
Comprehensive Learning Particle Swarm Optimizer for Constrained Mixed-Variable
Optimization Problems

Lei Gao
School of Agricultural and Resource Economics, University of Western Australia, 35 Stirling Highway, Crawley

Perth, 6009, Western Australia
E-mail: dr.leigao@gmail.com

Atakelty Hailu
School of Agricultural and Resource Economics, University of Western Australia, 35 Stirling Highway, Crawley

Perth, 6009, Western Australia
E-mail: atakelty.hailu@uwa.edu.au

Abstract

This paper presents an improved particle swarm optimizer (PSO) for solving multimodal optimization problems
with problem-specific constraints and mixed variables. The standard PSO is extended by employing a
comprehensive learning strategy, different particle updating approaches, and a feasibility-based rule method. The
experiment results show the algorithm located the global optima in all tested problems, and even found a better
solution than those previously reported in the literature. In some cases, it outperforms other methods in terms of
both solution accuracy and computational cost.

Keywords: Particle swarm optimization, mixed variables, feasibility-based rules, constrained optimization,
evolutionary algorithms, comprehensive learning strategy

1. Introduction

Many real-world optimization problems are hard to
solve because they are: (1) computationally intensive
and multimodal (i.e. have many local optima); (2)
heavily constrained; and/or (3) contain mixtures of
continuous, integer, discrete, and/or binary variables,
and are often referred to as mixed-variable nonlinear
optimization problems.

In the past few decades, evolutionary algorithms
(EAs)1–5, such as genetic algorithms, evolutionary
programming, and evolutionary strategies, have been
successfully applied to real-world optimization
problems. The main advantage of these algorithms,
relative to most conventional optimization methods (e.g.,
Newton-based techniques, linear programming, and

interior point methods) lies in that they do not apply
mathematical assumptions to the optimization problems
and have better global search capabilities. A relatively
new EA, particle swarm optimization (PSO), was first
proposed by Kennedy and Eberhart6,7. PSO is an
algorithm inspired by the social behavior of animals,
such as bird flocking and fish schooling. It is attractive
because of its simplicity of implementation and its
ability to quickly converge to a reasonably good
solution7,8. PSO has been successfully applied in a
variety of fields mainly for unconstrained continuous
optimization problems. However, it may get trapped in a
local optimum when solving complex multimodal
problems. In this paper, the standard PSO algorithm is
extended to improve PSO’s performance on complex

International Journal of Computational Intelligence Systems, Vol.3, No. 6 (December, 2010), 832-842

Published by Atlantis Press
 Copyright: the authors
 832

zegerkarssen
Texte tapé à la machine
Received: 07-05-2010
Accepted: 05-10-2010

Lei Gao and Atakelty Hailu

multimodal problems by using a comprehensive
learning strategy.

In real life, many practical optimization problems
involve continuous as well as discrete, integer and
binary variables. To solve those problems, some
solutions based on conventional methods are proposed.
For example, Sandgren9 and Hajela and Shih10 proposed
nonlinear branch and bound algorithms, which are
modified versions of the most widely used methods in
integer programming. Fu et al.11 developed an interior
penalty approach to impose penalties on integer and/or
discrete violations on the objective function to force the
search to converge upon standard values. Loh and
Papalambros introduced a sequential linearization
approach for solving mixed-discrete nonlinear
optimization problems12. Although most of the EAs
were created to handle continuous variables, some of
them, such as genetic algorithm13, evolutionary
programming14, and ant colony optimization15, have
been extended to handle mixed variables. The PSO was
also originally proposed for continuous variable
problems. Some PSO variants employ simple ways of
dealing with mixed variables, for example, simply
truncating the real values to integers16,17. Here, the
standard PSO is extended to handle mixed-variable
nonlinear optimization problems more effectively.

Many optimization problems are hard to solve using
conventional optimization algorithms or EAs because
they involve a number of constrains. In their basic form,
EAs are unconstrained optimization techniques, and
thus are not able to handle constrained optimization
problems directly18. To address these constrains, many
different approaches have been proposed in the
literature. A survey of constraint-handling techniques
suitable for EAs can be found in Ref. 19. PSO
algorithms have been applied to constrained
optimization problems. There are three main approaches
incorporated into PSO for solving constrained
optimization problems: penalty function method16,20,
constraint-preserving method17 and feasibility-based
methods21. Other attempts include applying a multi-
objective optimization technique to handle constrains22.
However, as in the case of constrained optimization
problems, relatively fewer studies have employed the
PSO algorithm as opposed to other kinds of EAs. The
penalty function method requires careful tuning of the
penalty parameters, which turns out to be a difficult
optimization itself23. Constraint-preserving methods

consume a lot of time as these methods require an
initialization of all particles inside the feasible region. In
this paper, a feasibility-based rule is incorporated into
the PSO method to better handle constraints.

The paper is organized as follows. The next section
describes the mathematical formulation of constrained
mixed-variable optimization problems. Section 3
introduces the standard PSO algorithm. A
comprehensive learning PSO algorithm is proposed to
address multimodal optimization problems with
constrains and mixed variables in Section 4. In Section
5, three numerical examples are used to investigate the
performance of our proposed PSO algorithm and results
for these problems are compared to those obtained from
other methods. Experimental results and discussions are
given in this section. The paper is summarized and some
conclusions are drawn in Section 6.

