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Abstract 

Vertical mining methods are very effective for mining frequent patterns and usually outperform horizontal mining 
methods. However, the vertical methods become ineffective since the intersection time starts to be costly when the 
cardinality of tidset (tid-list or diffset) is very large or there are a very large number of transactions.  

In this paper, we propose a novel vertical algorithm called PPV for fast frequent pattern discovery. PPV works 
based on a data structure called Node-lists, which is obtained from a coding prefix-tree called PPC-tree. The 
efficiency of PPV is achieved with three techniques. First, the Node-list is much more compact compared with 
previous proposed vertical structure (such as tid-lists or diffsets) since transactions with common prefixes share the 
same nodes of the PPC-tree. Second, the counting of support is transformed into the intersection of Node-lists and 
the complexity of intersecting two Node-lists can be reduced to O(m+n) by an efficient strategy, where m and n are 
the cardinalities of the two Node-lists respectively. Third, the ancestor-descendant relationship of two nodes, which 
is the basic step of intersecting Node-lists, can be very efficiently verified by Pre-Post codes of nodes. 

We experimentally compare our algorithm with FP-growth, and two prominent vertical algorithms (Eclat and 
dEclat) on a number of databases. The experimental results show that PPV is an efficient algorithm that 
outperforms FP-growth, Eclat, and dEclat. 
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1. Introduction 

Data mining (or knowledge discovery in databases, 
KDD) has attracted tremendous amount of attention in 
the database research community due to its wide 
applicability in many areas. Since mining frequent 

patterns was first introduced in [1], it has emerged as a 
fundamental problem in data mining and plays an 
essential role in many important data mining tasks such 
as associations, correlations, sequential patterns, particle 
periodicity, classification, etc [2]. 
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Most of the previous proposed frequent pattern 
mining algorithms can be divided into two groups: the 
Apriori-like method and the FP-growth method. 
Apriori-like approach generates candidate patterns of 
length (k+1) in the (k+1)th pass using frequent patterns 
of length k generated in the previous pass, and counts 
the supports of these candidate patterns in the database. 
The idea of Apriori-like approach depends on an anti-
monotone Apriori property [3]: all nonempty subset of a 
frequent pattern must also be frequent. A lot of studies, 
such as [3-8], adopt the Apriori-like approach. The FP-
growth is a recently proposed method that has proved to 
be very efficient in mining frequent patterns. FP-growth 
achieves impressive efficiency by adopting a highly 
condensed data structure called frequent pattern tree to 
store databases and employing a partitioning-based, 
divide-and-conquer method to mine frequent patterns. 
Some studies, such as [2, 9, 10], adopt the FP-growth 
approach. 

The Apriori-like approach achieves good 
performance by reducing the size of candidates. 
However, previous studies reveal that it is highly 
expensive for Apriori-like approach to repeatedly scan 
the database and check a large set of candidates by 
pattern matching [2]. In order to deal with these 
problems, a number of vertical mining algorithms have 
been proposed [6-8]. Unlike the traditional horizontal 
transactional database format used in most Apriori-like 
algorithms, each item in a vertical database is associated 
with its corresponding tid-list—the set of all transaction 
ids where it appears. The advantage of vertical database 
format is that the counting of supports of frequent 
patterns can be obtained via tid-list intersection, which 
avoids scanning a whole database. tid-list is much 
simpler than complex hash or trees used in horizontal 
algorithms and is also more efficient than them in 
counting supports of frequent patterns. Vertical mining 
methods have been shown to be very effective and 
usually outperform horizontal mining methods [8]. 
Despite the advantages of the vertical database format, 
the vertical methods become to be ineffective since the 
intersection time starts to be costly when tidset 
cardinality (such as for very frequent items) is very 
large or there are a very large number of transactions [8]. 

The FP-growth approach wins an advantage over the 
Apriori-like approach by reducing search space and 
generating frequent patterns without candidate 
generation. However, FP-growth only achieves 

significant speedups at low support thresholds because 
the process of constructing and using the frequent 
pattern trees is complex [11]. In addition, since FP-
growth generates frequent patterns by recursively 
mining conditional frequent pattern trees, it tends to 
need a large number of memories to store these 
temporal pattern trees. Though [10] proposed a disk-
based method called database projection to address the 
above problem, obviously, it will damage the 
performance because of frequently accessing disks. 

One advantage of FP-growth approach is the 
frequent pattern tree, which is a highly condensed data 
structure for storing the database. On the other hand, the 
biggest advantage of vertical mining algorithm is that 
each item is represented by transaction ids (TID). A 
question is that can we integrate the advantages of the 
two approaches and form a new efficient mining 
algorithm, which may overcome the shortcomings of the 
two approaches. This is the motivation of this study. 

