the known 
points so that the shape of the cubic function inside the 
definition interval can be controlled explicitly.  

In a general way, let (xl, yl), (xh, yh) and (xm, ym) be 
the starting, ending and middle points, respectively, in 
the definition interval of the utility function. In this 
example the slope of the utility function at the middle 
point is supposed to be given. Let y = f(x), and s

dx
dy

=  at 

x = xm. The four unknown parameters a, b, c and d can 
be determined by Eqs. (21) to (24). 

)(2)(3)()(
)(2)()()(

22233

22

hmmhmmhmhm

hmmhmhmhm

xxBxxxAxxxBxxA
xxCxxxsAxxCyyA

a
−+−−−−−
−+−−−−−

=

                       (21) 

A
BaCb −

=                                 (22) 

bxaxsc mm 23 2 −−=                     (23) 

cxbxaxyd hhhh −−−= 23                (24) 

where  )()(2 22
mlmlm xxxxxA −−−=

)()(3 332
mlmlm xxxxxB −−−=  

)()( mlml yyxxsC −−−=  
For example, suppose the values for the three known 

points be given by 
xl = 1, yl = 0; 
xh = 5, yh = 1; 
xm = 3, ym = 0.5. 

The distinct shapes of the cubic function in the 
definition interval [1, 5] are shown in Fig. 4 with 
different slope values at the middle point. In Fig. 4, line 
y1 corresponds to s1 = 0, y2 to s2 = 1/5, y3 to s3 = 1/4, y4 
to s4 = 1/3 and y5 to s5 = 1/2. Fig. 5 describes the slope 
change along the transverse axis x of the cubic functions 
in the definition interval.   
 

   

 
Fig. 4. Cubic utility functions with varying slopes at the middle point 
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Fig. 5. Slope changes for various cubic utility functions along the assessment scale x 

In general, utility function is non-decreasing, which 
means the slope at any point is non-negative, i.e., 

023 2 ≥++= cbxax
dx
dy  in the whole definition area 

[xl, xh]. This gives the minimum slope smin = 0 and the 
maximum slope smax =  3/8 at the middle point xm in the 
above example. Also, care should be taken while using 
some of the curves shown in Fig. 4, as slope at some 
points of those curves is negative. 

The six attributes listed in Table 6 are again taken as 
example for demonstrating the effect of using a 
nonlinear function as utility function. The expected 
utilities calculated with different slopes at the middle 

point are listed in Table 9. Except for s = 1/4 which 
means that the cubic function degenerates into a linear 
function, the rank order of the six attributes’ utilities has 
changed compared with the original rank order 
generated by the mean grade, because of the use of the 
nonlinear utility functions. This is a noticeable feature 
of using a nonlinear function as utility function. It 
follows that if a nonlinear function truly reflects the 
preferences of the decision maker on the various grades 
of an evaluation scale it can be used as utility function. 
Otherwise, a linear utility function may be the best 
choice in the ER approach. 

Table 9 Expected utility calculated using different cubic functions 

Alternative Mean s = 0 s = 1/5 s = 1/4 s = 1/3 s = 1/2 
a1 3.6 0.6125 0.6425 0.65 0.6625 0.6875 
a2 3.7 0.65625 0.67125 0.675 0.68125 0.69375 
a3 3.8 0.55 0.67 0.7 0.75 0.85 
a4 3.8 0.5875 0.6775 0.7 0.7375 0.8125 
a5 3.95 0.709375 0.731875 0.7375 0.746875 0.765625 
a6 4 0.5625 0.7125 0.75 0.8125 0.9375 
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6. Application Examples 

To investigate how to handle uncertainty using the 
methods discussed in previous sections, a case study 
using the general assessment framework discussed in 
Section 2 is conducted and reported in this Section. Due 
to confidentiality reasons, we have masked the original 
data used in our case study and only discuss the 
important aspects of the results. In this study, more than 
a hundred detailed vehicle attributes are rank-ordered 
using data from four different surveys. A hierarchy for 
assessing a detailed vehicle attribute more or less 
follows the hierarchy shown in Fig. 1. The IDS software 
is applied to assess and rank the vehicle attributes in the 
case study.  