2. Mathematical Formulation of Constrained
Mixed-Variable Optimization Problems

Generally, a constrained mixed-variable optimization
problem can be described as follows,

)(min Xf (1)

Subject to

0)(Xgi , gni ,...,2,1 (2)

0)(Xhj , hnj ,...,2,1 (3)

where)(Xf is the scalar objective function,)(Xgi

and)(Xhj are the inequality and equality constrains,

respectively, gn is the number of inequality constraints,

hn is the number of equality constraints (in both cases,

constraints could be linear or non-linear), and X is the
vector of solution variables consisting of continuous,
binary, integer, and discrete variables.

The variable vector X represents a set of variables
which can be written as



























dd

ii

bb

cc

n

n

n

n

xx

xx

xx

xx

X

,...,

,,...,

,,...,

,,...,

1

1

1

1

 (4)

Published by Atlantis Press
 Copyright: the authors
 833

 Particle swarm optimizer

where
cccc UnL xxxx  ,...,1 ; },{,...,1 bbbb ULn xxxx  ;

iiii UnL xxxx  ,...,1 ;
cccc UnL xxxx  ,...,1 ;

cLx ,
bLx ,

iLx , and
dLx are lower bounds of continuous, binary,

integer, and discrete variables, respectively;
cUx ,

bUx ,

iUx , and
dUx are upper bounds of continuous, binary,

integer, and discrete variables, respectively; and cn , bn ,

in , and dn are the number of continuous, binary,

integer, and discrete variables, respectively. The number
of total independent variables is

dibc nnnnD  (5)

3. Particle Swarm Optimizer

PSO is a population-based optimization algorithm. The
population of solution candidates is called a “swarm”,
while each candidate is called a “particle”. The current
position in the D-dimensional search space of a particle
represents a potential solution. The particles have
memory and each particle keeps track of its previous
best position, called pbest and the corresponding
fitness value. The swarm remembers another value
denoted gbest , which is the best position discovered so
far by the swarm. The trajectory of each particle in the
search space is dynamically adjusted by updating its
velocity, according to its pbest and gbest . Therefore,
PSO combines the local search technique (from the
particle’s own experience) and the global search method
(from the neighborhood experience) to balance well the
exploration and exploitation search aspects and move
towards the global optimum.

Here is how a PSO specifically works. Let a swarm
of n particles be considered. Each particle is fully
described by a position and a velocity vector. In every
generation of particle population, the velocity d

iV and
the position d

iX of the d-th dimension of the i-th
particle are updated as follows, using information on its
historical velocity as well as its distance from the global
and local best solution proposals:

))()(()()()1(1 tXtpbestrand1ctVtwtV d
i

d
i

d
i

d
i

d
t 

))()((2 tXtgbestrand2c d
i

dd
i  (6)

)1()()1( tVtXtX d
i

d
i

d
i (7)

where t indicates a pseudo time (generation increment),
),...,,(21 D

iiii XXXX  is the position of the i-th particle;

),...,,(21 D
iiii VVVV  represents velocity of particle i ;

),...,,(21 D
iiii pbestpbestpbestpbest  is the best previous

position yielding the best fitness value for the i-th
particle; and),...,,(21 D

iii gbestgbestgbestgbest  is the
best position in the whole swarm population. w is
called inertia factor. 1c and 2c are constants called
acceleration coefficients, which reflect the weighting of
stochastic acceleration terms that pull each particle
toward pbest and gbest positions, respectively.

d
irand1 and d

irand2 are two random numbers in the
range]1,0[.

4. A Comprehensive Learning Particle Swarm
Optimizer for Constrained Mixed-Variable
Optimization Problems

As mentioned in the introduction, the difficulties in
using EAs to solve many real-world optimization
problems arise because these problems are multimodal,
heavily constrained, and involve mixed variables. There
have been very few studies that solved problem-specific
constraints and mixed variables. In this section, PSO
techniques for handling both mixed variables and
constraints are proposed. A comprehensive learning
strategy is employed to improved the PSO’s capability
to deal with complex multimodal problems.

4.1. Mixed-variable handling method

In our algorithm, different types of variables are dealt
with different methods when updating position
dimensions of a particle. The algorithm for updating
mixed-variable position dimensions is given in Table 1.

Table 1. Pseudo-code for updating mixed-variable position
dimensions in the proposed algorithm.