After some careful examination, we believe that 
such method is realizable. In this paper, we propose 
PPV algorithm, which is a new vertical mining 
algorithm based on some compact codes. PPV adopts a 
prefix tree structure called PPC-tree to store the 
database. Each node in a PPC-tree is assigned with a 
Pre-Post code via traversing the PPC-tree with Pre and 
Post order. Based on the PPC-tree with Pre-Post code, 
each frequent item can be represented by a Node-list, 
which is the list of PP-codes that consists of pre-order 
code, post-order code, and count of nodes registering 
the frequent item. Like other vertical algorithms, PPV 
gets Node-lists of the candidate patterns of length (k+1) 
by intersecting Node-lists of frequent patterns of length 
k and thus discovers the frequent patterns of length 
(k+1). The efficiency of PPV is achieved with three 
techniques. First, The Node-list is much more compact 
compared with previous proposed vertical structure 
(such as tidset or diffsets) since transactions with 
common prefix share the same nodes of the PPC-tree. 
Second, the support counting is transformed into 
intersection of Node-lists and the complexity of 
intersecting two Node-lists can be reduced to O(m+n) 
by an efficient strategy, where m and n are the 
cardinalities of the two Node-lists respectively. Third, 
the ancestor-descendant relationship of two nodes, 
which is the basic step of intersecting Node-lists, can be 
very efficiently verified by Pre-Post codes of nodes.  
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These above techniques together form the core of 
our algorithm - PPV. A performance study has been 
conducted to compare the performance of PPV with FP-
growth, Eclat, and dEclat, where Eclat and dEclat are 
the most efficient among all vertical algorithms. The 
experimental results show that PPV is efficient. PPV 
outperforms FP-growth, Eclat, and dEclat.  

The remainder of the paper is organized as follows. 
A detailed problem description is given in Section 2. 
Node-list, its definition and construction method, and 
some important properties are described in Section 3. 
The PPV algorithm proposed for generating frequent 
patterns is developed in Section 4. Experimental results 
are presented in Section 5. Section 6 summarizes our 
study and points out some future research issues. 

2. Problem Definition 

The following is a formal description of the problem of 
mining frequent patterns. Let I = {i1, i2 , … , im} be the 
universal item set. Let DB = {T1, T2 , … , Tn} be a 
transaction database, where each Tk (1 ≤ k ≤ n) is a 
transaction which is a set of items such that Tk ⊆ I. we 
also call A a pattern if A is a set of items. Let A be a 
pattern, a transaction T is said to contain A if and only if 
A ⊆ T. Let SPA be the support of pattern A, which is the 
number of transactions in DB that contain A. Let ξ be 
the predefined minimum support threshold and |DB| be 
the number of transactions in DB. A pattern A is 
frequent if SPA is no less than ξ×|DB|.  

Given a transaction database DB and a minimum 
support threshold ξ, the problem of mining frequent 
patterns is to discover the complete set of patterns that 
have support no less than ξ×|DB|.. 

3. Node-list: Definitions and Properties 

In this section, we will describe the Node-list structure 
and some properties. Before the introduction of the 
Node-list, we first describe the PPC-tree, which is the 
basic of the Node-list. 

3.1.  PPC-tree: Design and Construction 

We define a PPC-tree as follows. 
Definition 1 PPC-tree is a tree structure: 
(1) It consists of one root labeled as “null”, a set of 

item prefix subtrees as the children of the root. 
(2) Each node in the item prefix subtree consists of 

five fields: item-name, count, childreNode-list, 

pre-order, and post-order. item-name registers 
which frequent item this node represents. count 
registers the number of transactions presented 
by the portion of the path reaching this node. 
childreNode-list registers all children of the 
node. pre-order is the preorder rank of the 
node. post-order is the postorder rank of the 
node. 

According to Definition 1, PPC-tree seems like a 
FP-tree [2]. However, there are three important 
differences between them.  

First, FP-tree has a node-link field in each node and 
a header table structure to maintain the connection of 
nodes whose item-names are equal in the tree, where 
PPC-tree does not have such structures. So PPC-tree is a 
simpler prefix free. Second, each node in the PPC-tree 
has pre-order and post-order fields while nodes in the 
FP-tree have none. The pre-order of a node is 
determined by a preorder traversal of the tree. In a 
preorder traversal, a node N is visited and assigned the 
preorder rank before all its children are traversed 
recursively from left to right. In other word, the pre-
order records the time when node N is accessed during 
the preorder traversal. In the same way, the post-order 
of a node is determined by a postorder traversal of the 
tree. In a postorder traversal, a node N is visited and 
assigned its postorder rank after all its children have 
been traversed recursively from left to right.  

Third, after a FP-tree is built, it will be used for 
frequent pattern mining during the total process of FP-
growth algorithm, which is a recursive and complex 
process. However, PPC-tree is only used for generating 
the Pre-Post code of each node. Later, we will find that 
after collecting the Pre-Post code of each frequent item 
at first, the PPC-tree finishes its entire task and could be 
deleted. 

Based on Definition 1, we have the following PPC-
tree construction algorithm. 

 
Algorithm 1 (PPC-tree Construction) 
Input: A transaction database DB and a minimum 
support threshold ξ. 
Output: PPC-tree, F1 (the set of frequent 1-patterns) 
Method: Construct-PPC-tree(DB, ξ) { 
//Generate frequent 1-patterns 
(1) Scan DB once to find the set of frequent 1-patterns 
(frequent items) F1 and their supports. Sort F1 in support 
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descending order as If, which is the list of ordered 
frequent items. 
//Construct the PPC-tree 
(2) Create the root of a PPC-tree, PPT, and label it as 
“null”. Scan DB again. For each transaction T in DB, 
arrange its frequent items into the order of If and then 
insert it into the PPC-tree. (This process is the same as 
that of FP-tree [2].) 
//Generate the Pre-Post code of each node  
(3) Scan PPC-tree by preorder traversal to generate the 
pre-order. Scan PPC-tree again by postorder traversal to 
generate the post-order. } 

 
For better understanding of the concept and the 

construction algorithm of PPC-tree, let us examine the 
following example. 

Example 1 Let the transaction database, DB, be the 
left two columns of Table 1 and ξ = 40%. 

