

A New Fast Vertical Method for Mining Frequent Patterns

Zhihong Deng
Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer

Science, Peking University
Beijing, 100871, China

E-mail: zhdeng@cis.pku.edu.cn

Zhonghui Wang
Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer

Science, Peking University
Beijing, 100871, China

E-mail: wangzh@cis.pku.edu.cn

Abstract

Vertical mining methods are very effective for mining frequent patterns and usually outperform horizontal mining
methods. However, the vertical methods become ineffective since the intersection time starts to be costly when the
cardinality of tidset (tid-list or diffset) is very large or there are a very large number of transactions.

In this paper, we propose a novel vertical algorithm called PPV for fast frequent pattern discovery. PPV works
based on a data structure called Node-lists, which is obtained from a coding prefix-tree called PPC-tree. The
efficiency of PPV is achieved with three techniques. First, the Node-list is much more compact compared with
previous proposed vertical structure (such as tid-lists or diffsets) since transactions with common prefixes share the
same nodes of the PPC-tree. Second, the counting of support is transformed into the intersection of Node-lists and
the complexity of intersecting two Node-lists can be reduced to O(m+n) by an efficient strategy, where m and n are
the cardinalities of the two Node-lists respectively. Third, the ancestor-descendant relationship of two nodes, which
is the basic step of intersecting Node-lists, can be very efficiently verified by Pre-Post codes of nodes.

We experimentally compare our algorithm with FP-growth, and two prominent vertical algorithms (Eclat and
dEclat) on a number of databases. The experimental results show that PPV is an efficient algorithm that
outperforms FP-growth, Eclat, and dEclat.

Keywords: data mining; frequent pattern mining; data structure; algorithm

1. Introduction

Data mining (or knowledge discovery in databases,
KDD) has attracted tremendous amount of attention in
the database research community due to its wide
applicability in many areas. Since mining frequent

patterns was first introduced in [1], it has emerged as a
fundamental problem in data mining and plays an
essential role in many important data mining tasks such
as associations, correlations, sequential patterns, particle
periodicity, classification, etc [2].

International Journal of Computational Intelligence Systems, Vol.3, No. 6 (December, 2010), 733-744

Published by Atlantis Press
 Copyright: the authors
 733

zegerkarssen
Texte tapé à la machine
Received: 21-12-2009
Accepted: 08-11-2010

Zhihong Deng and Zhonghui Wang

Most of the previous proposed frequent pattern
mining algorithms can be divided into two groups: the
Apriori-like method and the FP-growth method.
Apriori-like approach generates candidate patterns of
length (k+1) in the (k+1)th pass using frequent patterns
of length k generated in the previous pass, and counts
the supports of these candidate patterns in the database.
The idea of Apriori-like approach depends on an anti-
monotone Apriori property [3]: all nonempty subset of a
frequent pattern must also be frequent. A lot of studies,
such as [3-8], adopt the Apriori-like approach. The FP-
growth is a recently proposed method that has proved to
be very efficient in mining frequent patterns. FP-growth
achieves impressive efficiency by adopting a highly
condensed data structure called frequent pattern tree to
store databases and employing a partitioning-based,
divide-and-conquer method to mine frequent patterns.
Some studies, such as [2, 9, 10], adopt the FP-growth
approach.

The Apriori-like approach achieves good
performance by reducing the size of candidates.
However, previous studies reveal that it is highly
expensive for Apriori-like approach to repeatedly scan
the database and check a large set of candidates by
pattern matching [2]. In order to deal with these
problems, a number of vertical mining algorithms have
been proposed [6-8]. Unlike the traditional horizontal
transactional database format used in most Apriori-like
algorithms, each item in a vertical database is associated
with its corresponding tid-list—the set of all transaction
ids where it appears. The advantage of vertical database
format is that the counting of supports of frequent
patterns can be obtained via tid-list intersection, which
avoids scanning a whole database. tid-list is much
simpler than complex hash or trees used in horizontal
algorithms and is also more efficient than them in
counting supports of frequent patterns. Vertical mining
methods have been shown to be very effective and
usually outperform horizontal mining methods [8].
Despite the advantages of the vertical database format,
the vertical methods become to be ineffective since the
intersection time starts to be costly when tidset
cardinality (such as for very frequent items) is very
large or there are a very large number of transactions [8].

The FP-growth approach wins an advantage over the
Apriori-like approach by reducing search space and
generating frequent patterns without candidate
generation. However, FP-growth only achieves

significant speedups at low support thresholds because
the process of constructing and using the frequent
pattern trees is complex [11]. In addition, since FP-
growth generates frequent patterns by recursively
mining conditional frequent pattern trees, it tends to
need a large number of memories to store these
temporal pattern trees. Though [10] proposed a disk-
based method called database projection to address the
above problem, obviously, it will damage the
performance because of frequently accessing disks.

One advantage of FP-growth approach is the
frequent pattern tree, which is a highly condensed data
structure for storing the database. On the other hand, the
biggest advantage of vertical mining algorithm is that
each item is represented by transaction ids (TID). A
question is that can we integrate the advantages of the
two approaches and form a new efficient mining
algorithm, which may overcome the shortcomings of the
two approaches. This is the motivation of this study.

After some careful examination, we believe that
such method is realizable. In this paper, we propose
PPV algorithm, which is a new vertical mining
algorithm based on some compact codes. PPV adopts a
prefix tree structure called PPC-tree to store the
database. Each node in a PPC-tree is assigned with a
Pre-Post code via traversing the PPC-tree with Pre and
Post order. Based on the PPC-tree with Pre-Post code,
each frequent item can be represented by a Node-list,
which is the list of PP-codes that consists of pre-order
code, post-order code, and count of nodes registering
the frequent item. Like other vertical algorithms, PPV
gets Node-lists of the candidate patterns of length (k+1)
by intersecting Node-lists of frequent patterns of length
k and thus discovers the frequent patterns of length
(k+1). The efficiency of PPV is achieved with three
techniques. First, The Node-list is much more compact
compared with previous proposed vertical structure
(such as tidset or diffsets) since transactions with
common prefix share the same nodes of the PPC-tree.
Second, the support counting is transformed into
intersection of Node-lists and the complexity of
intersecting two Node-lists can be reduced to O(m+n)
by an efficient strategy, where m and n are the
cardinalities of the two Node-lists respectively. Third,
the ancestor-descendant relationship of two nodes,
which is the basic step of intersecting Node-lists, can be
very efficiently verified by Pre-Post codes of nodes.

