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Abstract 

This paper presents an improved particle swarm optimizer (PSO) for solving multimodal optimization problems 
with problem-specific constraints and mixed variables. The standard PSO is extended by employing a 
comprehensive learning strategy, different particle updating approaches, and a feasibility-based rule method. The 
experiment results show the algorithm located the global optima in all tested problems, and even found a better 
solution than those previously reported in the literature. In some cases, it outperforms other methods in terms of 
both solution accuracy and computational cost. 

Keywords: Particle swarm optimization, mixed variables, feasibility-based rules, constrained optimization, 
evolutionary algorithms, comprehensive learning strategy

1. Introduction 

Many real-world optimization problems are hard to 
solve because they are: (1) computationally intensive 
and multimodal (i.e. have many local optima); (2) 
heavily constrained; and/or (3) contain mixtures of 
continuous, integer, discrete, and/or binary variables, 
and are often referred to as mixed-variable nonlinear 
optimization problems. 

In the past few decades, evolutionary algorithms 
(EAs)1–5, such as genetic algorithms, evolutionary 
programming, and evolutionary strategies, have been 
successfully applied to real-world optimization 
problems. The main advantage of these algorithms, 
relative to most conventional optimization methods (e.g., 
Newton-based techniques, linear programming, and 

interior point methods) lies in that they do not apply 
mathematical assumptions to the optimization problems 
and have better global search capabilities. A relatively 
new EA, particle swarm optimization (PSO), was first 
proposed by Kennedy and Eberhart6,7. PSO is an 
algorithm inspired by the social behavior of animals, 
such as bird flocking and fish schooling. It is attractive 
because of its simplicity of implementation and its 
ability to quickly converge to a reasonably good 
solution7,8. PSO has been successfully applied in a 
variety of fields mainly for unconstrained continuous 
optimization problems. However, it may get trapped in a 
local optimum when solving complex multimodal 
problems. In this paper, the standard PSO algorithm is 
extended to improve PSO’s performance on complex 
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multimodal problems by using a comprehensive 
learning strategy. 

In real life, many practical optimization problems 
involve continuous as well as discrete, integer and 
binary variables. To solve those problems, some 
solutions based on conventional methods are proposed. 
For example, Sandgren9 and Hajela and Shih10 proposed 
nonlinear branch and bound algorithms, which are 
modified versions of the most widely used methods in 
integer programming. Fu et al.11 developed an interior 
penalty approach to impose penalties on integer and/or 
discrete violations on the objective function to force the 
search to converge upon standard values. Loh and 
Papalambros introduced a sequential linearization 
approach for solving mixed-discrete nonlinear 
optimization problems12. Although most of the EAs 
were created to handle continuous variables, some of 
them, such as genetic algorithm13, evolutionary 
programming14, and ant colony optimization15, have 
been extended to handle mixed variables. The PSO was 
also originally proposed for continuous variable 
problems. Some PSO variants employ simple ways of 
dealing with mixed variables, for example, simply 
truncating the real values to integers16,17. Here, the 
standard PSO is extended to handle mixed-variable 
nonlinear optimization problems more effectively. 

Many optimization problems are hard to solve using 
conventional optimization algorithms or EAs because 
they involve a number of constrains. In their basic form, 
EAs are unconstrained optimization techniques, and 
thus are not able to handle constrained optimization 
problems directly18. To address these constrains, many 
different approaches have been proposed in the 
literature. A survey of constraint-handling techniques 
suitable for EAs can be found in Ref. 19. PSO 
algorithms have been applied to constrained 
optimization problems. There are three main approaches 
incorporated into PSO for solving constrained 
optimization problems: penalty function method16,20, 
constraint-preserving method17 and feasibility-based 
methods21. Other attempts include applying a multi-
objective optimization technique to handle constrains22. 
However, as in the case of constrained optimization 
problems, relatively fewer studies have employed the 
PSO algorithm as opposed to other kinds of EAs. The 
penalty function method requires careful tuning of the 
penalty parameters, which turns out to be a difficult 
optimization itself23. Constraint-preserving methods 

consume a lot of time as these methods require an 
initialization of all particles inside the feasible region. In 
this paper, a feasibility-based rule is incorporated into 
the PSO method to better handle constraints. 