6.1 Estimate a missing assessment 

To demonstrate our method for estimating missing 
assessments, we considered four vehicle attributes 
A7D01, A7D02, A7D03, and A7D04. These four 

vehicle attributes are the sub-attributes of the parent 
attribute A7D. Of these five attributes, A7D01, A7D02, 
A7D03 are completely assessed in the four surveys and 
their aggregated assessments are shown in Table 10 (see 
rows 5-7 of Table 10). Attribute A7D04 has some 
missing assessments and so does the attribute A7D. So, 
the problem at hand fits exactly to the description of 
Case 2 in Sub-section 3.3. Since the parent attribute 
assessments are unknown and some of the sub-attributes 
assessments are also unknown, Eqs. (5)–(10) are used 
for obtaining the estimates of value and interval (i.e., 
minimum and maximum values) of the unknown 
assessments. In estimating the missing assessments of 
the parent attribute A7D, all the sub-attributes are 
assumed to have equal importance as shown in Table 10. 
Rows 2-4 of Table 10 show the estimated value and 
interval for the parent attribute A7D and rows 8-10 
show the estimated value and interval for the 
sub-attribute A7D04.  

Table 10 Estimate value and estimation interval for the missing assessment 

Attribute Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 ω Remark 
A7Dmin 0.1206 0.0509 0.2374 0.0509 0.2902  
A7Dexp 0.1608 0.0678 0.3166 0.0678 0.3869  
A7Dmax 0.3706 0.3009 0.4874 0.3009 0.5402  

Predicted

A7D01 0.201 0.0663 0.3095 0.0663 0.3568 0.25 Known 
A7D02 0.2060 0.0724 0.3377 0.0724 0.3116 0.25 Known 
A7D03 0.0754 0.0648 0.3025 0.0648 0.4925 0.25 Known 
A7D04min 0 0 0 0 0 
A7D04exp 0.1608 0.0678 0.3166 0.0678 0.3869 
A7D04max 1 1 1 1 1 

0.25 Predicted

 

6.2 Using a quadratic mapping function 

To illustrate the effect of using a quadratic mapping 
function, Criteria (1, 1) (which is a basic criteria) in Fig. 
1 is taken as an example. Suppose that all the 
assessments on Criteria (1, 1) are to be transformed to a 
new scale using Eq. (17) before applying the ER 
approach for aggregation. As a test, the middle point t at 
xm= 3 is set to be 2, 2.5, 3, 3.5 and 4 respectively and for 
each value of t the assessments on Criteria (1, 1) can be 
transformed to the new scale in an individual 
distribution. Based on these assessments on the new 

scale the new rank orders of all attributes can be 
obtained using the IDS software as described in Sub-
section 2.4. The table in Appendix A lists the top 50 
ranked attributes for different values of t.  

From the table in Appendix A, we can see that the 
average utility and the ranking of the top eighteen 
attributes are unchanged by using a quadratic mapping 
function for Criteria (1, 1). The reason is that for most 
of these attributes the belief degrees of assessments 
from Survey 1 (see Fig. 1) completely belong to the 
highest grade. Hence any changes in Criteria (1, 1) 
transformation would not affect these attributes. The 
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ranking of the attributes in rows 19-20 (i.e., A5C and 
A3A) is not affected by the transformation, but the 
average utility of these attributes is affected. From row 
21 onwards both the ranking and average utility of the 
attributes is affected because of the quadratic 
transformation function. This study shows clearly the 
impact of using a quadratic mapping function on the 
ranking of vehicle attributes. 

6.3 Using a cubic curve as utility function 

To illustrate the effect of using a cubic utility function, 
the five cubic curves from y1 to y5 expressed in Eq. (20) 

and shown in Fig. 4 are used to calculate the utility 
values for the five grades of the desired scale. The 
utility values of the five grades for different cubic 
functions are listed in Table 11. It is obvious that at s = 
1/4 the cubic curve degenerates into a straight line. Note 
that at s = 1/2 the cubic curve, i.e. y5 in Fig. 4, has 
negative slope near the two ends of the definition 
interval [0, 1].  