Algorithm 1: Updating mixed-variable position dimensions

01.
For each dimensional variable d in total length of
dimension D

02. If (d is continuous)

03.)1()()1( tVtXtX d
i

d
i

d
i

04. End If
05. If (d is binary)

06.
The sigmoid function of that velocity is calculated as

1)1(]1[ tV d
iesigmoid

07.
Generate a random number rand3 from a uniform
distribution between 0 and 1

08. If (sigmoidrand3 )

09. 1)1(tX d
i

10. Else

Published by Atlantis Press
 Copyright: the authors
 834

Lei Gao and Atakelty Hailu

Table 1. (Continued)

11. 0)1(tX d
i

12. End If
13. If (d is integer)

14. If (0)1(tV d
i)

15. 1)1()1( tXtX d
i

d
i

16. End If

17. If (0)1(tV d
i)

18. 1)1()1( tXtX d
i

d
i

19. End If
20. End If
21. If (d is discrete)

22. If (0)1(tV d
i)

23.]1[)1( jdtX d
i /*suppose][)(jdtX d

i  */

24. End If

25. If (0)1(tV d
i)

26.]1[)1( jdtX d
i /*suppose][)(jdtX d

i  */

27. End If
28. End If
29. End For

For continuous variables, the updating procedure is

the standard procedure shown in Eq. (7). For binary
variables, the updating procedure found in Ref. 7 is
followed. In this procedure, a sigmoid function,

1)1(]1[ tV d
iesigmoid , is used to generate the

probability that a particle might change its dimensional
position. For integer variables, the dimensional velocity
of the particle will determine if the new dimensional
position is forward to plus one or back to minus one
position from current location. For discrete variables,
the algorithm selects the indices of the set of discrete
variables. For this purpose, we first sort the set of
discrete variables in ascending/descending order as

]}[],...,[],...,1[{ dndjddd  , then the index value j of
the discrete variable][jd is optimized instead of the
discrete value of the variable directly.

4.2. Constraint handling method

Motivated by Ref. 24, we use a feasibility-based rule to
handle constraints. The rule can be described as follows:
(1) Any feasible solution is preferred to any infeasible
solution; (2) Given two feasible solutions, the one with
a better objective function value is preferred; and (3)
Given two infeasible solutions, the one having smaller
constraint violation value is preferred.

The rule listed above aims at obtaining good feasible
solutions. Objective function and constraint violation

information pieces are considered separately. In the first
and the third cases, the search tends to the feasible
region rather than the infeasible region, and in the
second case the search tends to the feasible region with
good solutions. However, our algorithm differs from
Ref. 24 where an additional fitness function was
designed to evaluate solutions. In our paper we show
that it is unnecessary to design the additional fitness
function because the rule can be incorporated into PSO.

In our algorithm, the constraint violation value of an
infeasible solution is calculated as follows:





hg n

j
ji

n

i
XhXgXviolation

00
)0,)(max()0),(max()((8)

Suppose that)(tpbesti represents the best previous
position yielding the best fitness value for the i-th
particle at generation t and)1(tX i represents the
newly generated position of that particle at generation

1t . In terms of a feasibility-based rule,)(tpbesti will
be replaced by)1(tXi in any of the following cases:
(1))(tpbesti is infeasible, but)1(tXi is feasible; (2)
Both)(tpbesti and)1(tX i are feasible, but

))1(())(( tXftpbestf ii ; and (3) Both)(tpbesti and
)1(tXi are infeasible, but

))1(())(( tXviolationtpbestviolation ii .
Similarly, gbest can be updated based on the rule at

every generation.

4.3. Comprehensive learning strategy

We employ a comprehensive learning strategy described
in Ref. 25. In this learning strategy, all particles’ pbests
in the population can potentially be used as exemplars
to guide a particle’s flying direction, while the original
PSO6 only uses particle’s own pbest and gbest as the
exemplars. In addition, instead of learning from the
same exemplar particle for all dimensions in the original
PSO, in the new strategy each dimension of a particle
may learn from the corresponding dimension of a
different particle’s pbest . To ensure that a particle
learns from good exemplars and to minimize the time
wasted on poor directions, this strategy does not allow
the particle to learn from exemplars across all
generations. Only if the particle ceases improving for a
certain number of generations, called the refreshing
gap m , is the particle permitted to learn. The strategy is
demonstrated in Table 2.

Published by Atlantis Press
 Copyright: the authors
 835

 Particle swarm optimizer

Table 2. Pseudo-code for updating pbest after a particle
ceases improving for the refreshing gap m.

Algorithm 2: Updating pbest after a particle ceases improving

for m

01.
For each dimensional variable d in total length of
dimension D of particle i

02.
Generate a random number rand4 from a uniform

distribution between 0 and 1

03. Update iPc according to Eq. (9)

04. If (iPcrand4 )

05.
 nrand5index1  /*   is a ceiling operator and

n is the population size */

06.  nrandindex2  6

07.
If (particle index1 is better than particle 2index
based on feasibility-based rule)

08.)()(tpbesttpbest d
index1

d
i 

09. else

10.)()(tpbesttpbest d
index2

d
i 

11. End If
12. End If
13. End For

In the learning strategy, each particle learns

potentially from all particles’ pbests in the swarm.
During the search process, each dimension of a particle
has an equal chance to learn from other particles. For
each particle, some dimensions of other particles’
pbests are randomly chosen according to a probability
Pc , called learning probability. Each particle has its
own iPc , which could be different from that of other
particles. Here, an empirically developed iPc
formulation from Ref. 25 is used; see Eq. (9).

1)10exp(

)1
1

)1(10
exp(

45.005.0






 n

i

Pci (9)

where n is the population size of the swarm and i is
the particle’s id.