Table 1. A transaction database 

ID Items Ordered frequent items 
1 a, c, g c, a 
2 e, a, c, b b, c, e, a 
3 f, e, c, b, i b, c, e, f 
4 b, f, h b, f 
5 b, f, e, c, d b, c, e, f 

 
The PPC-tree storing the DB is shown in Figure 1. It 

should be noted that based on Algorithm 1 the PPC-tree 
is constructed via the last column of Table 1. Obviously, 
the second column and the last column are equivalent 
for mining frequent patterns under the given minimum 
support threshold. In the last columns of Table 1, all 
infrequent items are eliminated and frequent items are 
listed in support-descending order. This ensures that the 
DB can be efficiently represented by a compressed tree 
structure.  

For Pre-Post code generation, we traverse the PPC-
tree twice by preorder and postorder. After that, we get 
the Figure 1. In this figure, the node with (3,7) means 
that its pre-order is 3, post-order is 7, and the item-
name is b, count is 4. 

3.2. Node-list: Definition and Properties 

In this section, we will give the definition of the Node-
list and introduce some important properties of the 
Node-list, which decide the efficiency and effectiveness 

of our new proposed algorithm for mining frequent 
patterns.  
 
 
 
 

(1,1)

(0,8)

(2,0)

(3,7)  
 
 
 
 
 
 
 
 
 

Fig. 1. The PPC-tree in Example 1 

We first define the PP-code, which is the consisted 
element of the Node-list.  

Definition 2 (PP-code) For each node N in the PPC-
tree, we call < (N.pre-order, N.post-order): N.count > as 
the PP-code of N.  

In fact, the target of constructing the PPC-tree is to 
generate the PP-codes of frequent items, since the PP-
codes can effectively reflect the structure of the PPC-
tree, which is described by the following property [12]. 

Property 1 Given any two different nodes N1 and 
N2 in a PPC-tree, N1 is an ancestor of N2 if and only if 
N1.pre-order < N2.pre-order and N1.post-order > 
N2.post-order.  

It is determined by the construction of preorder rank 
and postorder rank. When N1 is an ancestor of N2, N1 
must be traversed earlier than N2 during the preorder 
traversal and be traversed later than N2 during the 
postorder traversal. On the other side, if N1.pre-order < 
N2.pre-order and N1.post-order > N2.post-order, N1 is the 
node that is traversed earlier than N2 during the preorder 
traversal and later during the postorder traversal. Such 
node must be an ancestor of N2. 

By using this property, it is easy to find the 
ancestor-descendant relationship of any two nodes just 
based on the preorder rank and postorder rank. Property 
1 also shows that nodes and their PP-codes are 1-1 
mapping. That is, a node uniquely determines a PP-code 
and a PP-code also uniquely determines a node. In fact, 
a node and its PP-code are equivalent. Therefore, we 
have the following definition. 

(4,5) 

(5,4) 

(6,2)

(8,6)

{}

c:1

a:1

b:4 

e:3 

a:1 

f:1 c:3 

f:2 (7,3)
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Definition 3 (the ancestor-descendant relationship 
of PP-codes) Given two PP-codes X1 and X2, X1 is the 
ancestor of X2 if and only if the node represented by X1 
is the ancestor of the node represented by X2.  

Let X1 be <(x1, y1): z1> and X2 be <(x2, y2): z2>, 
Definition 3 is equal to that X1 is the ancestor of X2 if 
and only if x1 < x2 and y1 > y2. We also call Y the 
descendant of X if X is the ancestor of Y.  

Definition 4 (the Node-list of a frequent item) 
Given a PPC-tree, the Node-list of a frequent item is a 
sequence of all the PP-codes of nodes registering the 
item from the PPC-tree. The PP-codes are arranged by 
the accessed order during the preorder traversal.  

Each PP-code in the Node-list is denoted by <(x, 
y):z>, where x is its pre-order, y is its post-order and z is 
its count. And the Node-list of a frequent item is 
denoted by {<(x1, y1): z1>, <(x2, y2): z2>, …, <(xl, yl): zl 
>}. For example, the Node-list of b includes one node. 
Its pre-order is 3, its post-order is 7, and its count is 4. 
Figure 2 shows the Node-lists of all frequent items in 
Example 1. 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. The Node-lists of frequent items in Example 1 

Property 2 Given any two different nodes N1 and 
N2, which represent the same item (N1.item-name = 
N2.item-name), if N1.pre-order < N2.pre-order, then 
N1.post-order < N2.post-order. 

When N1.pre-order < N2.pre-order, it means that N1 

is traveled earlier than N2 during the preorder traversal. 
Since N1 can not be the ancestor of N2 because they both 
register the same item, so N1 must be on the left branch 
of PPC-tree compared with N2. During the postorder 
traversal, the left branch will also be traversed earlier 
than N2, so N1.post-order < N2.post-order. 

Given a Node-list of any item i, which is denoted by 
{<(x1, y1): z1>, <(x2, y2): z2>, …, <(xl, yl): zl >}, since we 
arrange the PP-code in the accessed order of preorder 

traversal, we have that x1 < x2 <…< xl. By property 2, 
we also have y1 < y2 <…< yl. 

For example, in Figure 2 the Node-list of item c is 
{<(1,1):1>, <(4,5):3>} and the Node-list of item f is 
{<(7,3):2>, <(8,6):1>}. They both show this property. 

Property 3 Given a Node-list of any item i, which is 
denoted by {<(x1, y1): z1>, <(x2, y2): z2>, …, <(xm, ym): 
zm>}, the support of item i is  z1 + z2 + …+ zm. 