Published by Atlantis Press
 Copyright: the authors
 734

 A New Fast Vertical

These above techniques together form the core of
our algorithm - PPV. A performance study has been
conducted to compare the performance of PPV with FP-
growth, Eclat, and dEclat, where Eclat and dEclat are
the most efficient among all vertical algorithms. The
experimental results show that PPV is efficient. PPV
outperforms FP-growth, Eclat, and dEclat.

The remainder of the paper is organized as follows.
A detailed problem description is given in Section 2.
Node-list, its definition and construction method, and
some important properties are described in Section 3.
The PPV algorithm proposed for generating frequent
patterns is developed in Section 4. Experimental results
are presented in Section 5. Section 6 summarizes our
study and points out some future research issues.

2. Problem Definition

The following is a formal description of the problem of
mining frequent patterns. Let I = {i1, i2 , … , im} be the
universal item set. Let DB = {T1, T2 , … , Tn} be a
transaction database, where each Tk (1 ≤ k ≤ n) is a
transaction which is a set of items such that Tk ⊆ I. we
also call A a pattern if A is a set of items. Let A be a
pattern, a transaction T is said to contain A if and only if
A ⊆ T. Let SPA be the support of pattern A, which is the
number of transactions in DB that contain A. Let ξ be
the predefined minimum support threshold and |DB| be
the number of transactions in DB. A pattern A is
frequent if SPA is no less than ξ×|DB|.

Given a transaction database DB and a minimum
support threshold ξ, the problem of mining frequent
patterns is to discover the complete set of patterns that
have support no less than ξ×|DB|..

3. Node-list: Definitions and Properties

In this section, we will describe the Node-list structure
and some properties. Before the introduction of the
Node-list, we first describe the PPC-tree, which is the
basic of the Node-list.

3.1. PPC-tree: Design and Construction

We define a PPC-tree as follows.
Definition 1 PPC-tree is a tree structure:
(1) It consists of one root labeled as “null”, a set of

item prefix subtrees as the children of the root.
(2) Each node in the item prefix subtree consists of

five fields: item-name, count, childreNode-list,

pre-order, and post-order. item-name registers
which frequent item this node represents. count
registers the number of transactions presented
by the portion of the path reaching this node.
childreNode-list registers all children of the
node. pre-order is the preorder rank of the
node. post-order is the postorder rank of the
node.

According to Definition 1, PPC-tree seems like a
FP-tree [2]. However, there are three important
differences between them.

First, FP-tree has a node-link field in each node and
a header table structure to maintain the connection of
nodes whose item-names are equal in the tree, where
PPC-tree does not have such structures. So PPC-tree is a
simpler prefix free. Second, each node in the PPC-tree
has pre-order and post-order fields while nodes in the
FP-tree have none. The pre-order of a node is
determined by a preorder traversal of the tree. In a
preorder traversal, a node N is visited and assigned the
preorder rank before all its children are traversed
recursively from left to right. In other word, the pre-
order records the time when node N is accessed during
the preorder traversal. In the same way, the post-order
of a node is determined by a postorder traversal of the
tree. In a postorder traversal, a node N is visited and
assigned its postorder rank after all its children have
been traversed recursively from left to right.

Third, after a FP-tree is built, it will be used for
frequent pattern mining during the total process of FP-
growth algorithm, which is a recursive and complex
process. However, PPC-tree is only used for generating
the Pre-Post code of each node. Later, we will find that
after collecting the Pre-Post code of each frequent item
at first, the PPC-tree finishes its entire task and could be
deleted.

Based on Definition 1, we have the following PPC-
tree construction algorithm.

Algorithm 1 (PPC-tree Construction)
Input: A transaction database DB and a minimum
support threshold ξ.
Output: PPC-tree, F1 (the set of frequent 1-patterns)
Method: Construct-PPC-tree(DB, ξ) {
//Generate frequent 1-patterns
(1) Scan DB once to find the set of frequent 1-patterns
(frequent items) F1 and their supports. Sort F1 in support

Published by Atlantis Press
 Copyright: the authors
 735

Zhihong Deng and Zhonghui Wang

descending order as If, which is the list of ordered
frequent items.
//Construct the PPC-tree
(2) Create the root of a PPC-tree, PPT, and label it as
“null”. Scan DB again. For each transaction T in DB,
arrange its frequent items into the order of If and then
insert it into the PPC-tree. (This process is the same as
that of FP-tree [2].)
//Generate the Pre-Post code of each node
(3) Scan PPC-tree by preorder traversal to generate the
pre-order. Scan PPC-tree again by postorder traversal to
generate the post-order. }

For better understanding of the concept and the

construction algorithm of PPC-tree, let us examine the
following example.

Example 1 Let the transaction database, DB, be the
left two columns of Table 1 and ξ = 40%.

Table 1. A transaction database

ID Items Ordered frequent items
1 a, c, g c, a
2 e, a, c, b b, c, e, a
3 f, e, c, b, i b, c, e, f
4 b, f, h b, f
5 b, f, e, c, d b, c, e, f

The PPC-tree storing the DB is shown in Figure 1. It

should be noted that based on Algorithm 1 the PPC-tree
is constructed via the last column of Table 1. Obviously,
the second column and the last column are equivalent
for mining frequent patterns under the given minimum
support threshold. In the last columns of Table 1, all
infrequent items are eliminated and frequent items are
listed in support-descending order. This ensures that the
DB can be efficiently represented by a compressed tree
structure.

For Pre-Post code generation, we traverse the PPC-
tree twice by preorder and postorder. After that, we get
the Figure 1. In this figure, the node with (3,7) means
that its pre-order is 3, post-order is 7, and the item-
name is b, count is 4.