For each dimension of a particle i , a random
number rand4 is generated from a uniform distribution
between 0 and 1. If iPcrand4  , the corresponding
dimension will learn from its own pbest ; otherwise it
will learn from another particle’s pbest . When a
dimension of one particle has to learn from other
particles, choice of source is made using a tournament
selection procedure is employed as follows: (1) two
particles are randomly chosen out of the population,
which excludes the particle being updated; (2) these two
particles’ pbests are compared in terms of feasibility-
based rule described in Section 4.2; and (3) then the

winner’s pbest is used as the exemplar for that
dimension. If all exemplars of a particular particle are
its own pbest , then one dimension is randomly selected
to learn compulsorily from other particles’ pbest .

4.4. Implementation of search bounds and
maximum velocities

In many practical problems, there are bounds on the
variable ranges. The search range for a problem is

],[maxmin XX . In order to prevent particles moving out
of the search bounds, some researchers use the equation

)),max(,min(minmax
d
i

ddd
i XXXX  . But our algorithm

uses a different method: a particle will choose a random
value in the search bounds if the particle moves out
of],[maxmin XX . This choice was made because we
found choosing a random value lead to better
performance.

A particle’s velocity on each dimension is clamped
to a maximum magnitude maxV . If d

iV exceeds a
positive constant value dVmax specified by the user, then
the velocity of that dimension is limited to dVmax . In our
algorithm, for binary variables, dVmax is set as 4; and for
other variables, dVmax is set as)(25.0 minmax

dd XX  . Eq.
(10) is used to restrict d

iV :
)),max(,min(maxmax

d
i

ddd
i VVVV  . (10)

4.5. Proposed particle swarm optimizer algorithm

The proposed algorithm is given in Table 3.

 Table 3. Pseudo-code for the proposed PSO algorithm.

Algorithm 3: Proposed PSO algorithm for constrained mixed-
variable optimization problems
01. Initialize a swarm S with n particles

02. For each particle i in S
03. Initialize random position and velocity

04.
Initialize ipbest with a copy of the position for each

particle
05. End For
06. While the termination conditions are not met
07. Update gbest according to the feasibility-based rule

08. For each particle i in S

09.
Update inertia factor)(tw using a linearly

decreasing function in Eq. (11)

10.
If (the particle ceases improving for the refreshing
gap m)

11.
Update ipbest using comprehensive learning

strategy /* see Table 2 */
12. End If

12.
For each dimension d in total length of dimension

D
13. Update the velocity in terms of Eq. (6)
14. Restrict velocity if it exceeds the range specified

Published by Atlantis Press
 Copyright: the authors
 836

Lei Gao and Atakelty Hailu

Table 3. (Continued)

15.
Update mixed-variable position dimension using
Algorithm 2/* see Table 1 */

16. End For

17.
Update ipbest according to the feasibility-based

rule
18. End For
19. End While

Following Refs. 7 and 25, 1c and 2c are both set as

2; m is set as 7; the weighting function)(tw for t-th
iteration is determined by Eq. (11):

max

minmax
max

)(
)(

t

tww
wtw


 . (11)

where maxw is set as 0.9, minw is set as 0.4, and maxt is
the maximum number of iterations. As t approaches the
maximum number of iterations,)(tw approaches minw
reducing the speed of the particle.

5. Numerical Tests and Analysis

In this section, three numerical examples are used to
investigate the performance of our algorithm. All these
problems have mixed variables, as well as linear and
nonlinear constraints. They have been widely used in
the literature for benchmarking of algorithms and have
been investigated by various EAs or traditional
techniques. For each problem, 100 independent runs
were carried out, in order to statistically assess the
performance of our algorithm.

5.1. Example 1: a Pressure Vessel Design
Problem

The objective of this problem is to minimize the total
cost of materials for forming and welding of a pressure
vessel. As shown in Figure 1, there are four design
variables: shell thickness 1xTs  , thickness of the head

2xTh  , inner radius 3xR  , and length of the
cylindrical section of the vessel 4xL  . Variables

1xTs  and 2xTh  are integer multiples of 0.0625 in.,
in accordance with the available thickness of rolled steel
plates, while variables 3xR  and 4xL  are
continuous.

Figure 1. Design of a pressure vessel.

The optimization problem is stated as

2
32431 7781.16224.0)(min xxxxxXf 

3
2
14

2
1 84.191661.3 xxxx  (12)

subject to:
00193.0)(131  xxXg (13)

000954.0)(232  xxXg (14)

0
3

4
1296000)(3

34
2
33  xxxXg  (15)

0240)(44  xXg (16)
The ranges for the design variables are

1875.6,0625.0 21  xx , 200,10 43  xx (17)
This problem is introduced by Sandgren9 and has

been solved using the following approaches: genetic
adaptive search26, an augmented Lagrange multiplier
approach27, a branch and bound technique9, a GA-based
co-evolution model28, a GA through the use of
dominance-based tournament selection29, a socio-
behavioural simulation model30, and some variants of
PSO16,17,20,21. Dimopoulos pointed out if the variable 4x
has an upper limit of 200, the fourth constraint is
automatically satisfied16. So in his study, the upper limit
of variable 4x was extended to 240. For convenience,
we designate the problem formulation in Refs. 9, 17, 20,
21, 26–30 as “Ex1-FormuA” and the one in Ref. 16 as
“Ex1-FormuB”.