It is determined by the definition of PP-code. Since 
each PP-code corresponds to a node in PPC-tree, whose 
count registers the number of transactions including 
item i, the sum of counts of nodes registering item i is 
i’s support.  

For better understanding of the concept of the Node-
list of pattern, we first give the definition of the Node-
list of a 2-pattern, which only contains two different 
items. 

We denote L as the set of frequent items, which are 
sorted in support descending order. Based on L, we 
define relation of two items as follows. f

Definition 5 (  relation) For any two frequent 
items i

f
1 and i2. i1f i2 if and only if i1  is ahead of i2 in L. 

For the sake of description, any pattern P in this 
paper is denoted by i1i2… ik, where i1f i2f…f ik. 

b 

c 

e 

f 

a 

(3,7) :4 

(5,4) :3

(1,1) :1

(7,3) :2 (8,6) :1 

(2,0) :1 (6,2) :1 

(4,5) :3 Definition 6 (the Node-list of a 2-pattern) Given 
any two different frequent item i1 and i2, whose Node-
lists are {<(x11, y11): z11>, <(x12, y12): z12>, …, <(x1m, y1m): 
z1m >} and  {<(x21, y21): z21>, <(x22, y22): z22>, …, <(x2n, 
y2n): z2n >} respectively. The Node-list of 2-pattern i1i2 
is a sequence of PP-codes according to pre-order 
ascending order and is generated by intersecting the 
Node-lists of i1 and i2, which follows the rule below: 

 For any <(x1p, y1p): z1p> ∈ the Node-list of i1 
(1≤p≤m) and <(x2q, y2q): z2q> ∈ the Node-list of i2 
(1≤q≤n), if <(x1p, y1p): z1p> is the ancestor of <(x2q, y2q): 
z2q>, then <(x2q, y2q): z2q> ∈ the Node-list of i1i2.  

For example, in Figure 2, the Node-list of b is 
{<(3,7): 4>} and the Node-list of c is {<(1,1): 1>, <(4,5): 
3>}. According to Definition 6, only PP-code <(4,5): 3> 
satisfies the combining rule. So the Node-list of bc is 
{<(4,5): 3>} as shown in Figure 3. 

Based on Definition 6, let us generalize it to the 
concept of the Node-list of a k-pattern (k ≥ 3). 

Definition 7 (the Node-list of a k-pattern) Let P = 
i1 i2…i(k-2)ixiy be a pattern (k ≥ 3), and the Node-list of P1 
= i1 i2…i(k-2) ix is {<(xP11, y P11): z P11>, <(x P12, y P12): z 

P12>, …, <(x P1m, y P1m): z P1m >}, the Node-list of P2 = i1 
i2…i(k-2) iy is  {<(xP21, y P21): z P21>, <(x P22, y P22): z 
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P22>, …, <(x P2n, y P2n): z P2n >} .The Node-list of P is a 
sequence of PP-codes according to pre-order ascending 
order and generated by intersecting the Node-lists of P1 
and P2, which follows the rule below:  

For any <(xP1r, yP1r): zP1r> ∈ the Node-list of P1 
(1≤r≤m) and <(xP2s, yP2s): zP2s> ∈ the Node-list of P2 
(1≤s≤n), if <(xP1r, yP1r): zP1r> is the ancestor of <(xP2s, 
yP2s): zP2s>, then <(xP2s, yP2s): zP2s> ∈ the Node-list of P. 

 
 
 
 
 
 
 
 
 

Fig.3. The Node-lists of bc in Example 1 

Based on Definition 4, 6, and 7, we have property 4 
as follows.   

Property 4 Let <(x,y):z> be a PP-code in the Node-
list of k-pattern i1 i2…ik. The item-name of the node 
represented by <(x,y):z> is ik. 

For k = 1. According to Definition 4, we know that 
each PP-code in the Node-list of any frequent item i 
represents a node registering i. Therefore, Property 4 is 
right for k = 1. 

For k = 2. According to Definition 6, we know that 
each PP-code in the Node-list of i1i2 is also in the Node-
list of i2. According to Definition 4, we know that each 
PP-code in the Node-list of i2 represents a node 
registering i2. Therefore, Property 6 is right for k = 2. 

For k = 3. The Node-list of k-pattern i1i2i3 is 
generated by the Node-list of i1i2 and i1i3. According to 
Definition 7, we know that each PP-code in the Node-
list of i1i2i3 is also in the Node-list of i1i3. However, 
according to the case k = 2, each PP-code of the Node-
list of i1i3 represents a node registering i3. Therefore, 
Property 6 is right for k = 3. 

For k >3, the rationale is the same as k = 3. 
Therefore, we have Property 4.  

Based on the above definitions and properties, we 
have the following important properties. 

Property 5 Given a Node-list of any k-pattern P = i1 
i2…ik, which is denoted by  {<(x1, y1): z1>, <(x2, y2): 
z2>, …, <(xm, ym): zm >}, the support of pattern P is 
z1+z2+…+zm. 

For k = 1. According to Property 3, the conclusion is 
right. 