Table 11 The utility values at every grades for given s values 

u(Hj) Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 
s = 0 0 0.4375 0.5 0.5625 1 
s = 1/5 0 0.2875 0.5 0.7125 1 
s = 1/4 0 0.2500 0.5 0.7500 1 
s = 1/3 0 0.1875 0.5 0.8125 1 
s = 1/2 0 0.0625 0.5 0.9375 1 

 

The table in Appendix B ranks the top 50 attributes 
using different cubic functions for the overall utility. 
Again, many of the attributes (seventeen to be specific) 
at the top are unaffected by the cubic utility function. 
The reason is that for most of these attributes the belief 
is associated completely to Grade 5 and so the overall 
utility is always one irrespective of the utility function. 
For the attribute in row 19 (A6I), the ranking is not 
affected even though the average utility is changed. 
From row 20 onwards, the average utility and the 
ranking of the attributes is affected by the cubic utility 
function. For the attribute “A7B02” (shown in bold in 
Appendix B), the average utility is reduced (and the 
rank order lowered) when s < ¼ and the average utility 
is increased (and the rank order rose) when s > ¼. On 
the other hand for the attribute “A3B04” (shown in bold 
italic in Appendix B), the observed behavior is totally 
opposite. This study clearly shows that using a cubic 
utility function affects the rank ordering of the attributes 
in more than one way. 

7. Concluding Remarks 

A general framework for assessing vehicle attributes 
using survey information was investigated. To make 
better use of the framework, four issues related to 
decision making under uncertainty are studied in the 

context of the ER algorithm. Applicable approaches 
were investigated and devised for dealing with 
uncertainty that may result from both original surveys 
and assessment aggregation. The new findings are as 
follows. 
(1) The format of a conventional questionnaire, which 
only allows simple assessment on a single grade for a 
question, can be improved by giving respondent more 
choices for answering the questionnaires in a flexible 
yet realistic manner in order to take advantage of the 
features of the ER approach with the belief degree 
structure. Uncertainty present in a survey can be 
counted by means of the amount of missing evaluations 
divided by the total number of valid responses.  
(2) For partly missing information in an assessment 
hierarchy, an estimate or estimation interval may be 
generated for each piece of the missing information. 
These estimates and estimation intervals can be directly 
used in the original ER and novel interval-based ER 
method24-26 to make the final evaluation more 
informative and realistic.  
(3) Nonlinear mapping function can be used for 
assessment transformation. Different functions and even 
different parts of a function can have significant effects 
in assessment transformation. However, it should be 
used with care as it may change the rank order of a 
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group of alternatives based on the mean grades of the 
assessments. Only if a nonlinear function truly 
represents the transformation nature then it can be used 
as a mapping function. The choice of a transformation 
function is domain specific and requires expert 
knowledge. 
(4) Similarly, a nonlinear function can be used as utility 
function for assessment aggregation. However, it may 
also change the rank order of a group of alternatives 
based on mean grades of the assessments. Only if a 
nonlinear function truly represents the decision maker’s 
preferences then it can be used as a utility function. 
Based on the results of this research, it is highly 
recommended that a linear function be used as utility 
function if there is no strong evidence to support the use 
of any type of nonlinear functions. 