The paper is organized as follows. The next section 
describes the mathematical formulation of constrained 
mixed-variable optimization problems. Section 3 
introduces the standard PSO algorithm. A 
comprehensive learning PSO algorithm is proposed to 
address multimodal optimization problems with 
constrains and mixed variables in Section 4. In Section 
5, three numerical examples are used to investigate the 
performance of our proposed PSO algorithm and results 
for these problems are compared to those obtained from 
other methods. Experimental results and discussions are 
given in this section. The paper is summarized and some 
conclusions are drawn in Section 6. 

2. Mathematical Formulation of Constrained 
Mixed-Variable Optimization Problems 

Generally, a constrained mixed-variable optimization 
problem can be described as follows,  

)(min Xf                                (1) 

Subject to 

0)( Xgi , gni ,...,2,1                   (2) 

0)( Xhj , hnj ,...,2,1                   (3) 

where )(Xf  is the scalar objective function, )(Xgi  

and )(Xhj  are the inequality and equality constrains, 

respectively, gn  is the number of inequality constraints, 

hn  is the number of equality constraints (in both cases, 

constraints could be linear or non-linear), and X  is the 
vector of solution variables consisting of continuous, 
binary, integer, and discrete variables. 

The variable vector X  represents a set of variables 
which can be written as 
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where 
cccc UnL xxxx  ,...,1 ; },{,...,1 bbbb ULn xxxx  ; 

iiii UnL xxxx  ,...,1 ; 
cccc UnL xxxx  ,...,1 ; 

cLx , 
bLx , 

iLx , and 
dLx  are lower bounds of continuous, binary, 

integer, and discrete variables, respectively; 
cUx , 

bUx , 

iUx , and 
dUx  are upper bounds of continuous, binary, 

integer, and discrete variables, respectively; and cn , bn , 

in , and dn  are the number of continuous, binary, 

integer, and discrete variables, respectively. The number 
of total independent variables is 

dibc nnnnD                      (5) 

3. Particle Swarm Optimizer 

PSO is a population-based optimization algorithm. The 
population of solution candidates is called a “swarm”, 
while each candidate is called a “particle”. The current 
position in the D-dimensional search space of a particle 
represents a potential solution. The particles have 
memory and each particle keeps track of its previous 
best position, called pbest  and the corresponding 
fitness value. The swarm remembers another value 
denoted gbest , which is the best position discovered so 
far by the swarm. The trajectory of each particle in the 
search space is dynamically adjusted by updating its 
velocity, according to its pbest  and gbest . Therefore, 
PSO combines the local search technique (from the 
particle’s own experience) and the global search method 
(from the neighborhood experience) to balance well the 
exploration and exploitation search aspects and move 
towards the global optimum.  

Here is how a PSO specifically works. Let a swarm 
of n  particles be considered. Each particle is fully 
described by a position and a velocity vector. In every 
generation of particle population, the velocity d

iV  and 
the position d

iX  of the d-th dimension of the i-th 
particle are updated as follows, using information on its 
historical velocity as well as its distance from the global 
and local best solution proposals: 

))()(()()()1( 1 tXtpbestrand1ctVtwtV d
i

d
i

d
i

d
i

d
t 

))()((2 tXtgbestrand2c d
i

dd
i              (6) 

)1()()1(  tVtXtX d
i

d
i

d
i                (7) 

where t  indicates a pseudo time (generation increment), 
),...,,( 21 D

iiii XXXX   is the position of the i-th particle; 

),...,,( 21 D
iiii VVVV   represents velocity of particle i ; 

),...,,( 21 D
iiii pbestpbestpbestpbest   is the best previous 

position yielding the best fitness value for the i-th 
particle; and ),...,,( 21 D

iii gbestgbestgbestgbest   is the 
best position in the whole swarm population. w  is 
called inertia factor. 1c  and 2c  are constants called 
acceleration coefficients, which reflect the weighting of 
stochastic acceleration terms that pull each particle 
toward pbest  and gbest  positions, respectively. 

d
irand1  and d

irand2  are two random numbers in the 
range ]1,0[ . 