For k = 2. According to Definition 6, for any PP-
code PC = <(xj, yj): zj> in the Node-list of i1i2, <(xj, yj): 
zj> must be a PP-code in the Node-list of i2 and there 
must be a PP-code PC1, which is the ancestor of PC, in 
the Node-list of i1. By Definition 3, N1, the node 
represented by PC1, is the ancestor of N2, the node 
represented by PC, in the original PPC-tree. According 
to Property 4, the item-name of N2 is i2 and the item-
name of N1 is i1. That is, the count of N2 registers the 
number of transactions containing both item i1 and i2. 
By recording all such nodes whose item-name is i2 and 
one of its ancestors’ item-name is i1, we can get the 
support of pattern i1i2. Luckily, by Definition 6, the 
Node-list of 2-pattern keeps all these information in a 
simple and smart way. So we can directly get the 
support of pattern i1i2 by calculating the sum of the 
counts in each PP-code.  

b (3,7):4

No 3>1 

c (1,1):1 (4,5):3 

bc (4,5):3

3<4 and 7>5 Ok 

For k = 3. According to Definition 7, for any PP-
code PC = <(xj, yj): zj> in the Node-list of i1i2i3, <(xj, yj): 
zj> must be a PP-code in the Node-list of i1i3 and there 
must be a PP-code PC1, which is the ancestor of PC, in 
the Node-list of i1i2. By Definition 3, N1, the node 
represented by PC1, is the ancestor of N2, the node 
represented by PC, in the original PPC-tree. According 
to Property 4, the item-name of N2 is i3 and the item-
name of N1 is i2. Because PC1 is in the Node-list of i1i2, 
there must be a node N with i1 as item-name, which is 
the ancestor N1, according to the case k = 2. That is, N is 
the ancestor of N1 and N1 is the ancestor of N2. 
Therefore, the count of N2 registers the number of 
transactions containing item i1, i2, and i3. So we can 
directly get the support of pattern i1i2i3 by calculating 
the sum of the counts of each PP-code in the Node-list 
of i1i2i3.  

For k > 3. The rationale is the same as k = 3. 
Therefore, we have Property 5. 

For example, the Node-list of bc is {<(4,5): 3>} as 
shown in Figure 3, so there is only one node in Figure 1, 
whose item-name is c and one of its ancestors’ item-
name is b. So the support of bc is 3. 

Figure 4 shows the procedure that generates the 
Node-list of bce by the intersection of the Node-list of 
bc and the Node-list of be. 

Property 6 Let P = i1 i2…ik be a k-pattern and the 
Node-list of P is {<(x1, y1): z1>, <(x2, y2): z2>, …, <(xm, 
ym): zm>}, we have x1 < x2 <…< xm and y1 < y2 <…< ym. 
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In terms of Definition 4, 6 and 7, The Node-list of P is a 
sequence of PP-codes according to pre-order ascending 
order. Therefore, we have x1 < x2 <…< xm. In addition, 
each  <(xj, yj): zj> corresponds to a node with item-name 
= ik according to Property 4. By property 2, we have y1 
< y2 <…< ym.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The Node-lists of bce in Example 1 

4. Mining Frequent Patterns using Node-list 

In this section, we examine how to efficiently mine 
frequent patterns using Node-lists. 

We adopt Apriori-like approach for mining frequent 
patterns. First, we generate the Node-lists of candidate 
(k+1)-patterns by intersecting the Node-lists of frequent 
k-patterns. Second, for any candidate (k+1)-pattern Pc, 
we obtain the supports of Pc by summing count values 
of all PP-codes in its Node-lists. According to the 
support of Pc, we can judge whether Pc is frequent or 
not. By repeating the above procedure, all frequent 
patterns will be found. The process of our method is the 
same as Eclat [7]. Eclat adopts tid-lists to mine the 
frequent patterns, while our method adopts Node-lists to 
mine the frequent patterns. It is obvious that the 
efficiency of intersecting two Node-lists is vital to the 
efficiency of mining frequent patterns. Before giving 
our intersecting method, let us first examine the 
following example.  

Let P1 = i1 i2…i(k-2)iu and P2 = i1 i2…i(k-2)iv (iu f  iv) 
be two (k-1)-patterns. The Node-list of P1 is {<(x11, y11): 
z11>, <(x12, y12): z12>, …, <(x1m, y1m): z1m >}. The Node-
list of P2 is {<(x21, y21): z21>, <(x22, y22): z22>, …, <(x2n, 
y2n): z2n>}, For generating the Node-list of P = i1…i(k-2) 
iuiv, a naïve method is to check each PP-code of the 
Node-list of P1 with each PP-codes of the Node-list of 
P2 to decide whether they satisfy the ancestor-
descendant relationship. It is obvious that the time 
complexity of the naïve method is O(mn). This time 
complexity is unsatisfying. After some careful analysis, 
we find a linear-time-complexity method, which is 
based on the following Lemma. 

b (3,7):4 

No 3>1 

c (1,1):1 (4,5):3

bc (4,5):3 

3<4 and 7>5 Ok 

b (3,7):4

e (5,4):3

be (5,4):3

3<5 and 7>4 Ok  

bc (4,5):3 

be 

bce (5,4):3 

4<5 and 5>4  Ok    

(5,4):3 

(3)    

(2)    (1)    

Lemma 1 Let P1 = i1 i2…i(k-2)iu and P2 = i1 i2…i(k-2)iv 
(iu  if v) be two (k-1)-patterns. The Node-list of P1 is 
{<(x11, y11): z11>, <(x12, y12): z12>, …, <(x1m, y1m): z1m >}. 
The Node-list of P2 is {<(x21, y21): z21>, <(x22, y22): 
z22>, …, <(x2n, y2n): z2n>}. If ∃ <(x1s, y1s): z1s >∈ P1 and 
<(x2t, y2t): z2t>∈ P2, <(x1s, y1s): z1s > is the ancestor of 
<(x2t, y2t): z2t>, then any <(x1k, y1k): z1k > ∈ P1 (k ≠ s) 
cannot be the ancestor of <(x2t, y2t): z2t>. 