Uncertainty in decision making process is 
complicated. In this paper, we investigated the basic 
approaches and their features in dealing with 
uncertainty possibly present in the process of vehicle 
evaluation. It is expected that the research findings 
would help make better use of survey information and 
deal with uncertainty in an objective and a consistent 
way. These can be taken as the basis for further study in 
this area.  
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Appendix A Rank order contrast while using a quadratic mapping function for Criteria (1,1) 
Mid-point

Rank 
order

1 1 A3B09 1 A3B09 1 A1A12 1 A3B09 1 A3B09
2 1 A6C 1 A6C 1 A3A07 1 A6C 1 A6C
3 1 A6D03 1 A6D03 1 A3B09 1 A6D03 1 A6D03
4 1 A6K06 1 A6K06 1 A5C04 1 A6K06 1 A6K06
5 1 A5C04 1 A5C04 1 A5F02 1 A5C04 1 A5C04
6 1 A6C08 1 A6C08 1 A6 1 A6C08 1 A6C08
7 1 A6D04 1 A6D04 1 A6C 1 A6D04 1 A6D04
8 1 A7B06 1 A7B06 1 A6C08 1 A7B06 1 A7B06
9 1 A1A12 1 A1A12 1 A6D 1 A1A12 1 A1A12
10 1 A5F02 1 A5F02 1 A6D01 1 A5F02 1 A5F02
11 1 A6D 1 A6D 1 A6D02 1 A6D 1 A6D
12 1 A3A07 1 A3A07 1 A6D03 1 A3A07 1 A3A07
13 1 A6 1 A6 1 A6D04 1 A6 1 A6
14 1 A6D01 1 A6D01 1 A6D09 1 A6D01 1 A6D01
15 1 A6D09 1 A6D09 1 A6K06 1 A6D09 1 A6D09
16 1 A6D02 1 A6D02 1 A7B06 1 A6D02 1 A6D02
17 0.9872 A6C13 0.9872 A6C13 0.9872 A6C13 0.9872 A6C13 0.9872 A6C13
18 0.9813 A6I 0.9813 A6I 0.9813 A6I 0.9813 A6I 0.9813 A6I
19 0.9744 A5C 0.9758 A5C 0.9772 A5C 0.979 A5C 0.9807 A5C
20 0.9392 A3A 0.9421 A3A 0.9451 A3A 0.9492 A3A 0.953 A3A
21 0.9286 A7B02 0.9286 A7B02 0.9288 A3A02 0.9381 A3A02 0.9468 A3A02
22 0.9147 A3A02 0.9217 A3A02 0.9286 A7B02 0.9319 A6E04 0.9389 A5A07
23 0.9137 A6E04 0.9195 A6E04 0.9253 A6E04 0.9286 A7B02 0.9384 A3A04
24 0.9131 A1A06 0.9171 A1A06 0.9212 A1A06 0.9285 A5A07 0.9383 A6E04
25 0.9102 A6H 0.9134 A6H 0.9173 A5A07 0.9278 A3A04 0.9355 A6E02
26 0.9044 A3B01 0.9107 A3B01 0.917 A3B01 0.9272 A1A06 0.9339 A3B01
27 0.9007 A5A07 0.909 A5A07 0.9165 A6H 0.9258 A3B01 0.9328 A1A06
28 0.9 A1A03 0.9079 A3A04 0.9163 A3A04 0.9253 A6E02 0.9299 A3B04
29 0.8995 A3A04 0.906 A6E02 0.9142 A6E02 0.9212 A6H 0.9289 A5C05
30 0.8979 A6E02 0.9044 A3B04 0.9113 A3B04 0.9209 A3B04 0.9286 A7B02
31 0.8975 A3B04 0.9 A1A03 0.9087 A5C05 0.919 A5C05 0.9256 A6H
32 0.8914 A5C05 0.9 A5C05 0.9009 A1B 0.9112 A3B06 0.9224 A3B06
33 0.8914 A1B 0.8962 A1B 0.9 A1A03 0.9068 A1B 0.9124 A1B
34 0.8822 A3B06 0.8907 A3B06 0.8992 A3B06 0.9 A1A03 0.9077 A3A01
35 0.8781 A6C12 0.8796 A6C12 0.8811 A6C12 0.8936 A3A01 0.9 A1A03
36 0.875 A6C05 0.875 A6C05 0.8787 A3A01 0.8841 A6C12 0.8979 A5A05
37 0.8547 A3A01 0.8667 A3A01 0.875 A6C05 0.8833 A5A05 0.887 A6C12
38 0.8436 A5A05 0.8558 A5A05 0.868 A5A05 0.875 A6C05 0.8834 A3B08
39 0.8381 A2A01 0.8444 A2A01 0.8508 A2A01 0.8648 A3B08 0.875 A6C05
40 0.8248 A1A02 0.8293 A3B08 0.8452 A3B08 0.8595 A2A01 0.8679 A2A01
41 0.8152 A3B 0.8273 A1A02 0.8297 A1A02 0.8395 A1A07 0.852 A1A07
42 0.8138 A5C02 0.8213 A3B 0.8274 A3B 0.8369 A3B 0.8456 A3B
43 0.8134 A3B08 0.8199 A5C02 0.8265 A1A07 0.8351 A5C02 0.8438 A5C02
44 0.8101 A6A05 0.8178 A1A07 0.826 A5C02 0.8343 A1A02 0.8409 A6A05
45 0.8088 A1A07 0.816 A6A05 0.8218 A6A05 0.8316 A6A05 0.8387 A1A02
46 0.8024 A5A01 0.8045 A5A01 0.8065 A5A01 0.8139 AX000 0.8302 A3A03
47 0.7986 A1A 0.7986 A1A 0.8011 AX000 0.8138 A3A03 0.8266 AX000
48 0.7868 A4A05 0.7911 AX000 0.7986 A1A 0.8106 A5A01 0.8185 A3A06
49 0.7838 A2B01 0.7868 A4A05 0.7964 A3A03 0.8034 A3A06 0.8146 A5A01
50 0.781 AX000 0.7846 A3A03 0.7892 A1A05 0.7997 A1A05 0.8098 A1A05