4. A Comprehensive Learning Particle Swarm 
Optimizer for Constrained Mixed-Variable 
Optimization Problems 

As mentioned in the introduction, the difficulties in 
using EAs to solve many real-world optimization 
problems arise because these problems are multimodal, 
heavily constrained, and involve mixed variables. There 
have been very few studies that solved problem-specific 
constraints and mixed variables. In this section, PSO 
techniques for handling both mixed variables and 
constraints are proposed. A comprehensive learning 
strategy is employed to improved the PSO’s capability 
to deal with complex multimodal problems. 

4.1.  Mixed-variable handling method 

In our algorithm, different types of variables are dealt 
with different methods when updating position 
dimensions of a particle. The algorithm for updating 
mixed-variable position dimensions is given in Table 1. 

Table 1. Pseudo-code for updating mixed-variable position 
dimensions in the proposed algorithm. 

Algorithm 1: Updating mixed-variable position dimensions 

01.
For each dimensional variable d  in total length of 
dimension D  

02. If ( d  is continuous) 

03. )1()()1(  tVtXtX d
i

d
i

d
i  

04. End If 
05. If ( d  is binary) 

06.
The sigmoid function of that velocity is calculated as 

1)1( ]1[  tV d
iesigmoid  

07.
Generate a random number rand3  from a uniform 
distribution between 0 and 1 

08. If ( sigmoidrand3  ) 

09. 1)1( tX d
i  

10. Else 
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Table 1. (Continued) 

11. 0)1( tX d
i  

12. End If 
13. If ( d  is integer) 

14. If ( 0)1( tV d
i ) 

15. 1)1()1(  tXtX d
i

d
i  

16. End If 

17. If ( 0)1( tV d
i ) 

18. 1)1()1(  tXtX d
i

d
i  

19. End If 
20. End If 
21. If ( d  is discrete) 

22. If ( 0)1( tV d
i ) 

23. ]1[)1(  jdtX d
i  /*suppose ][)( jdtX d

i  */

24. End If 

25. If ( 0)1( tV d
i ) 

26. ]1[)1(  jdtX d
i  /*suppose ][)( jdtX d

i  */

27. End If 
28. End If 
29. End For 

 
For continuous variables, the updating procedure is 

the standard procedure shown in Eq. (7). For binary 
variables, the updating procedure found in Ref. 7 is 
followed. In this procedure, a sigmoid function, 

1)1( ]1[  tV d
iesigmoid , is used to generate the 

probability that a particle might change its dimensional 
position. For integer variables, the dimensional velocity 
of the particle will determine if the new dimensional 
position is forward to plus one or back to minus one 
position from current location. For discrete variables, 
the algorithm selects the indices of the set of discrete 
variables. For this purpose, we first sort the set of 
discrete variables in ascending/descending order as 

]}[],...,[],...,1[{ dndjddd  , then the index value j  of 
the discrete variable ][ jd  is optimized instead of the 
discrete value of the variable directly. 

4.2. Constraint handling method 

Motivated by Ref. 24, we use a feasibility-based rule to 
handle constraints. The rule can be described as follows: 
(1) Any feasible solution is preferred to any infeasible 
solution; (2) Given two feasible solutions, the one with 
a better objective function value is preferred; and (3) 
Given two infeasible solutions, the one having smaller 
constraint violation value is preferred. 

The rule listed above aims at obtaining good feasible 
solutions. Objective function and constraint violation 

information pieces are considered separately. In the first 
and the third cases, the search tends to the feasible 
region rather than the infeasible region, and in the 
second case the search tends to the feasible region with 
good solutions. However, our algorithm differs from 
Ref. 24 where an additional fitness function was 
designed to evaluate solutions. In our paper we show 
that it is unnecessary to design the additional fitness 
function because the rule can be incorporated into PSO. 

In our algorithm, the constraint violation value of an 
infeasible solution is calculated as follows:  





hg n

j
ji

n

i
XhXgXviolation

00
)0,)(max()0),(max()(      (8) 

Suppose that )(tpbesti  represents the best previous 
position yielding the best fitness value for the i-th 
particle at generation t  and )1( tX i  represents the 
newly generated position of that particle at generation 

1t . In terms of a feasibility-based rule, )(tpbesti  will 
be replaced by )1( tXi  in any of the following cases: 
(1) )(tpbesti  is infeasible, but )1( tXi  is feasible; (2) 
Both )(tpbesti  and )1( tX i  are feasible, but 

))1(())((  tXftpbestf ii ; and (3) Both )(tpbesti  and 
)1( tXi  are infeasible, but 

))1(())((  tXviolationtpbestviolation ii . 
Similarly, gbest  can be updated based on the rule at 

every generation. 