Proof. Let <(x1s, y1s): z1s > be the ancestor of <(x2t, 
y2t): z2t>, N1 be the node represented by <(x1s, y1s): z1s >, 
N2 be the node represented by <(x2t, y2t): z2t>, and N be 
the node represented by  <(x1k, y1k): z1k > (k ≠ s). If N is 
the ancestor of N2, then N1 and N must have the 
ancestor-descendant relationship. According to Property 
4, the item-names of N1 and N are both iu. But, by the 
construction of PPC-tree, nodes with the same item-
name cannot have the ancestor-descendant relationship. 
So, we have the conclusion.  

Based on Property 6 and Lemma 1, the generation of 
the Node-list of P = i2…i(k-2)iuiv can be efficiently 
implemented by a linear method. The method first 
selects a PP-code from {<(x11, y11): z11>, <(x12, y12): 
z12>, …, <(x1m, y1m): z1m>} according to the order from 
left to right. Then, it check the ancestor-descendant 
relationship of the PP-code and PP-codes in {<(x21, y21): 
z21>, <(x22, y22): z22>, …, <(x2n, y2n): z2n>}. In a word, 
our method makes use of the characteristic that PP-
codes in a Node-list are ordinal. Let <(x1i, y1i): z1i> and  
<(x2j, y2j): z2j> be the current PP-codes to be proceeded, 
the detailing procedures are as follows:   

(1) Check the ancestor-descendant relationship of 
<(x1i, y1i): z1i> and  <(x2j, y2j): z2j>. 

(2) If <(x1i, y1i): z1i> is the ancestor of <(x2j, y2j): 
z2j> then insert <(x2j, y2j): z2j> into the Node-list of 
P. Go to (1) and go on checking the ancestor-
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descendant relationship of <(x1i, y1i): z1i> and 
<(x2(j+1), y2(j+1)): z2(j+1)>.  

(3) If <(x1i, y1i): z1i> is not the ancestor of <(x2j, y2j): 
z2j>, there would be two cases: x1i > x2j or x1i < x2j 
∧ y1i < y2j. x1i can not be equal to x2j because they 
are the preorder ranks of different nodes. Similarly, 
y1i can not be equal to y2j. 
(3.1) If x1i > x2j, go to (1) and go on checking the 

ancestor-descendant relationship of <(x1i, 
y1i): z1i> and <(x2(j+1), y2(j+1)): z2(j+1)>.  

(3.2) If x1i < x2j ∧ y1i < y2j, go to (1) and go on 
checking the ancestor-descendant 
relationship of <(x1(i+1), y1(i+1)): z1(i+1)>  and 
<(x2j, y2j): z2j>.  

The rationality of step 3.2 can be explained as 
following. According to Property 6, we have y2j < y2t for 
j < t.  Because of y1i < y2j in step 3.2, we have y1i < y2t. 
That is, <(x1i, y1i): z1i> can’t be the ancestor of <(x2t, y2t): 
z2t>. So, we need not check the ancestor-descendant 
relationship of <(x1i, y1i): z1i> and <(x2t, y2t): z2t>, which 
means  <(x1i, y1i): z1i> need not be processed any more. 
So, <(x1(i+1), y1(i+1)): z1(i+1)>, the next PP-code of  <(x1i, 
y1i): z1i>, should be selected as the next proceeded PP-
code to check the ancestor-descendant relationship with 
the PP-codes from the Node-list of P2. For any <(x2k, 
y2k): z2k> (k < j), there are two cases: (1) there exists 
<(x1v, y1v): z1v> (1 ≤ v ≤ i) that is the ancestor of <(x2k, 
y2k): z2k>; (2) <(x2k, y2k): z2k> cannot be the descendant 
of <(x1v, y1v): z1v> for any v (1 ≤ v ≤ i). For case (1), 
<(x2k, y2k): z2k> cannot be the descendant of <(x1(i+1), 
y1(i+1)): z1(i+1)> according to Lemma 1. For case  (2), let 
us suppose x1i < x2k. We have y1i < y2k because <(x1i, y1i): 
z1i> is not the ancestor of <(x2k, y2k): z2k>. According to 
the above procedure, the ancestor-descendant 
relationship of <(x1i, y1i): z1i> and <(x2u, y2u): z2u> has 
not been checked for any u (u > k), which conflicts with 
the fact that we are checking the ancestor-descendant 
relationship of <(x1i, y1i): z1i> and <(x2j, y2j): z2j>. So we 
have x1i > x2k. According to Property 6, we have x1(i+1) > 
x1i. So we have x1(i+1) > x2k, which means that <(x2k, y2k): 
z2k> cannot be the descendant of <(x1(i+1), y1(i+1)): z1(i+1)>. 
That is, We need not check the ancestor-descendant 
relationship of <(x1(i+1), y1(i+1)): z1(i+1)>  and <(x2k, y2k): 
z2k>. Therefore, we should go to 1 to check the ancestor-
descendant relationship of <(x1(i+1), y1(i+1)): z1(i+1)>  and 
<(x2j, y2j): z2j>. 

It is obvious that the method has an average running 
time of O(m+n). Based on the idea of this method, we 
have the following code-intersection algorithm. 

 
Algorithm 2 (code-intersection) 
Input: NL1 and NL2, which are the Node-lists of two k-
patterns. 
Output: The Node-list of (k+1)-pattern. 
Method: code-intersection(NL1, NL2) 
(1)  int i = 0;   //Point to the start of  NL1.