Attribute

t = 4
Average 
utility Attribute

Average 
utility Attribute

Average 
utility Attribute

Average 
utility Attribute

Average 
utility

t = 2 t = 2.5 t = 3 t = 3.5
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Appendix B Rank order contrast while using a cubic utility function 

M.P.-
slope
Rank
order

Average
utility Attribute Average

utility Attribute Average
utility Attribute Average

utility Attribute Average
utility Attribute

1 1 A3B09 1 A3B09 1 A3B09 1 A3B09 1 A3B09
2 1 A6C 1 A6C 1 A6C 1 A6C 1 A6C
3 1 A6D03 1 A6D03 1 A6D03 1 A6D03 1 A6D03
4 1 A6K06 1 A6K06 1 A6K06 1 A6K06 1 A6K06
5 1 A5C04 1 A5C04 1 A5C04 1 A5C04 1 A5C04
6 1 A6C08 1 A6C08 1 A6C08 1 A6C08 1 A6C08
7 1 A6D04 1 A6D04 1 A6D04 1 A6D04 1 A6D04
8 1 A7B06 1 A7B06 1 A7B06 1 A7B06 1 A7B06
9 1 A1A12 1 A1A12 1 A1A12 1 A1A12 1 A1A12

10 1 A5F02 1 A5F02 1 A5F02 1 A5F02 1 A5F02
11 1 A6D 1 A6D 1 A6D 1 A6D 1 A6D
12 1 A3A07 1 A3A07 1 A3A07 1 A3A07 1 A3A07
13 1 A6 1 A6 1 A6 1 A6 1 A6
14 1 A6D01 1 A6D01 1 A6D01 1 A6D01 1 A6D01
15 1 A6D09 1 A6D09 1 A6D09 1 A6D09 1 A6D09
16 1 A6D02 1 A6D02 1 A6D02 1 A6D02 1 A6D02
17 0.9872 A6C13 0.9872 A6C13 0.9872 A6C13 0.9872 A6C13 0.9872 A6C13
18 0.9774 A6I 0.9805 A6I 0.9813 A6I 0.9826 A6I 0.9852 A6I
19 0.9743 A5C 0.9766 A5C 0.9772 A5C 0.9782 A5C 0.9821 A7B02
20 0.9391 A3A 0.9439 A3A 0.9451 A3A 0.9471 A3A 0.9801 A5C
21 0.9193 A3A02 0.9269 A3A02 0.9288 A3A02 0.9464 A7B02 0.9688 A6C05
22 0.9165 A6E04 0.9235 A6E04 0.9286 A7B02 0.9319 A3A02 0.9511 A3A
23 0.9111 A6H 0.9189 A1A06 0.9253 A6E04 0.9282 A6E04 0.9383 A3A02
24 0.9098 A1A06 0.9179 A7B02 0.9212 A1A06 0.925 A1A06 0.9375 A6H12
25 0.9089 A5A07 0.9156 A5A07 0.9173 A5A07 0.9201 A5A07 0.9341 A6E04