3.2. Node-list: Definition and Properties

In this section, we will give the definition of the Node-
list and introduce some important properties of the
Node-list, which decide the efficiency and effectiveness

of our new proposed algorithm for mining frequent
patterns.

(1,1)

(0,8)

(2,0)

(3,7)

Fig. 1. The PPC-tree in Example 1

We first define the PP-code, which is the consisted
element of the Node-list.

Definition 2 (PP-code) For each node N in the PPC-
tree, we call < (N.pre-order, N.post-order): N.count > as
the PP-code of N.

In fact, the target of constructing the PPC-tree is to
generate the PP-codes of frequent items, since the PP-
codes can effectively reflect the structure of the PPC-
tree, which is described by the following property [12].

Property 1 Given any two different nodes N1 and
N2 in a PPC-tree, N1 is an ancestor of N2 if and only if
N1.pre-order < N2.pre-order and N1.post-order >
N2.post-order.

It is determined by the construction of preorder rank
and postorder rank. When N1 is an ancestor of N2, N1
must be traversed earlier than N2 during the preorder
traversal and be traversed later than N2 during the
postorder traversal. On the other side, if N1.pre-order <
N2.pre-order and N1.post-order > N2.post-order, N1 is the
node that is traversed earlier than N2 during the preorder
traversal and later during the postorder traversal. Such
node must be an ancestor of N2.

By using this property, it is easy to find the
ancestor-descendant relationship of any two nodes just
based on the preorder rank and postorder rank. Property
1 also shows that nodes and their PP-codes are 1-1
mapping. That is, a node uniquely determines a PP-code
and a PP-code also uniquely determines a node. In fact,
a node and its PP-code are equivalent. Therefore, we
have the following definition.

(4,5)

(5,4)

(6,2)

(8,6)

{}

c:1

a:1

b:4

e:3

a:1

f:1 c:3

f:2 (7,3)

Published by Atlantis Press
 Copyright: the authors
 736

 A New Fast Vertical

Definition 3 (the ancestor-descendant relationship
of PP-codes) Given two PP-codes X1 and X2, X1 is the
ancestor of X2 if and only if the node represented by X1
is the ancestor of the node represented by X2.

Let X1 be <(x1, y1): z1> and X2 be <(x2, y2): z2>,
Definition 3 is equal to that X1 is the ancestor of X2 if
and only if x1 < x2 and y1 > y2. We also call Y the
descendant of X if X is the ancestor of Y.

Definition 4 (the Node-list of a frequent item)
Given a PPC-tree, the Node-list of a frequent item is a
sequence of all the PP-codes of nodes registering the
item from the PPC-tree. The PP-codes are arranged by
the accessed order during the preorder traversal.

Each PP-code in the Node-list is denoted by <(x,
y):z>, where x is its pre-order, y is its post-order and z is
its count. And the Node-list of a frequent item is
denoted by {<(x1, y1): z1>, <(x2, y2): z2>, …, <(xl, yl): zl
>}. For example, the Node-list of b includes one node.
Its pre-order is 3, its post-order is 7, and its count is 4.
Figure 2 shows the Node-lists of all frequent items in
Example 1.

Fig.2. The Node-lists of frequent items in Example 1

Property 2 Given any two different nodes N1 and
N2, which represent the same item (N1.item-name =
N2.item-name), if N1.pre-order < N2.pre-order, then
N1.post-order < N2.post-order.

When N1.pre-order < N2.pre-order, it means that N1

is traveled earlier than N2 during the preorder traversal.
Since N1 can not be the ancestor of N2 because they both
register the same item, so N1 must be on the left branch
of PPC-tree compared with N2. During the postorder
traversal, the left branch will also be traversed earlier
than N2, so N1.post-order < N2.post-order.

Given a Node-list of any item i, which is denoted by
{<(x1, y1): z1>, <(x2, y2): z2>, …, <(xl, yl): zl >}, since we
arrange the PP-code in the accessed order of preorder

traversal, we have that x1 < x2 <…< xl. By property 2,
we also have y1 < y2 <…< yl.

For example, in Figure 2 the Node-list of item c is
{<(1,1):1>, <(4,5):3>} and the Node-list of item f is
{<(7,3):2>, <(8,6):1>}. They both show this property.

Property 3 Given a Node-list of any item i, which is
denoted by {<(x1, y1): z1>, <(x2, y2): z2>, …, <(xm, ym):
zm>}, the support of item i is z1 + z2 + …+ zm.

It is determined by the definition of PP-code. Since
each PP-code corresponds to a node in PPC-tree, whose
count registers the number of transactions including
item i, the sum of counts of nodes registering item i is
i’s support.

For better understanding of the concept of the Node-
list of pattern, we first give the definition of the Node-
list of a 2-pattern, which only contains two different
items.

We denote L as the set of frequent items, which are
sorted in support descending order. Based on L, we
define relation of two items as follows. f

Definition 5 (relation) For any two frequent
items i

f
1 and i2. i1f i2 if and only if i1 is ahead of i2 in L.

For the sake of description, any pattern P in this
paper is denoted by i1i2… ik, where i1f i2f…f ik.

b

c

e

f

a

(3,7) :4

(5,4) :3

(1,1) :1

(7,3) :2 (8,6) :1

(2,0) :1 (6,2) :1

(4,5) :3 Definition 6 (the Node-list of a 2-pattern) Given
any two different frequent item i1 and i2, whose Node-
lists are {<(x11, y11): z11>, <(x12, y12): z12>, …, <(x1m, y1m):
z1m >} and {<(x21, y21): z21>, <(x22, y22): z22>, …, <(x2n,
y2n): z2n >} respectively. The Node-list of 2-pattern i1i2
is a sequence of PP-codes according to pre-order
ascending order and is generated by intersecting the
Node-lists of i1 and i2, which follows the rule below:

 For any <(x1p, y1p): z1p> ∈ the Node-list of i1
(1≤p≤m) and <(x2q, y2q): z2q> ∈ the Node-list of i2
(1≤q≤n), if <(x1p, y1p): z1p> is the ancestor of <(x2q, y2q):
z2q>, then <(x2q, y2q): z2q> ∈ the Node-list of i1i2.