In Table 4, the best solutions from our proposed
algorithms for the two formulations of the problem as
well as the best ones obtained by previous approaches
are shown. As shown in Table 4, the proposed algorithm
was able to efficiently locate the global optimums both
of “Ex1-FormuA” and “Ex1-FormuB”. For “Ex1-
FormuA”, the optimum solution (6059.7143) is also
found by the work reported in Refs. 17 and 21.

Published by Atlantis Press
 Copyright: the authors
 837

 Particle swarm optimizer

Table 4. Comparison of the best solution for the pressure
vessel design problem.

Method 1x 2x 3x 4x)(xf

Ex1-FormuA
Sandgren9 1.1250 0.6250 47.7000 117.7010 8129.8000
Kannan27 1.1250 0.6250 58.2910 43.6900 7198.0428

Deb26 0.9375 0.5000 48.3290 112.6790 6410.3811
Coello28 0.8125 0.4375 40.3239 200.0000 6288.7445
Akhtar30 0.8125 0.4375 41.9768 182.2845 6171.0000
He and
Wang20

0.8125 0.4375 42.0913 176.7465 6061.0777

Coello and
Montes29

0.8125 0.4375 42.0974 176.6540 6059.9463

He et al.17 0.8125 0.4375 42.0984 176.6366 6059.7143
He and
Wang21

0.8125 0.4375 42.0984 176.6366 6059.7143

This paper 0.8125 0.4375 42.0984 176.6366 6059.7143
Ex1-FormuB

Dimopoulos16 0.7500 0.3750 38.8601 221.36549 5850.3804
This paper 0.7500 0.3750 38.8601 221.36547 5850.3831

The performance results are depicted in Table 5,

where N represents the size of the population and FFE
stands for the maximum fitness function evaluations.

Table 5. Statistical results of different methods for the
pressure vessel design problem.

Method N FFE Best Mean Std.

Ex1-FormuA
Sandgren9 N/A N/A 8129.8000 N/A N/A
Kannan27 N/A N/A 7198.0428 N/A N/A

Deb26 N/A N/A 6410.3811 N/A N/A
Coello28 90 N/A 6288.7445 6293.8432 7.4133
Akhtar30 100 20,000 6171.0000 6335.0500 N/A
He and
Wang20

70 200,000 6061.0777 6147.1332 86.4545

Coello and
Montes29

200 80,000 6059.9463 6177.2533 130.9297

He et al.17 30 30,000 6059.7143 6289.9288 305.7800
He and
Wang21

250 81,000 6059.7143 6099.9323 86.2022

This paper 30 60,000 6059.7143 6066.0311 12.2718
Ex1-FormuB

Dimopoulos16 100 100,000 5850.3804 6272.5745 538.3703
This paper 30 60,000 5850.3831 5923.1568 105.1191

As shown in Table 5, the mean fitness value was

6066.0311 with a standard deviation of 12.2718, which
is significantly superior to those of other methods. The
mean fitness value was 6119.3708 with a standard
variation of 107.7036, even when we reduce the
maximum fitness function evaluations (FFEs) to 30,000.
For the formulation of the problem modified by
Dimopoulos, compared with the work in Ref. 16, our
algorithm required considerably lower FFEs (60,000) to
improve the searching quality significantly (the mean

fitness value was 5923.1568 with a standard variation of
105.1191), as demonstrated in Table 5.

5.2. Example 2: a welded beam design problem

The following problem is taken from Ref. 28. As shown
in Figure 2, a welded beam is designed for minimum
cost of fabrication subject to constraints on shear stress
(), bending stress (), end deflection () in the
beam, buckling load on the bar (cP) and side constraints.
The problem involves four design variables: thickness
of the weld 1xh  , length of the welded joint 2xl  ,
width of the beam 3xt  and thickness of the beam

4xb  . Independent variables 1x and 2x are integer
multiples of 0.0065. The welded beam design problem
is stated as follows:

2
2
110471.1)(min xxXf 

)0.14(04811.0 243 xxx  (18)
subject to:

0)()(max1   XXg (19)
0)()(max2   XXg (20)

0)(413  xxXg (21)
)0.14(04811.010471.0)(243

2
14 xxxxXg 

00.5  (22)
0125.0)(15  xXg (23)

0)()(max6   XXg (24)
0)()(7  XPPXg c (25)

where

222)''(
2

'''2)'()( 



R

x
X (26)

212
'

xx

P


 ,

J

RM 
'' ,)

2
(2x
LPM  (27)











 

])
2

(
12

[22 231
2
2

21
xxx

xxJ (28)

2
34

6
)(

xx

LP
X




 ,
4

3
3

34
)(

xxE

LP
X




 (29)

)
42

1(36
103.4

)(3
2

6
4

2
3

G

E

L

x

L

xx
E

XPc 








 (30)

with 6000P , 14L , 25.0max  , 61030E ,
61012G , 600,13max  , 000,30max  .

The ranges for the design variables are

Published by Atlantis Press
 Copyright: the authors
 838

Lei Gao and Atakelty Hailu

2,1.0 41  xx , 10,1.0 32  xx (31)

Figure 2. The welded beam design problem.