(2)  int j = 0;   //Point to the start of  NL2.

(3)  while (i < NL1.size() && j < NL2.size()) { 
(4)       if (  NL1[i].pre-order < NL2[j].pre-order) { 
(5)           if (NL1[i]. pos-order > NL2 [j].pos-order){ 
(6)               Insert NL2 [j] into NL3; 
(7)               j++; 
(8)           } 
(9)           else   i++; 
(10)     } 
(11)     else j++; } 
(12) return NL3; 

 
Based on the above analysis, we have the following 

algorithm for mining frequent patterns using Node-lists. 
 

Algorithm 3 (PPV) 
Input: the threshold ξ, the frequent 1-patterns and their 
Node-lists 
Output: The complete set of frequent patterns. 
Method: PPV (ξ, L1, NL1) 
(1)  L1 = {frequent 1-patterns}; 
(2)  NL1 = {the Node-lists of L1}; 
(3)  For ( k = 2; Lk-1≠∅; k++) do begin { 
(4)    For all p∈Lk-1 and q∈Lk-1, where p.i1 = q.i1,…, 

p.ik-2 = q.ik-2, p.ik-1  q.if k-1 do begin { 
(5)        l = p.i1, p.i2,…,p.ik-1,q.ik-1; // Candidate k-pattern 
(6)        If all k-1 subsets l of are in Lk-1 { 
(7)    l.Node-list = code-intersection(p.Node-list, 

q.Node-list); 
(8)            If (l.count ≥|DB|×ξ) { // Use Property 5 to get 

l.count from l.Node-list 
(9)                 Lk = Lk ∪{l}; 
(10)               NLk = NLk ∪ {l.Node-list}; } 
(11)        } 
(12)      end For; } 
(13)      Delete NLk-1; 
(14)  end For; } 
(15)  Answer = ∪k Lk;  
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On step 5, we generate a new k-pattern from two (k-

1)-patterns, and use Definition 6 and 7 to generate the 
Node-list of this candidate k-pattern on step 6. 
According to Property 5, the support of candidate k-
patterns can be obtained from its Node-list. So we can 
get all the frequent patterns and their supports only 
based on the structure of Node-lists, which can be 
deleted after being used on step 11. 

Many studies [7, 8] reveal that the process of mining 
frequent 2-patterns is high-cost because the number of 
candidate 2-patterns is usually huge, so it will be time-
consuming to find frequent 2-pattersn by joining 
frequent 1-items. Therefore, we adopt the strategy in [8] 
to find all frequent 2-patterns without joining frequent 
1-items. The processes of the strategy are follows. First, 
for each transaction, we get all its 2-patterns (subset). 
Then, we can get the support of each 2-pattern when we 
deal with all transaction. Finally, it’s easy for us to find 
frequent 2-patterns when the support of each 2-pattern is 
known. In the study, we get all frequent 2-patterns in the 
process of constructing PPC-tree. For frequent k-
patterns (k>2), we join frequent (k-1)-patterns in Lk-1 to 
generate the candidate k-patterns, and then check 
whether these candidate k-patterns are frequent as 
showed in Algorithm 3 (PPV).  

5. Experiments 

In this section, we present a performance comparison of 
our algorithm with three classical frequent pattern 
mining algorithm, which are FP-growth, Eclat and 
dEclat.  

5.1. Experiment Setup 

We use four datasets, which are T25.I20.D100k, 
T40.I10.D100k, T40.I30.D1000k and Accidents. 
Accident [13] is a real dataset and includes traffic 
accidents records of the region of Flanders (Belgium) 
for the period 1991-2000. The other three datasets are 
synthetic and generated by IBM generator [14]. 
T25.I20.D100k and T40.I10.D100k have been used as 
benchmarks in many studies of frequent patterns mining, 
such as [2, 8]. For the sake of testing the performance 
our algorithm in large volume data, we build 
T40.I30.D1000k, which includes a million transactions. 
Table 2 shows the parameters of the synthetic and real 
datasets used in our evaluation, where T denote the 
average transaction length, D the number of transactions, 

Size the capability of datasets. As the support threshold 
goes down, there will be exponentially numerous 
frequent patterns in all datasets. They contain abundant 
mixtures of short and long frequent patterns.  

All experiments are performed on an IBM xSeries 
366 server with 2G memory, running Microsoft 
Windows 2000. All algorithms are coded in C++. 
Because different experiment platforms, such as 
software and hardware, may differ greatly on the 
runtime for the same algorithms, we do not directly 
compare our results with those in some published 
reports running on different experiment platforms. For 
the sake of impartiality, PPV, FP-growth, Eclat and 
dEclat are implemented on the same machine and 
compared in the same experiment environment. Notice 
that we implement FP-growth, Eclat and dEclat to the 
best of our knowledge based on the published literature. 

Table 2. Database Parameter 

 

5.2. Performance Evaluation 

For evaluating our algorithm, we give a thorough set of 
experiments covering all the real and synthetic datasets 
mentioned in Table 2 for different values of minimum 
support. Figure 5 to Figure 8 show the advantage of 
PPV over the base methods, which are FP-growth, Eclat, 
and dEclat.  