For example, in Figure 2, the Node-list of b is
{<(3,7): 4>} and the Node-list of c is {<(1,1): 1>, <(4,5):
3>}. According to Definition 6, only PP-code <(4,5): 3>
satisfies the combining rule. So the Node-list of bc is
{<(4,5): 3>} as shown in Figure 3.

Based on Definition 6, let us generalize it to the
concept of the Node-list of a k-pattern (k ≥ 3).

Definition 7 (the Node-list of a k-pattern) Let P =
i1 i2…i(k-2)ixiy be a pattern (k ≥ 3), and the Node-list of P1
= i1 i2…i(k-2) ix is {<(xP11, y P11): z P11>, <(x P12, y P12): z

P12>, …, <(x P1m, y P1m): z P1m >}, the Node-list of P2 = i1
i2…i(k-2) iy is {<(xP21, y P21): z P21>, <(x P22, y P22): z

Published by Atlantis Press
 Copyright: the authors
 737

Zhihong Deng and Zhonghui Wang

P22>, …, <(x P2n, y P2n): z P2n >} .The Node-list of P is a
sequence of PP-codes according to pre-order ascending
order and generated by intersecting the Node-lists of P1
and P2, which follows the rule below:

For any <(xP1r, yP1r): zP1r> ∈ the Node-list of P1
(1≤r≤m) and <(xP2s, yP2s): zP2s> ∈ the Node-list of P2
(1≤s≤n), if <(xP1r, yP1r): zP1r> is the ancestor of <(xP2s,
yP2s): zP2s>, then <(xP2s, yP2s): zP2s> ∈ the Node-list of P.

Fig.3. The Node-lists of bc in Example 1

Based on Definition 4, 6, and 7, we have property 4
as follows.

Property 4 Let <(x,y):z> be a PP-code in the Node-
list of k-pattern i1 i2…ik. The item-name of the node
represented by <(x,y):z> is ik.

For k = 1. According to Definition 4, we know that
each PP-code in the Node-list of any frequent item i
represents a node registering i. Therefore, Property 4 is
right for k = 1.

For k = 2. According to Definition 6, we know that
each PP-code in the Node-list of i1i2 is also in the Node-
list of i2. According to Definition 4, we know that each
PP-code in the Node-list of i2 represents a node
registering i2. Therefore, Property 6 is right for k = 2.

For k = 3. The Node-list of k-pattern i1i2i3 is
generated by the Node-list of i1i2 and i1i3. According to
Definition 7, we know that each PP-code in the Node-
list of i1i2i3 is also in the Node-list of i1i3. However,
according to the case k = 2, each PP-code of the Node-
list of i1i3 represents a node registering i3. Therefore,
Property 6 is right for k = 3.

For k >3, the rationale is the same as k = 3.
Therefore, we have Property 4.

Based on the above definitions and properties, we
have the following important properties.

Property 5 Given a Node-list of any k-pattern P = i1
i2…ik, which is denoted by {<(x1, y1): z1>, <(x2, y2):
z2>, …, <(xm, ym): zm >}, the support of pattern P is
z1+z2+…+zm.

For k = 1. According to Property 3, the conclusion is
right.

For k = 2. According to Definition 6, for any PP-
code PC = <(xj, yj): zj> in the Node-list of i1i2, <(xj, yj):
zj> must be a PP-code in the Node-list of i2 and there
must be a PP-code PC1, which is the ancestor of PC, in
the Node-list of i1. By Definition 3, N1, the node
represented by PC1, is the ancestor of N2, the node
represented by PC, in the original PPC-tree. According
to Property 4, the item-name of N2 is i2 and the item-
name of N1 is i1. That is, the count of N2 registers the
number of transactions containing both item i1 and i2.
By recording all such nodes whose item-name is i2 and
one of its ancestors’ item-name is i1, we can get the
support of pattern i1i2. Luckily, by Definition 6, the
Node-list of 2-pattern keeps all these information in a
simple and smart way. So we can directly get the
support of pattern i1i2 by calculating the sum of the
counts in each PP-code.

b (3,7):4

No 3>1

c (1,1):1 (4,5):3

bc (4,5):3

3<4 and 7>5 Ok

For k = 3. According to Definition 7, for any PP-
code PC = <(xj, yj): zj> in the Node-list of i1i2i3, <(xj, yj):
zj> must be a PP-code in the Node-list of i1i3 and there
must be a PP-code PC1, which is the ancestor of PC, in
the Node-list of i1i2. By Definition 3, N1, the node
represented by PC1, is the ancestor of N2, the node
represented by PC, in the original PPC-tree. According
to Property 4, the item-name of N2 is i3 and the item-
name of N1 is i2. Because PC1 is in the Node-list of i1i2,
there must be a node N with i1 as item-name, which is
the ancestor N1, according to the case k = 2. That is, N is
the ancestor of N1 and N1 is the ancestor of N2.
Therefore, the count of N2 registers the number of
transactions containing item i1, i2, and i3. So we can
directly get the support of pattern i1i2i3 by calculating
the sum of the counts of each PP-code in the Node-list
of i1i2i3.

For k > 3. The rationale is the same as k = 3.
Therefore, we have Property 5.

For example, the Node-list of bc is {<(4,5): 3>} as
shown in Figure 3, so there is only one node in Figure 1,
whose item-name is c and one of its ancestors’ item-
name is b. So the support of bc is 3.

Figure 4 shows the procedure that generates the
Node-list of bce by the intersection of the Node-list of
bc and the Node-list of be.

Property 6 Let P = i1 i2…ik be a k-pattern and the
Node-list of P is {<(x1, y1): z1>, <(x2, y2): z2>, …, <(xm,
ym): zm>}, we have x1 < x2 <…< xm and y1 < y2 <…< ym.

Published by Atlantis Press
 Copyright: the authors
 738

 A New Fast Vertical

In terms of Definition 4, 6 and 7, The Node-list of P is a
sequence of PP-codes according to pre-order ascending
order. Therefore, we have x1 < x2 <…< xm. In addition,
each <(xj, yj): zj> corresponds to a node with item-name
= ik according to Property 4. By property 2, we have y1
< y2 <…< ym.