The problem was previously investigated by the

following approaches: a real parameter GA24, An
optimization algorithm based on the simulation of social
behavior31, a GA-based co-evolutionary model28, a GA
through the use of dominance-based tournament
selection29, a domain knowledge-based cultural
algorithm32, and some variants of PSO16,17,20,21.
However, the formulations of the problem vary slightly
across these methods. In References 17, 24, 31, Eq. (28)
and (30) are replaced by Eqs. (32) and (33), respectively.











 




])
2

(
12

[
2

2 231
2
221 xxxxx

J (32)

)
42

1(36
103.4

)(3
2

6
4

2
3

G

E

L

x

L

xxGE

XPc 








 (33)

Also, References 17, 20, 21, 24, 28, 29, 31, and 32
found their optimums by treating independent variables

1x and 2x as real numbers. Only the solution in Ref. 16
treated these variables as integer multiples of 0.0065.
For convenience, we designate the formulation of the
problem in Refs. 17, 24, and 31 as “Ex2-FormuA”, the
formulation in Refs. 20, 21, 28, 29, and 32 as “Ex2-
FormuB” and the that in Ref. 16 as “Ex2-FormuC”. The
best solutions obtained using the above mentioned
approaches are depicted in Table 6, where the best
solutions from different formulations of the problem
obtained using the PSO algorithm presented in this

paper are also reported. The performance results of the
different algorithms are shown in Table 7.

Table 6. Comparison of the best solution for the welded beam
design problem.

Table 7. Statistical results of different methods for the welded
beam design problem.

Method N FFE Best Mean Std.

Ex2-FormuA
Ray and
Liew31

40 33,095 2.385435 3.255137 0.959078

Deb24 50 40,080 2.381190 2.392890 N/A
He et al.17 30 30,000 2.380957 2.381900 0.005200

This paper 30 30,000 2.380957 2.384111 0.004256
Ex2-FormuB

Coello28 90 2,100 1.748309 1.771973 0.011220
Coello and
Montes29

200 80,000 1.728226 1.792654 0.074713

He and
Wang20

70 200,000 1.728024 1.748831 0.012926

Coello and
Becerra32

20 50,000 1.724852 1.971809 0.443131

He and
Wang21

250 81,000 1.724852 1.749040 0.040049

This paper 30 60,000 1.724852 1.728180 0.005324
Ex2-FormuC

Dimopoulos16 100 100,000 1.731186 1.762200 0.065900
This paper 100 100,000 1.731186 1.737459 0.017577

It is shown in Table 6 that the proposed PSO

algorithm can obtain the best known solution. From
Table 7, it can be found for the formulation “Ex2-
FormuA”, that our algorithm performs much better than
those reported in Refs. 24 and 31, but a bit worse than

Method 1x 2x 3x 4x)(xf

Ex2-FormuA

Ray and
Liew31

0.244438 6.237967 8.288576 0.244566 2.385435

Deb24 N/A N/A N/A N/A 2.381190
He et al.17 0.244369 6.217520 8.291471 0.244369 2.380957

This paper 0.244369 6.217520 8.291471 0.244369 2.380957
Ex2-FormuB

Coello28 0.208800 3.420500 8.997500 0.210000 1.748309
Coello and
Montes29

0.205986 3.471328 9.020224 0.206480 1.728226

He and
Wang20

0.202369 3.544214 9.048210 0.205723 1.728024

Coello and
Becerra32

0.205700 3.470500 9.036600 0.205700 1.724852

He and
Wang21

0.205730 3.470489 9.036624 0.205730 1.724852

This paper 0.205730 3.470489 9.036624 0.205730 1.724852
Ex2-FormuC

Dimopoulos
16

0.2015 3.5620 9.041398 0.205706 1.731186

This paper 0.2015 3.5620 9.041398 0.205706 1.731186

Published by Atlantis Press
 Copyright: the authors
 839

 Particle swarm optimizer

the one reported in Ref. 17. However, the average CPU
time required for execution of the algorithm in Ref. 17
for a single run was 10.2 seconds (on a Pentium 4, 2-
GHz machine), which is even more than the execution
time of our algorithm for 100 runs – 9 seconds only (on
a Pentium Dual, 2.16-GHz notebook). For the
formulations “Ex2-FormuB” and “Ex2-FormuC”, the
average searching quality of our proposed algorithm is
far superior to those of other methods. The mean values
and the standard deviations of results by the proposed
algorithm for these two formulations are also very small.

5.3. Example 3: the second variation of welded
beam design problem

This problem is taken from Deb and Goyal33 and is a
variation of that in Example 2. Example 2 is extended to
include two types of welded joint configurations (as
depicted in Figure 3) and four possible beam materials
(as described in Table 8). There are six independent
variables in the design problem: thickness of the weld

1xh  , length of the welded joint 2xl  , width of the
beam 3xt  , thickness of the beam 4xb  ,
material 5x and joint type 6x . Variables 1x , 3x and

4x are now integer multiples of 0.0625 in., variable 2x
is continuous, variable 5x is an integer ranging from 1
to 4 representing the material (1 stands for “Steel”, 2
represents “Cast Iron”, 3 is “Aluminium”, and 4 means
“Brass”), and variable 6x is binary representing the
joint type (0 stands for two sided welded joint and 1
represents four sided welded joint).