4.3. Comprehensive learning strategy 

We employ a comprehensive learning strategy described 
in Ref. 25. In this learning strategy, all particles’ pbests  
in the population can potentially be used as exemplars 
to guide a particle’s flying direction, while the original 
PSO6 only uses particle’s own pbest  and gbest  as the 
exemplars. In addition, instead of learning from the 
same exemplar particle for all dimensions in the original 
PSO, in the new strategy each dimension of a particle 
may learn from the corresponding dimension of a 
different particle’s pbest . To ensure that a particle 
learns from good exemplars and to minimize the time 
wasted on poor directions, this strategy does not allow 
the particle to learn from exemplars across all 
generations. Only if the particle ceases improving for a 
certain number of generations, called the refreshing 
gap m , is the particle permitted to learn. The strategy is 
demonstrated in Table 2. 
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Table 2. Pseudo-code for updating pbest after a particle 
ceases improving for the refreshing gap m. 

Algorithm 2: Updating pbest  after a particle ceases improving 

for m  

01. 
For each dimensional variable d  in total length of 
dimension D  of particle i  

02. 
Generate a random number rand4  from a uniform 

distribution between 0 and 1 

03. Update iPc  according to Eq. (9) 

04. If ( iPcrand4  ) 

05. 
 nrand5index1    /*    is a ceiling operator and 

n  is the population size */ 

06.  nrandindex2  6  

07. 
If (particle index1  is better than particle 2index  
based on feasibility-based rule) 

08. )()( tpbesttpbest d
index1

d
i    

09. else 

10. )()( tpbesttpbest d
index2

d
i   

11. End If 
12. End If 
13. End For 

 
In the learning strategy, each particle learns 

potentially from all particles’ pbests  in the swarm. 
During the search process, each dimension of a particle 
has an equal chance to learn from other particles. For 
each particle, some dimensions of other particles’ 
pbests  are randomly chosen according to a probability 
Pc , called learning probability. Each particle has its 
own iPc , which could be different from that of other 
particles. Here, an empirically developed iPc  
formulation from Ref. 25 is used; see Eq. (9). 

1)10exp(

)1
1

)1(10
exp(

45.005.0






 n

i

Pci              (9) 

where n  is the population size of the swarm and i  is 
the particle’s id.  

For each dimension of a particle i , a random 
number rand4  is generated from a uniform distribution 
between 0 and 1. If iPcrand4  , the corresponding 
dimension will learn from its own pbest ; otherwise it 
will learn from another particle’s pbest . When a 
dimension of one particle has to learn from other 
particles, choice of source is made using a tournament 
selection procedure is employed as follows: (1) two 
particles are randomly chosen out of the population, 
which excludes the particle being updated; (2) these two 
particles’ pbests  are compared in terms of feasibility-
based rule described in Section 4.2; and (3) then the 

winner’s pbest  is used as the exemplar for that 
dimension. If all exemplars of a particular particle are 
its own pbest , then one dimension is randomly selected 
to learn compulsorily from other particles’ pbest . 

4.4. Implementation of search bounds and 
maximum velocities 

In many practical problems, there are bounds on the 
variable ranges. The search range for a problem is 

],[ maxmin XX . In order to prevent particles moving out 
of the search bounds, some researchers use the equation 

)),max(,min( minmax
d
i

ddd
i XXXX  . But our algorithm 

uses a different method: a particle will choose a random 
value in the search bounds if the particle moves out 
of ],[ maxmin XX . This choice was made because we 
found choosing a random value lead to better 
performance. 

A particle’s velocity on each dimension is clamped 
to a maximum magnitude maxV . If d

iV  exceeds a 
positive constant value dVmax  specified by the user, then 
the velocity of that dimension is limited to dVmax . In our 
algorithm, for binary variables, dVmax  is set as 4; and for 
other variables, dVmax  is set as )(25.0 minmax

dd XX  . Eq. 
(10) is used to restrict d

iV : 
)),max(,min( maxmax

d
i

ddd
i VVVV  .          (10) 

4.5. Proposed particle swarm optimizer algorithm 

The proposed algorithm is given in Table 3. 