Fig. 4. The Node-lists of bce in Example 1

4. Mining Frequent Patterns using Node-list

In this section, we examine how to efficiently mine
frequent patterns using Node-lists.

We adopt Apriori-like approach for mining frequent
patterns. First, we generate the Node-lists of candidate
(k+1)-patterns by intersecting the Node-lists of frequent
k-patterns. Second, for any candidate (k+1)-pattern Pc,
we obtain the supports of Pc by summing count values
of all PP-codes in its Node-lists. According to the
support of Pc, we can judge whether Pc is frequent or
not. By repeating the above procedure, all frequent
patterns will be found. The process of our method is the
same as Eclat [7]. Eclat adopts tid-lists to mine the
frequent patterns, while our method adopts Node-lists to
mine the frequent patterns. It is obvious that the
efficiency of intersecting two Node-lists is vital to the
efficiency of mining frequent patterns. Before giving
our intersecting method, let us first examine the
following example.

Let P1 = i1 i2…i(k-2)iu and P2 = i1 i2…i(k-2)iv (iu f iv)
be two (k-1)-patterns. The Node-list of P1 is {<(x11, y11):
z11>, <(x12, y12): z12>, …, <(x1m, y1m): z1m >}. The Node-
list of P2 is {<(x21, y21): z21>, <(x22, y22): z22>, …, <(x2n,
y2n): z2n>}, For generating the Node-list of P = i1…i(k-2)
iuiv, a naïve method is to check each PP-code of the
Node-list of P1 with each PP-codes of the Node-list of
P2 to decide whether they satisfy the ancestor-
descendant relationship. It is obvious that the time
complexity of the naïve method is O(mn). This time
complexity is unsatisfying. After some careful analysis,
we find a linear-time-complexity method, which is
based on the following Lemma.

b (3,7):4

No 3>1

c (1,1):1 (4,5):3

bc (4,5):3

3<4 and 7>5 Ok

b (3,7):4

e (5,4):3

be (5,4):3

3<5 and 7>4 Ok

bc (4,5):3

be

bce (5,4):3

4<5 and 5>4 Ok

(5,4):3

(3)

(2) (1)

Lemma 1 Let P1 = i1 i2…i(k-2)iu and P2 = i1 i2…i(k-2)iv
(iu if v) be two (k-1)-patterns. The Node-list of P1 is
{<(x11, y11): z11>, <(x12, y12): z12>, …, <(x1m, y1m): z1m >}.
The Node-list of P2 is {<(x21, y21): z21>, <(x22, y22):
z22>, …, <(x2n, y2n): z2n>}. If ∃ <(x1s, y1s): z1s >∈ P1 and
<(x2t, y2t): z2t>∈ P2, <(x1s, y1s): z1s > is the ancestor of
<(x2t, y2t): z2t>, then any <(x1k, y1k): z1k > ∈ P1 (k ≠ s)
cannot be the ancestor of <(x2t, y2t): z2t>.

Proof. Let <(x1s, y1s): z1s > be the ancestor of <(x2t,
y2t): z2t>, N1 be the node represented by <(x1s, y1s): z1s >,
N2 be the node represented by <(x2t, y2t): z2t>, and N be
the node represented by <(x1k, y1k): z1k > (k ≠ s). If N is
the ancestor of N2, then N1 and N must have the
ancestor-descendant relationship. According to Property
4, the item-names of N1 and N are both iu. But, by the
construction of PPC-tree, nodes with the same item-
name cannot have the ancestor-descendant relationship.
So, we have the conclusion.

Based on Property 6 and Lemma 1, the generation of
the Node-list of P = i2…i(k-2)iuiv can be efficiently
implemented by a linear method. The method first
selects a PP-code from {<(x11, y11): z11>, <(x12, y12):
z12>, …, <(x1m, y1m): z1m>} according to the order from
left to right. Then, it check the ancestor-descendant
relationship of the PP-code and PP-codes in {<(x21, y21):
z21>, <(x22, y22): z22>, …, <(x2n, y2n): z2n>}. In a word,
our method makes use of the characteristic that PP-
codes in a Node-list are ordinal. Let <(x1i, y1i): z1i> and
<(x2j, y2j): z2j> be the current PP-codes to be proceeded,
the detailing procedures are as follows:

(1) Check the ancestor-descendant relationship of
<(x1i, y1i): z1i> and <(x2j, y2j): z2j>.

(2) If <(x1i, y1i): z1i> is the ancestor of <(x2j, y2j):
z2j> then insert <(x2j, y2j): z2j> into the Node-list of
P. Go to (1) and go on checking the ancestor-

Published by Atlantis Press
 Copyright: the authors
 739

Zhihong Deng and Zhonghui Wang

descendant relationship of <(x1i, y1i): z1i> and
<(x2(j+1), y2(j+1)): z2(j+1)>.

(3) If <(x1i, y1i): z1i> is not the ancestor of <(x2j, y2j):
z2j>, there would be two cases: x1i > x2j or x1i < x2j
∧ y1i < y2j. x1i can not be equal to x2j because they
are the preorder ranks of different nodes. Similarly,
y1i can not be equal to y2j.
(3.1) If x1i > x2j, go to (1) and go on checking the

ancestor-descendant relationship of <(x1i,
y1i): z1i> and <(x2(j+1), y2(j+1)): z2(j+1)>.

(3.2) If x1i < x2j ∧ y1i < y2j, go to (1) and go on
checking the ancestor-descendant
relationship of <(x1(i+1), y1(i+1)): z1(i+1)> and
<(x2j, y2j): z2j>.