Figure 3. Welded joint configurations of the 2nd variation of
welded beam design problem.

Table 8. Material properties for the 2nd variation of welded
beam design problem.

Material

5x
S

(310 psi)

E

(610 psi)

G

(610 psi)
1c 2c

1 =
Steel

30 30 12 0.1047 0.0481

2 =
Cast iron

8 14 6 0.0489 0.0224

3 =
Aluminium

5 10 4 0.5235 0.2405

4 =
Brass

8 16 6 0.5584 0.2566

This variation of the welded beam design problem is

stated:
)0.14()1()(min 24322

2
11 xxxcxxcXf  . (34)

subject to the constrains of Eqs. (19)–(25), with the
relations demonstrated in Eqs. (26), (27), (29), and (30)
still valid. However, Eq. (28) is replaced by

























 




















 





1,
12

)(
22

0,
212

22

6

3
321

1

6

2
31

2
2

21

x
xxx

x

x
xxx

xx

J (35)

The values of parameters to material are given in
Table 8. Also, the value of max is changed to:

 S 577.0max (36)
The bounds of variables 1x , 2x , 3x , and 4x remain

the same as in Eq. (31).
The only other two solutions to this problem (known

to the authors) are by Deb and Goyal33 and
Dimopoulos16. The best solutions obtained by these two
solutions as well as from our proposed algorithm in this
paper are listed in Table 9, and their statistical
simulation results are shown in Table 10.

Table 9. Comparison of the best solution for the 2nd variation
of welded beam design problem.

Method 1x 2x 3x 4x 5x 6x)(xf

Deb and
Goyal33

0.1875 1.6849 8.25 0.25 1 1 1.9422

Dimopoulos16 0.2500 2.2219 8.25 0.25 1 0 1.7631
This paper 0.2500 1.1412 8.25 0.25 1 1 1.5809

Published by Atlantis Press
 Copyright: the authors
 840

Lei Gao and Atakelty Hailu

Table 10. Statistical results of different methods for the 2nd
variation of welded beam design.

Method N FFE Best Mean Std.

Deb and
Goyal33

50 5,000 1.9422 N/A N/A

Dimopoulos16 100 100,000 1.7631 1.7694 0.0192
This paper 30 60,000 1.5809 1.7405 0.2109

From Table 9, it can be seen that our PSO algorithm

yielded a new optimum which is far below the ones
obtained by the only other two solutions. It can be found
in Table 10 that the average searching quality of the
proposed algorithm is better than the one reported by
Dimopoulos. It is worth mentioning that this improved
performance is obtained under a smaller (60,000) FFEs.

6. Conclusions

This paper extends the standard PSO to address
multimodal and constrained mixed-variable
optimization problems. A comprehensive learning
strategy is employed to improve PSO’s performance on
complex multimodal problems. In this strategy, other
particles’ previous best positions are exemplars to be
learned from by any particle and different dimensions of
a particle can potentially learn from different exemplars.
Different types of variables are handled using different
approaches. Constraint handling is based on a
feasibility-based rule, which provides an effective
alternative to overcome the weakness of penalty
function methods and constraint-preserving methods.

The advantages of the proposed algorithm are
illustrated by solving four mechanical design
optimization problems. The numerical results and
comparisons with solutions from other methods show
that our proposed algorithm improves performances in
terms of search quality, efficiency, and robustness. The
numerical results obtained by the proposed algorithm
are better than or equal to those obtained from other
existing methods.

An issue for future work is to improve the
feasibility-based rule because it is not completely
reasonable that feasible solutions are always considered
better than infeasible ones in the rule. This could lead to
overpressure from selecting feasible solutions and lead
to premature convergence. For example, the constraint
boundary handling method has not been taken into
account, while many real-world constrained

optimization problems have optimum solutions in or
near the boundary of the feasible region.

Acknowledgements

This work was supported in part by the Ningaloo
Collaboration Cluster, CSIRO Wealth from Oceans
Flagship Program. The authors wish to acknowledge the
support from School of Agricultural and Resource
Economics, University of Western Australia.

References

1. C. A. C. Coello, G. B. Lamont and D. A. Van Veldhuizen,
Evolutionary algorithms for solving multi-objective
problems (Springer-Verlag, New York, 2007).

2. Y. B. Liu and J. Huang, A novel fast multi-objective
evolutionary algorithm for QoS multicast routing in
MANET. Int. J. Comput. Int. Sys. 2(3) (2009) 288–297.

3. E. F. Golen, B. Yuan and N. Shenoy, An evolutionary
approach to underwater sensor deployment. Int. J.
Comput. Int. Sys. 2(3) (2009) 184–201.

4. C. Kahraman, O. Engin, I. Kaya and M. K. Yilmaz, An
application of effective genetic algorithms for solving
hybrid flow shop scheduling problems. Int. J. Comput.
Int. Sys. 1(2) (2008) 134–147.