Let first compare how the algorithms perform on 
synthetic datasets. Figure 5 shows the run time of the 
algorithms on T25.I20.D100k as the minimum support 
decreased from 7% to 3%. We observe that Eclat is the 
worst and work only for high values of minimum 
support. The best among the four algorithms is PPV, 
which can be about twice as fast as FP-growth and 
dEcalt on average. For T25.I20.D100k, PPV and FP-
growth shows very similar scalability. That is, they 
show similar trend when the minimum support changes. 
When the value of minimum support drops to 3%, the 
efficiency of dEcalt declines much faster than that of 
PPV and FP-growth. 

Dataset T D Size 

T25.I20.D100k 25 100,000 12.5MB

T40.I10.D100k 40 100,000 16.5MB

T40.I30.D1000k 40 1,000,000 157.0MB

Accidents 34 340,183 33.8MB
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Figure 6 shows the run time of the algorithms on 
T40.I10.D100k as the minimum support decreased from 
4.5% to 2.5%. We observe that FP-growth is the worst. 
This result coincides with [8]. PPV and dEcalt are the 
best among the four algorithms. However, the 
scalability of dEcalt is worse than that of PPV. When 
the value of minimum support is below 3.5%, the 
efficiency of dEcalt is worse than that of PPV. It also 
obvious that the lower the value of minimum support is, 
the clearer the difference between dEcalt and PPV 
becomes. In addition, PPV and FP-growth still shows 
very similar scalability. When minimum support 
changes, the variety of efficiency of PPV and FP-
growth is smoother than that of Ecalt and dEcalt. 

Figure 7 shows the run time of the algorithms on 
T40.I30.D1000k as the minimum support decreased 
from 8.6% to 7.8%. We observe Eclat and dEcalt show 
good efficiency when the value of minimum support is 
above 8.4%. However, when the value of minimum 
support is below 8.4%, PPV is absolute the best among 
the four algorithms. Obviously, the lower the value of 
minimum support is, the more distinct the advantage of 
PPV is. When the value of minimum support is 8%, the 
rum time of Eclat is more than 2000 seconds. The rum 
time of FP-growth also exceeds 1000 seconds when the 
value of minimum support is 7.8%. 

Now, let us compare how the algorithms perform on 
real datasets. Figure 8 shows the run time of the 
algorithms on Accidents as the minimum support 
decreased from 48% to 40%. We observe that 
efficiencies of PPV and FP-growth are almost the same. 
They are about an order of magnitude faster than Ecalt 
and dEcalt. 

According to the above discussions, we have the 
conclusion that PPV is the best among the four 
algorithms on all synthetic and real dataset with various 
minimum supports.  

The reason that PPV performs better than FP-growth 
lies in that PPV avoids the time consuming process of 
constructing a lot of conditional frequent pattern tree in 
FP-Growth by simply intersecting Node-lists. This 
advantage is more distinct when dataset are sparse, such 
as three synthetic datasets used in this study.  

The reason that PPV performs better than Eclat and 
dEclat lies in that PPV adopts compact Node-lists to 
stand for patterns. Figure 9 and Figure 10 show the 
average length of Node-lists, tid-lists and diffsets of 
frequent patterns when frequent patterns are mined from 

T25.I20.D100k and Accidents. For T25.I20.D100k, the 
average length of Node-lists of frequent patterns is 
about an order of magnitude smaller than that of their 
tid-lists and diffsets. For Accidents, the average length 
of Node-lists of frequent patterns is about two orders of 
magnitude smaller than that of their tid-lists and diffsets. 
As for T40.I10.D100k, T40.I30.D1000k, the cases are 
the same as T25.I20.D100k. Of course, the operation of 
intersecting two Node-lists is much more complex than 
the operation of intersecting two tid-lists or two diffsets. 
Therefore, the advantage of PPV over Eclat and 
dEclaton on efficiency is not as much as the advantage 
Node-lists over tid-lists and diffsets on compression. 

In fact, the advantage of PPV is that it effectively 
combines the idea of data compression of FP-growth 
and the idea of simple support computing of vertical 
mining method, which makes its success on different 
dataset and for various thresholds. 
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Fig. 6. Comparative Performance on T40I10D100K 

 

T40I30D1000K

1

10

100

1000

8.6 8.4 8.2 8 7.8

minimum support (%)

tim
e 

(s
ec

.)

PPV
FP-growth
Eclat
dEclat

 

Fig. 7. Comparative Performance on T40I30D1000K 
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Fig. 8. Comparative Performance on Accidents 
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Fig. 9. Average Length of Node-lists, tid-lists, and diffsets 
Cardinality on T40I10D100K 
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Fig. 10. Average Length of Node-lists, tid-lists, and diffsets 
Cardinality on Accidents 

6. Conclusions 

In this paper, we have proposed a compact tree structure, 
PPC-tree, for storing a transaction database. Based on 
PPC-tree, we developed an Apriori-like algorithm, PPV, 
for efficiently mining frequent patterns in large datasets. 
First, PPV obtains the Node-list of each frequent item. 
Then, PPV obtains Node-lists of the candidate patterns 
of length (k+1) by intersecting Node-lists of frequent 
patterns of length k and thus discovers the frequent 
patterns of length (k+1). The advantages of PPV are that 
it transforms the mining of frequent patterns into the 
intersecting of Node-lists, which makes mining process 
easier, and adopts an efficient method for intersecting 
two Node-lists, which has an average time complexity 
of O(m+n). Our experimental results show that PPV is 
an efficient algorithm that outperforms FP-growth, Eclat, 
and dEclat. 

Recently, there have been some interesting studies at 
mining closed frequent patterns [15, 16], top-k frequent 
patterns [17] and Sequential Patterns [18]. The 
extension of PPV for mining these special frequent 
patterns is an interesting topic for future research. 
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