The rationality of step 3.2 can be explained as
following. According to Property 6, we have y2j < y2t for
j < t. Because of y1i < y2j in step 3.2, we have y1i < y2t.
That is, <(x1i, y1i): z1i> can’t be the ancestor of <(x2t, y2t):
z2t>. So, we need not check the ancestor-descendant
relationship of <(x1i, y1i): z1i> and <(x2t, y2t): z2t>, which
means <(x1i, y1i): z1i> need not be processed any more.
So, <(x1(i+1), y1(i+1)): z1(i+1)>, the next PP-code of <(x1i,
y1i): z1i>, should be selected as the next proceeded PP-
code to check the ancestor-descendant relationship with
the PP-codes from the Node-list of P2. For any <(x2k,
y2k): z2k> (k < j), there are two cases: (1) there exists
<(x1v, y1v): z1v> (1 ≤ v ≤ i) that is the ancestor of <(x2k,
y2k): z2k>; (2) <(x2k, y2k): z2k> cannot be the descendant
of <(x1v, y1v): z1v> for any v (1 ≤ v ≤ i). For case (1),
<(x2k, y2k): z2k> cannot be the descendant of <(x1(i+1),
y1(i+1)): z1(i+1)> according to Lemma 1. For case (2), let
us suppose x1i < x2k. We have y1i < y2k because <(x1i, y1i):
z1i> is not the ancestor of <(x2k, y2k): z2k>. According to
the above procedure, the ancestor-descendant
relationship of <(x1i, y1i): z1i> and <(x2u, y2u): z2u> has
not been checked for any u (u > k), which conflicts with
the fact that we are checking the ancestor-descendant
relationship of <(x1i, y1i): z1i> and <(x2j, y2j): z2j>. So we
have x1i > x2k. According to Property 6, we have x1(i+1) >
x1i. So we have x1(i+1) > x2k, which means that <(x2k, y2k):
z2k> cannot be the descendant of <(x1(i+1), y1(i+1)): z1(i+1)>.
That is, We need not check the ancestor-descendant
relationship of <(x1(i+1), y1(i+1)): z1(i+1)> and <(x2k, y2k):
z2k>. Therefore, we should go to 1 to check the ancestor-
descendant relationship of <(x1(i+1), y1(i+1)): z1(i+1)> and
<(x2j, y2j): z2j>.

It is obvious that the method has an average running
time of O(m+n). Based on the idea of this method, we
have the following code-intersection algorithm.

Algorithm 2 (code-intersection)
Input: NL1 and NL2, which are the Node-lists of two k-
patterns.
Output: The Node-list of (k+1)-pattern.
Method: code-intersection(NL1, NL2)
(1) int i = 0; //Point to the start of NL1.

(2) int j = 0; //Point to the start of NL2.

(3) while (i < NL1.size() && j < NL2.size()) {
(4) if (NL1[i].pre-order < NL2[j].pre-order) {
(5) if (NL1[i]. pos-order > NL2 [j].pos-order){
(6) Insert NL2 [j] into NL3;
(7) j++;
(8) }
(9) else i++;
(10) }
(11) else j++; }
(12) return NL3;

Based on the above analysis, we have the following

algorithm for mining frequent patterns using Node-lists.

Algorithm 3 (PPV)
Input: the threshold ξ, the frequent 1-patterns and their
Node-lists
Output: The complete set of frequent patterns.
Method: PPV (ξ, L1, NL1)
(1) L1 = {frequent 1-patterns};
(2) NL1 = {the Node-lists of L1};
(3) For (k = 2; Lk-1≠∅; k++) do begin {
(4) For all p∈Lk-1 and q∈Lk-1, where p.i1 = q.i1,…,

p.ik-2 = q.ik-2, p.ik-1 q.if k-1 do begin {
(5) l = p.i1, p.i2,…,p.ik-1,q.ik-1; // Candidate k-pattern
(6) If all k-1 subsets l of are in Lk-1 {
(7) l.Node-list = code-intersection(p.Node-list,

q.Node-list);
(8) If (l.count ≥|DB|×ξ) { // Use Property 5 to get

l.count from l.Node-list
(9) Lk = Lk ∪{l};
(10) NLk = NLk ∪ {l.Node-list}; }
(11) }
(12) end For; }
(13) Delete NLk-1;
(14) end For; }
(15) Answer = ∪k Lk;

Published by Atlantis Press
 Copyright: the authors
 740

 A New Fast Vertical

On step 5, we generate a new k-pattern from two (k-

1)-patterns, and use Definition 6 and 7 to generate the
Node-list of this candidate k-pattern on step 6.
According to Property 5, the support of candidate k-
patterns can be obtained from its Node-list. So we can
get all the frequent patterns and their supports only
based on the structure of Node-lists, which can be
deleted after being used on step 11.

Many studies [7, 8] reveal that the process of mining
frequent 2-patterns is high-cost because the number of
candidate 2-patterns is usually huge, so it will be time-
consuming to find frequent 2-pattersn by joining
frequent 1-items. Therefore, we adopt the strategy in [8]
to find all frequent 2-patterns without joining frequent
1-items. The processes of the strategy are follows. First,
for each transaction, we get all its 2-patterns (subset).
Then, we can get the support of each 2-pattern when we
deal with all transaction. Finally, it’s easy for us to find
frequent 2-patterns when the support of each 2-pattern is
known. In the study, we get all frequent 2-patterns in the
process of constructing PPC-tree. For frequent k-
patterns (k>2), we join frequent (k-1)-patterns in Lk-1 to
generate the candidate k-patterns, and then check
whether these candidate k-patterns are frequent as
showed in Algorithm 3 (PPV).

5. Experiments

In this section, we present a performance comparison of
our algorithm with three classical frequent pattern
mining algorithm, which are FP-growth, Eclat and
dEclat.

5.1. Experiment Setup

We use four datasets, which are T25.I20.D100k,
T40.I10.D100k, T40.I30.D1000k and Accidents.
Accident [13] is a real dataset and includes traffic
accidents records of the region of Flanders (Belgium)
for the period 1991-2000. The other three datasets are
synthetic and generated by IBM generator [14].
T25.I20.D100k and T40.I10.D100k have been used as
benchmarks in many studies of frequent patterns mining,
such as [2, 8]. For the sake of testing the performance
our algorithm in large volume data, we build
T40.I30.D1000k, which includes a million transactions.
Table 2 shows the parameters of the synthetic and real
datasets used in our evaluation, where T denote the
average transaction length, D the number of transactions,

Size the capability of datasets. As the support threshold
goes down, there will be exponentially numerous
frequent patterns in all datasets. They contain abundant
mixtures of short and long frequent patterns.