    Table 3. Pseudo-code for the proposed PSO algorithm. 

Algorithm 3: Proposed PSO algorithm for constrained mixed-
variable optimization problems 
01. Initialize a swarm S  with n  particles 

02. For each particle i  in S  
03. Initialize random position and velocity 

04.
Initialize ipbest  with a copy of the position for each 

particle 
05. End For 
06. While the termination conditions are not met 
07. Update gbest  according to the feasibility-based rule 

08. For each particle i  in S  

09.
Update inertia factor )(tw  using a linearly 

decreasing function in Eq. (11) 

10.
If (the particle ceases improving for the refreshing 
gap m ) 

11.
Update ipbest  using comprehensive learning 

strategy /* see Table 2 */ 
12. End If 

12.
For each dimension d  in total length of dimension 

D  
13. Update the velocity in terms of Eq. (6) 
14. Restrict velocity if it exceeds the range specified
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Table 3. (Continued) 

15. 
Update mixed-variable position dimension using 
Algorithm 2/* see Table 1 */ 

16. End For 

17. 
Update ipbest  according to the feasibility-based 

rule 
18. End For 
19. End While 

 
Following Refs. 7 and 25, 1c  and 2c  are both set as 

2; m  is set as 7; the weighting function )(tw  for t-th 
iteration is determined by Eq. (11): 

max

minmax
max

)(
)(

t

tww
wtw


 .             (11) 

where maxw  is set as 0.9, minw  is set as 0.4, and maxt  is 
the maximum number of iterations. As t  approaches the 
maximum number of iterations, )(tw  approaches minw  
reducing the speed of the particle. 

5. Numerical Tests and Analysis 

In this section, three numerical examples are used to 
investigate the performance of our algorithm. All these 
problems have mixed variables, as well as linear and 
nonlinear constraints. They have been widely used in 
the literature for benchmarking of algorithms and have 
been investigated by various EAs or traditional 
techniques. For each problem, 100 independent runs 
were carried out, in order to statistically assess the 
performance of our algorithm. 

5.1. Example 1: a Pressure Vessel Design 
Problem 

The objective of this problem is to minimize the total 
cost of materials for forming and welding of a pressure 
vessel. As shown in Figure 1, there are four design 
variables: shell thickness 1xTs  , thickness of the head 

2xTh  , inner radius 3xR  , and length of the 
cylindrical section of the vessel 4xL  . Variables 

1xTs   and 2xTh   are integer multiples of 0.0625 in., 
in accordance with the available thickness of rolled steel 
plates, while variables 3xR   and 4xL   are 
continuous. 
 

 

Figure 1. Design of a pressure vessel. 

  
The optimization problem is stated as 

2
32431 7781.16224.0)(min xxxxxXf   

3
2
14

2
1 84.191661.3 xxxx        (12) 

subject to: 
00193.0)( 131  xxXg            (13) 

000954.0)( 232  xxXg         (14) 

0
3

4
1296000)( 3

34
2
33  xxxXg      (15) 

0240)( 44  xXg                  (16) 
The ranges for the design variables are 

1875.6,0625.0 21  xx , 200,10 43  xx      (17) 
This problem is introduced by Sandgren9 and has 

been solved using the following approaches: genetic 
adaptive search26, an augmented Lagrange multiplier 
approach27, a branch and bound technique9, a GA-based 
co-evolution model28, a GA through the use of 
dominance-based tournament selection29, a socio-
behavioural simulation model30, and some variants of 
PSO16,17,20,21. Dimopoulos pointed out if the variable 4x  
has an upper limit of 200, the fourth constraint is 
automatically satisfied16. So in his study, the upper limit 
of variable 4x  was extended to 240. For convenience, 
we designate the problem formulation in Refs. 9, 17, 20, 
21, 26–30 as “Ex1-FormuA” and the one in Ref. 16 as 
“Ex1-FormuB”. 

In Table 4, the best solutions from our proposed 
algorithms for the two formulations of the problem as 
well as the best ones obtained by previous approaches 
are shown. As shown in Table 4, the proposed algorithm 
was able to efficiently locate the global optimums both 
of “Ex1-FormuA” and “Ex1-FormuB”. For “Ex1-
FormuA”, the optimum solution (6059.7143) is also 
found by the work reported in Refs. 17 and 21. 
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Table 4. Comparison of the best solution for the pressure 
vessel design problem. 