26 0.9083 A3B01 0.9154 A6H 0.917 A3B01 0.92 A3B01 0.9327 A1A06
27 0.9057 A3A04 0.9153 A3B01 0.9165 A6H 0.9198 A3A04 0.9268 A3A04
28 0.9047 A6E02 0.9142 A3A04 0.9163 A3A04 0.9183 A6H 0.9258 A3B01
29 0.9026 A3B04 0.9123 A6E02 0.9142 A6E02 0.9174 A6E02 0.9257 A5A07
30 0.9 A1A03 0.9096 A3B04 0.9113 A3B04 0.9142 A3B04 0.9237 A6E02
31 0.8976 A1B 0.9064 A5C05 0.9087 A5C05 0.9125 A5C05 0.9219 A6H
32 0.8972 A5C05 0.9003 A1B 0.9009 A1B 0.9063 A6C05 0.9202 A5C05
33 0.89 A3B06 0.9 A1A03 0.9 A1A03 0.9023 A3B06 0.9201 A3B04
34 0.8778 A6C12 0.8974 A3B06 0.8992 A3B06 0.902 A1B 0.9085 A3B06
35 0.875 A7B02 0.8805 A6C12 0.8811 A6C12 0.9 A1A03 0.9043 A1B
36 0.8644 A3A01 0.8759 A3A01 0.8787 A3A01 0.8835 A3A01 0.9 A1A03
37 0.855 A5A05 0.8654 A5A05 0.875 A6C05 0.8822 A6C12 0.893 A3A01
38 0.8459 A1A02 0.8563 A6C05 0.868 A5A05 0.8723 A5A05 0.8845 A6C12
39 0.8447 A5C02 0.8488 A2A01 0.8508 A2A01 0.8541 A2A01 0.8812 A1A07
40 0.8409 A2A01 0.8431 A3B08 0.8452 A3B08 0.8487 A3B08 0.881 A5A05
41 0.8346 A3B08 0.833 A1A02 0.8297 A1A02 0.8447 A1A07 0.8607 A2A01
42 0.8164 A3B 0.8297 A5C02 0.8274 A3B 0.8311 A3B 0.859 AX000
43 0.8138 A6A05 0.8252 A3B 0.8265 A1A07 0.8245 A6A05 0.8558 A3B08
44 0.8051 A3A06 0.8202 A6A05 0.826 A5C02 0.8244 A1A02 0.8384 A3B
45 0.7876 A1A 0.8156 A1A07 0.8218 A6A05 0.8204 AX000 0.8306 A5A01
46 0.7861 A4A05 0.8017 A5A01 0.8065 A5A01 0.8198 A5C02 0.8298 A6A05
47 0.7837 A2B01 0.7964 A1A 0.8011 AX000 0.8146 A5A01 0.8136 A1A02
48 0.7832 A3A03 0.7937 A3A03 0.7986 A1A 0.8125 A6H12 0.8096 A3A03
49 0.7824 A5A01 0.7909 A3A06 0.7964 A3A03 0.8022 A1A 0.8095 A1A
50 0.7813 A6C05 0.7895 AX000 0.7892 A1A05 0.8008 A3A03 0.8073 A5C02

s = 1/2s= 0 s = 1/5 s = 1/4 s = 1/3
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