All experiments are performed on an IBM xSeries
366 server with 2G memory, running Microsoft
Windows 2000. All algorithms are coded in C++.
Because different experiment platforms, such as
software and hardware, may differ greatly on the
runtime for the same algorithms, we do not directly
compare our results with those in some published
reports running on different experiment platforms. For
the sake of impartiality, PPV, FP-growth, Eclat and
dEclat are implemented on the same machine and
compared in the same experiment environment. Notice
that we implement FP-growth, Eclat and dEclat to the
best of our knowledge based on the published literature.

Table 2. Database Parameter

5.2. Performance Evaluation

For evaluating our algorithm, we give a thorough set of
experiments covering all the real and synthetic datasets
mentioned in Table 2 for different values of minimum
support. Figure 5 to Figure 8 show the advantage of
PPV over the base methods, which are FP-growth, Eclat,
and dEclat.

Let first compare how the algorithms perform on
synthetic datasets. Figure 5 shows the run time of the
algorithms on T25.I20.D100k as the minimum support
decreased from 7% to 3%. We observe that Eclat is the
worst and work only for high values of minimum
support. The best among the four algorithms is PPV,
which can be about twice as fast as FP-growth and
dEcalt on average. For T25.I20.D100k, PPV and FP-
growth shows very similar scalability. That is, they
show similar trend when the minimum support changes.
When the value of minimum support drops to 3%, the
efficiency of dEcalt declines much faster than that of
PPV and FP-growth.

Dataset T D Size

T25.I20.D100k 25 100,000 12.5MB

T40.I10.D100k 40 100,000 16.5MB

T40.I30.D1000k 40 1,000,000 157.0MB

Accidents 34 340,183 33.8MB

Published by Atlantis Press
 Copyright: the authors
 741

Zhihong Deng and Zhonghui Wang

Figure 6 shows the run time of the algorithms on
T40.I10.D100k as the minimum support decreased from
4.5% to 2.5%. We observe that FP-growth is the worst.
This result coincides with [8]. PPV and dEcalt are the
best among the four algorithms. However, the
scalability of dEcalt is worse than that of PPV. When
the value of minimum support is below 3.5%, the
efficiency of dEcalt is worse than that of PPV. It also
obvious that the lower the value of minimum support is,
the clearer the difference between dEcalt and PPV
becomes. In addition, PPV and FP-growth still shows
very similar scalability. When minimum support
changes, the variety of efficiency of PPV and FP-
growth is smoother than that of Ecalt and dEcalt.

Figure 7 shows the run time of the algorithms on
T40.I30.D1000k as the minimum support decreased
from 8.6% to 7.8%. We observe Eclat and dEcalt show
good efficiency when the value of minimum support is
above 8.4%. However, when the value of minimum
support is below 8.4%, PPV is absolute the best among
the four algorithms. Obviously, the lower the value of
minimum support is, the more distinct the advantage of
PPV is. When the value of minimum support is 8%, the
rum time of Eclat is more than 2000 seconds. The rum
time of FP-growth also exceeds 1000 seconds when the
value of minimum support is 7.8%.

Now, let us compare how the algorithms perform on
real datasets. Figure 8 shows the run time of the
algorithms on Accidents as the minimum support
decreased from 48% to 40%. We observe that
efficiencies of PPV and FP-growth are almost the same.
They are about an order of magnitude faster than Ecalt
and dEcalt.

According to the above discussions, we have the
conclusion that PPV is the best among the four
algorithms on all synthetic and real dataset with various
minimum supports.

The reason that PPV performs better than FP-growth
lies in that PPV avoids the time consuming process of
constructing a lot of conditional frequent pattern tree in
FP-Growth by simply intersecting Node-lists. This
advantage is more distinct when dataset are sparse, such
as three synthetic datasets used in this study.

The reason that PPV performs better than Eclat and
dEclat lies in that PPV adopts compact Node-lists to
stand for patterns. Figure 9 and Figure 10 show the
average length of Node-lists, tid-lists and diffsets of
frequent patterns when frequent patterns are mined from

T25.I20.D100k and Accidents. For T25.I20.D100k, the
average length of Node-lists of frequent patterns is
about an order of magnitude smaller than that of their
tid-lists and diffsets. For Accidents, the average length
of Node-lists of frequent patterns is about two orders of
magnitude smaller than that of their tid-lists and diffsets.
As for T40.I10.D100k, T40.I30.D1000k, the cases are
the same as T25.I20.D100k. Of course, the operation of
intersecting two Node-lists is much more complex than
the operation of intersecting two tid-lists or two diffsets.
Therefore, the advantage of PPV over Eclat and
dEclaton on efficiency is not as much as the advantage
Node-lists over tid-lists and diffsets on compression.

In fact, the advantage of PPV is that it effectively
combines the idea of data compression of FP-growth
and the idea of simple support computing of vertical
mining method, which makes its success on different
dataset and for various thresholds.

T25I20D100K

1

10

100

1000

7 6 5 4 3

minimum support (%)

tim
e

(s
ec

.)

PPV
FP-growth
Eclat
dEclat

Fig. 5. Comparative Performance on T25I20D100K

T40I10D100K

1

10

100

1000

4.5 4 3.5 3 2.5

minimum support (%)

tim
e

(s
ec

.)

PPV
FP-growth
Eclat
dEclat

Published by Atlantis Press
 Copyright: the authors
 742

 A New Fast Vertical

Fig. 6. Comparative Performance on T40I10D100K

T40I30D1000K

1

10

100

1000

8.6 8.4 8.2 8 7.8

minimum support (%)

tim
e

(s
ec

.)

PPV
FP-growth
Eclat
dEclat

Fig. 7. Comparative Performance on T40I30D1000K

Accidents

1

10

100

1000

48 46 44 42 40
minimum support (%)

tim
e

(s
ec

.)