Method 1x  2x  3x  4x  )(xf  

Ex1-FormuA     
Sandgren9 1.1250 0.6250 47.7000 117.7010 8129.8000
Kannan27 1.1250 0.6250 58.2910 43.6900 7198.0428

Deb26 0.9375 0.5000 48.3290 112.6790 6410.3811
Coello28 0.8125 0.4375 40.3239 200.0000 6288.7445
Akhtar30 0.8125 0.4375 41.9768 182.2845 6171.0000
He and 
Wang20 

0.8125 0.4375 42.0913 176.7465 6061.0777

Coello and 
Montes29 

0.8125 0.4375 42.0974 176.6540 6059.9463

He et al.17 0.8125 0.4375 42.0984 176.6366 6059.7143
He and 
Wang21 

0.8125 0.4375 42.0984 176.6366 6059.7143

This paper 0.8125 0.4375 42.0984 176.6366 6059.7143
Ex1-FormuB     

Dimopoulos16 0.7500 0.3750 38.8601 221.36549 5850.3804
This paper 0.7500 0.3750 38.8601 221.36547 5850.3831

 
The performance results are depicted in Table 5, 

where N  represents the size of the population and FFE 
stands for the maximum fitness function evaluations.  

Table 5. Statistical results of different methods for the 
pressure vessel design problem. 

Method N  FFE Best Mean Std. 

Ex1-FormuA     
Sandgren9 N/A N/A 8129.8000 N/A N/A 
Kannan27 N/A N/A 7198.0428 N/A N/A 

Deb26 N/A N/A 6410.3811 N/A N/A 
Coello28 90 N/A 6288.7445 6293.8432 7.4133 
Akhtar30 100 20,000 6171.0000 6335.0500 N/A 
He and 
Wang20 

70 200,000 6061.0777 6147.1332 86.4545

Coello and 
Montes29 

200 80,000 6059.9463 6177.2533 130.9297

He et al.17 30 30,000 6059.7143 6289.9288 305.7800
He and 
Wang21 

250 81,000 6059.7143 6099.9323 86.2022

This paper 30 60,000 6059.7143 6066.0311 12.2718
Ex1-FormuB     

Dimopoulos16 100 100,000 5850.3804 6272.5745 538.3703
This paper 30 60,000 5850.3831 5923.1568 105.1191

 
As shown in Table 5, the mean fitness value was 

6066.0311 with a standard deviation of 12.2718, which 
is significantly superior to those of other methods. The 
mean fitness value was 6119.3708 with a standard 
variation of 107.7036, even when we reduce the 
maximum fitness function evaluations (FFEs) to 30,000. 
For the formulation of the problem modified by 
Dimopoulos, compared with the work in Ref. 16, our 
algorithm required considerably lower FFEs (60,000) to 
improve the searching quality significantly (the mean 

fitness value was 5923.1568 with a standard variation of 
105.1191), as demonstrated in Table 5. 

5.2. Example 2: a welded beam design problem 

The following problem is taken from Ref. 28. As shown 
in Figure 2, a welded beam is designed for minimum 
cost of fabrication subject to constraints on shear stress 
(  ), bending stress ( ), end deflection (  ) in the 
beam, buckling load on the bar ( cP ) and side constraints. 
The problem involves four design variables: thickness 
of the weld 1xh  , length of the welded joint 2xl  , 
width of the beam 3xt   and thickness of the beam 

4xb  . Independent variables 1x  and 2x  are integer 
multiples of 0.0065. The welded beam design problem 
is stated as follows: 

2
2
110471.1)(min xxXf   

)0.14(04811.0 243 xxx                    (18) 
subject to: 

0)()( max1   XXg                   (19) 
0)()( max2   XXg                 (20) 

0)( 413  xxXg                     (21) 
)0.14(04811.010471.0)( 243

2
14 xxxxXg        

00.5                                                      (22) 
0125.0)( 15  xXg                  (23) 

0)()( max6   XXg               (24) 
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with 6000P , 14L , 25.0max  , 61030E , 
61012G , 600,13max  , 000,30max  . 