5. L. Gao, Y. S. Ding and H. Ying, An adaptive social
network-inspired approach to resource discovery for the
complex grid systems. Int. J. Gen. Syst. 35(3) (2006)
347–360.

6. J. Kennedy and R. C. Eberhart, Particle swarm
optimization, in IEEE International Conference on
Neural Networks, the University of Western Australia,
Perth, Australia, 1995, pp. 1942–1948.

7. J. Kennedy and R. C. Eberhart, Swarm Intelligence
(Morgan Kaufmann, San Mateo, CA, 2001).

8. L. Hu, X. Che and X. C. Cheng, Bandwidth prediction
based on nu-support vector regression and parallel hybrid
particle swarm optimization. Int. J. Comput. Int. Sys. 3(1)
(2010) 70–83.

9. E. Sandgren, Nonlinear integer and discrete programming
in mechanical design optimization. J. Mech. Design
112(2) (1990) 223–229.

10. P. Hajela and C. J. Shih, Multiobjective optimum design
in mixed integer and discrete design variable problems.
AIAA J. 28(4) (1990) 670–675.

11. J. F. Fu, R. G. Fenton and W. L. Cleghorn, A mixed
integer-discrete-continuous programming method and its
application to engineering design optimization. Eng.
Optimiz. 17(4) (1991) 263–280.

12. H. T. Loh and P. Y. Papalambros, A sequential
linearization approach for solving mixed-discrete

Published by Atlantis Press
 Copyright: the authors
 841

 Particle swarm optimizer

nonlinear design optimization problems. J. Mech. Design
113(3) (1991) 325–334.

13. J. G. Ndiritu and T. M. Daniell, An improved genetic
algorithm for continuous and mixed discrete-continuous
optimization. Eng. Optimiz. 31(5) (1999) 589–614.

14. Y. J. Cao, L. Jiang and Q. H. Wu, An evolutionary
programming approach to mixed-variable optimization
problems. Appl. Math. Model. 24(12) (2000) 931–942.

15. K. Socha, ACO for continuous and mixed-variable
optimization. Lect. Notes in Comput. Sci. 3172 (2004)
53–61.

16. G. G. Dimopoulos, Mixed-variable engineering
optimization based on evolutionary and social metaphors.
Comput. Method Appl. M. 196(4-6) (2007) 803–817.

17. S. He, E. Prempain and Q. H. Wu, An improved particle
swarm optimizer for mechanical design optimization
problems. Eng. Optimiz. 36(5) (2004) 585–605.

18. M. J. Tahk and B. C. Sun, Coevolutionary augmented
Lagrangian methods for constrained optimization. IEEE
T. Evolut. Comput. 4(2) (2000) 114–124.

19. C. A. C. Coello, Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state of the art. Comput. Method Appl. M.
191(11-12) (2002) 1245–1287.

20. Q. He and L. Wang, An effective co-evolutionary particle
swarm optimization for constrained engineering design
problems. Eng. Appl. Artif. Intel. 20(1) (2007) 89–99.

21. Q. He and L. Wang, A hybrid particle swarm
optimization with a feasibility-based rule for constrained
optimization. Appl. Math. Comput. 186(2) (2007) 1407–
1422.

22. T. Ray and K. M. Liew, A swarm metaphor for
multiobjective design optimization. Eng. Optimiz. 34(2)
(2002) 141–153.

23. P. Runarsson and X. Yao, Stochastic ranking for
constrained evolutionary optimization. IEEE T. Evolut.
Comput. 4(3) (2000) 284–294.

24. K. Deb, An efficient constraint handling method for
genetic algorithms. Comput. Method Appl. M. 186(2-4)
(2000) 311–338.

25. J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar,
Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions. IEEE T.
Evolut. Comput. 10(3) (2006) 281–295.

26. K. Deb, GeneAS: A robust optimal design technique for
mechanical component design (Springer-Verlag, Berlin,
1997).

27. B. K. Kannan and S. N. Kramer, An augmented Lagrange
multiplier based method for mixed integer discrete
continuous optimization and its applications to
mechanical design. J. Mech. Design 116(2) (1994) 405–
411.

28. C. A. C. Coello, Use of a self-adaptive penalty approach
for engineering optimization problems. Comput. Ind.
41(2) (2000) 113–127.

29. C. A. C. Coello and E. M. Montes, Constraint-handling
in genetic algorithms through the use of dominance-based
tournament selection. Adv. Eng. Inform. 16(3) (2002)
193–203.

30. S. Akhtar, K. Tai and T. Ray, A socio-behavioural
simulation model for engineering design optimization.
Eng. Optimiz. 34(4) (2002) 341–354.

31. T. Ray and K. M. Liew, Society and civilization: An
optimization algorithm based on the simulation of social
behavior. IEEE T. Evolut. Comput. 7(4) (2003) 386–396.

32. C. A. C. Coello and R. L. Becerra, Efficient evolutionary
optimization through the use of a cultural algorithm. Eng.
Optimiz. 36(2) (2004) 219–236.

33. K. Deb and M. Goyal, A combined genetic adaptive
search (GeneAS) for engineering design. Comput. Sci.
and Inform. 26(4) (1996) 30–45.

Published by Atlantis Press
 Copyright: the authors
 842