PPV
FP-growth
Eclat
dEclat

Fig. 8. Comparative Performance on Accidents

T40I10D100K

100

1000

10000

100000

4.5 4 3.5 3 2.5
minimum supprot (%)

av
g

le
ng

th

Node-lists (PPV)
tid-lists (Eclat)
diffsets (dEclat)

Fig. 9. Average Length of Node-lists, tid-lists, and diffsets
Cardinality on T40I10D100K

Accidents

1000

10000

100000

1000000

48 46 44 42 40
minimum support (%)

av
g

le
ng

th

Node-lists (PPV)
tid-lists (Eclat)
diffsets (dEclat)

Fig. 10. Average Length of Node-lists, tid-lists, and diffsets
Cardinality on Accidents

6. Conclusions

In this paper, we have proposed a compact tree structure,
PPC-tree, for storing a transaction database. Based on
PPC-tree, we developed an Apriori-like algorithm, PPV,
for efficiently mining frequent patterns in large datasets.
First, PPV obtains the Node-list of each frequent item.
Then, PPV obtains Node-lists of the candidate patterns
of length (k+1) by intersecting Node-lists of frequent
patterns of length k and thus discovers the frequent
patterns of length (k+1). The advantages of PPV are that
it transforms the mining of frequent patterns into the
intersecting of Node-lists, which makes mining process
easier, and adopts an efficient method for intersecting
two Node-lists, which has an average time complexity
of O(m+n). Our experimental results show that PPV is
an efficient algorithm that outperforms FP-growth, Eclat,
and dEclat.

Recently, there have been some interesting studies at
mining closed frequent patterns [15, 16], top-k frequent
patterns [17] and Sequential Patterns [18]. The
extension of PPV for mining these special frequent
patterns is an interesting topic for future research.

Acknowledgements

This work is supported by the National High
Technology Research and Development Program of
China (863 Program) under Grant No. 2009AA01Z136

Published by Atlantis Press
 Copyright: the authors
 743

Zhihong Deng and Zhonghui Wang

and the National Natural Science Foundation of China
under Grant No.90812001. The authors also gratefully
acknowledge the helpful comments and suggestions of
the reviewers, which have improved the presentation.

References

1. R. Agrawal, T. Imielinski, and A. Swami, Mining
Association Rules Between Sets of Items in Large
Databases, In proceedings of 1993 ACM SIGMOD
International Conference on Management of Data
(SIGMOD'93), pp. 207-216.

2. J. Han, J. Pei, and Y. Yin, Mining frequent patterns
without candidate generation, In proceedings of 2000
ACM SIGMOD International Conference on
Management of Data (SIGMOD'00), pp. 1-12.

3. R. Agrawal and R. Srikant, Fast algorithm for mining
Association rules, In Proceedings of 1994 International
Conference on Very Large Data Bases (VLDB’94), pp.
487-499.

4. A. Savasere, E. Omiecinski, and S. Navathe, An efficient
algorithm for mining association rules in large databases,
In Proceedings of 1995 International Conference on Very
Large Data Bases (VLDB’95), pp. 432–443.

5. J. S. Park, M. S. Chen, and P. S. Yu, Using a hash-based
method with transaction trimming for mining association
rules, IEEE Transactions on Knowledge and Data
Engineering, 9(5) (1997) 813–824.

6. P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia, M.
Bawa and D. Shah, Turbo-Charging Vertical Mining of
Large Databases, In Proceedings of 2000 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’00), pp. 22-33.

7. M. J. Zaki, Scalable algorithms for association mining,
IEEE Transactions on Knowledge and Data Engineering,
12(3) (2000) 372-390.

8. M. J. Zaki and K. Gouda, Fast vertical mining using
diffsets, In Proceedings of 2003 International Conference
on Knowledge Discovery and Data Mining (SIGKDD'03),
pp. 326-335.

9. G. Liu, H. Lu, Y. Xu, J. X. Yu, Ascending Frequency
Ordered Prefix-tree: Efficient Mining of Frequent
Patterns, In Proceedings of 2003 International
Conference on Database Systems for Advanced
Applications (DASFAA’03), pp. 65-72.

10. J. Han, J. Pei, Y. Yin, and R. Mao, Mining Frequent
Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach, Data Mining and Knowledge
Discovery, 8 (2004) 53–87.

11. Y. K. Woon, W. K. Ng, and E. P. Lim, A Support-
Ordered Trie for Fast Frequent Pattern Discovery, IEEE
Transactions on Knowledge and Data Engineering, 16(7)
(2004) 875–879.

12. T. Grust, Accelerating xpath location steps, In
Proceedings of 2002 ACM SIGMOD international
conference on Management of data (SIGMOD'02), pp:
109–120.

13. http://fimi.cs.helsinki.fi/data/
14. http://www.almaden. ibm.com/cs/quest/syndata.html.
15. J. Y. Wang, J. Han, and J. Pei, CLOSET+: Searching for

the Best Strategies for Mining Frequent Closed Patterns,
In Proceedings of 2003 International Conference on
Knowledge Discovery and Data Mining (SIGKDD'03),
pp. 236-245.

16. M. J. Zaki and C. J. Hsiao, Efficient Algorithm for
Mining Closed Patterns and Their Lattice Structure, IEEE
Transactions on Knowledge and Data Engineering, 17(4)
(2005) 462-478.

17. J. Y. Wang, J. Han, Y. Lu, and P. Tzvetkov, TFP: An
Efficient Algorithm for Mining Top-k Frequent Closed
Patterns, IEEE Transactions on Knowledge and Data
Engineering, 17(5) (2005) 652-664.

18. S. Qiao, T. Li, and J. Peng, Parallel Sequential Pattern
Mining of Massive Trajectory Data, International Journal
of Computational Intelligence Systems, 3(3) (2010) 343 -
356.

Published by Atlantis Press
 Copyright: the authors
 744

	1. Introduction
	2. Problem Definition
	3. Node-list: Definitions and Properties
	3.1. PPC-tree: Design and Construction
	3.2. Node-list: Definition and Properties
	4. Mining Frequent Patterns using Node-list
	5. Experiments
	5.1. Experiment Setup
	5.2. Performance Evaluation

	6. Conclusions
	Acknowledgements
	References

	Sans titre