The ranges for the design variables are 
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2,1.0 41  xx , 10,1.0 32  xx            (31) 
 
 
 
 
 
 
 
 

Figure 2. The welded beam design problem. 

 
The problem was previously investigated by the 

following approaches: a real parameter GA24, An 
optimization algorithm based on the simulation of social 
behavior31, a GA-based co-evolutionary model28, a GA 
through the use of dominance-based tournament 
selection29, a domain knowledge-based cultural 
algorithm32, and some variants of PSO16,17,20,21. 
However, the formulations of the problem vary slightly 
across these methods. In References 17, 24, 31, Eq. (28) 
and (30) are replaced by Eqs. (32) and (33), respectively. 
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Also, References 17, 20, 21, 24, 28, 29, 31, and 32 
found their optimums by treating independent variables 

1x  and 2x  as real numbers. Only the solution in Ref. 16 
treated these variables as integer multiples of 0.0065. 
For convenience, we designate the formulation of the 
problem in Refs. 17, 24, and 31 as “Ex2-FormuA”, the 
formulation in Refs. 20, 21, 28, 29, and 32 as “Ex2-
FormuB” and the that in Ref. 16 as “Ex2-FormuC”. The 
best solutions obtained using the above mentioned 
approaches are depicted in Table 6, where the best 
solutions from different formulations of the problem 
obtained using the PSO algorithm presented in this 

paper are also reported. The performance results of the 
different algorithms are shown in Table 7. 

Table 6. Comparison of the best solution for the welded beam 
design problem. 

Table 7. Statistical results of different methods for the welded 
beam design problem.  

Method N FFE Best Mean Std. 

Ex2-FormuA     
Ray and 
Liew31 

40 33,095 2.385435 3.255137 0.959078

Deb24 50 40,080 2.381190 2.392890 N/A 
He et al.17 30 30,000 2.380957 2.381900 0.005200

This paper 30 30,000 2.380957 2.384111 0.004256
Ex2-FormuB     

Coello28 90 2,100 1.748309 1.771973 0.011220
Coello and 
Montes29 

200 80,000 1.728226 1.792654 0.074713

He and 
Wang20 

70 200,000 1.728024 1.748831 0.012926

Coello and 
Becerra32 

20 50,000 1.724852 1.971809 0.443131

He and 
Wang21 

250 81,000 1.724852 1.749040 0.040049

This paper 30 60,000 1.724852 1.728180 0.005324
Ex2-FormuC     

Dimopoulos16 100 100,000 1.731186 1.762200 0.065900
This paper 100 100,000 1.731186 1.737459 0.017577

 
It is shown in Table 6 that the proposed PSO 

algorithm can obtain the best known solution. From 
Table 7, it can be found for the formulation “Ex2-
FormuA”, that our algorithm performs much better than 
those reported in Refs. 24 and 31, but a bit worse than 

Method 1x  2x  3x  4x  )(xf  

Ex2-FormuA     

Ray and 
Liew31 

0.244438 6.237967 8.288576 0.244566 2.385435

Deb24 N/A N/A N/A N/A 2.381190
He et al.17 0.244369 6.217520 8.291471 0.244369 2.380957

This paper 0.244369   6.217520 8.291471 0.244369 2.380957
Ex2-FormuB     

Coello28 0.208800 3.420500 8.997500 0.210000 1.748309
Coello and 
Montes29 

0.205986 3.471328 9.020224 0.206480 1.728226

He and 
Wang20 

0.202369 3.544214 9.048210 0.205723 1.728024

Coello and 
Becerra32 

0.205700 3.470500 9.036600 0.205700 1.724852

He and 
Wang21 

0.205730 3.470489 9.036624 0.205730 1.724852

This paper 0.205730 3.470489 9.036624 0.205730 1.724852
Ex2-FormuC     

Dimopoulos 
16 

0.2015 3.5620 9.041398 0.205706 1.731186

This paper 0.2015 3.5620 9.041398 0.205706 1.731186
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the one reported in Ref. 17. However, the average CPU 
time required for execution of the algorithm in Ref. 17 
for a single run was 10.2 seconds (on a Pentium 4, 2-
GHz machine), which is even more than the execution 
time of our algorithm for 100 runs – 9 seconds only (on 
a Pentium Dual, 2.16-GHz notebook). For the 
formulations “Ex2-FormuB” and “Ex2-FormuC”, the 
average searching quality of our proposed algorithm is 
far superior to those of other methods. The mean values 
and the standard deviations of results by the proposed 
algorithm for these two formulations are also very small. 

5.3. Example 3: the second variation of welded 
beam design problem 

This problem is taken from Deb and Goyal33 and is a 
variation of that in Example 2. Example 2 is extended to 
include two types of welded joint configurations (as 
depicted in Figure 3) and four possible beam materials 
(as described in Table 8). There are six independent 
variables in the design problem: thickness of the weld 

1xh  , length of the welded joint 2xl  , width of the 
beam 3xt  , thickness of the beam 4xb  , 
material 5x  and joint type 6x . Variables 1x , 3x  and 

4x  are now integer multiples of 0.0625 in., variable 2x  
is continuous, variable 5x  is an integer ranging from 1 
to 4 representing the material (1 stands for “Steel”, 2 
represents “Cast Iron”, 3 is “Aluminium”, and 4 means 
“Brass”), and variable 6x  is binary representing the 
joint type (0 stands for two sided welded joint and 1 
represents four sided welded joint). 
 

 

Figure 3. Welded joint configurations of the 2nd variation of 
welded beam design problem. 

Table 8. Material properties for the 2nd variation of welded 
beam design problem.  

Material 

5x  
S  

( 310 psi)

E  

( 610 psi) 

G  

( 610 psi) 
1c  2c  

1 =  
Steel 

30  30 12 0.1047 0.0481

2 =  
Cast iron 

8  14 6 0.0489 0.0224

3 = 
Aluminium

5  10 4 0.5235 0.2405

4 =  
Brass 

8 16 6 0.5584 0.2566

 
This variation of the welded beam design problem is 

stated: 
)0.14()1()(min 24322

2
11 xxxcxxcXf  . (34) 

subject to the constrains of Eqs. (19)–(25), with the 
relations demonstrated in Eqs. (26), (27), (29), and (30) 
still valid. However, Eq. (28) is replaced by 
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The values of parameters to material are given in 
Table 8. Also, the value of max  is changed to: 

 S 577.0max                            (36) 
The bounds of variables 1x , 2x , 3x , and 4x  remain 

the same as in Eq. (31). 
The only other two solutions to this problem (known 

to the authors) are by Deb and Goyal33 and 
Dimopoulos16. The best solutions obtained by these two 
solutions as well as from our proposed algorithm in this 
paper are listed in Table 9, and their statistical 
simulation results are shown in Table 10. 

Table 9. Comparison of the best solution for the 2nd variation 
of welded beam design problem. 

Method 1x  2x  3x  4x  5x  6x )(xf

Deb and 
Goyal33 

0.1875 1.6849 8.25 0.25 1 1 1.9422

Dimopoulos16 0.2500 2.2219 8.25 0.25 1 0 1.7631
This paper 0.2500 1.1412 8.25 0.25 1 1 1.5809
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Table 10. Statistical results of different methods for the 2nd 
variation of welded beam design. 

Method N  FFE Best Mean Std. 

Deb and  
Goyal33 

50 5,000 1.9422 N/A N/A 

Dimopoulos16 100 100,000 1.7631 1.7694 0.0192
This paper 30 60,000 1.5809 1.7405 0.2109

 
From Table 9, it can be seen that our PSO algorithm 

yielded a new optimum which is far below the ones 
obtained by the only other two solutions. It can be found 
in Table 10 that the average searching quality of the 
proposed algorithm is better than the one reported by 
Dimopoulos. It is worth mentioning that this improved 
performance is obtained under a smaller (60,000) FFEs. 

6. Conclusions 

This paper extends the standard PSO to address 
multimodal and constrained mixed-variable 
optimization problems. A comprehensive learning 
strategy is employed to improve PSO’s performance on 
complex multimodal problems. In this strategy, other 
particles’ previous best positions are exemplars to be 
learned from by any particle and different dimensions of 
a particle can potentially learn from different exemplars. 
Different types of variables are handled using different 
approaches. Constraint handling is based on a 
feasibility-based rule, which provides an effective 
alternative to overcome the weakness of penalty 
function methods and constraint-preserving methods. 

The advantages of the proposed algorithm are 
illustrated by solving four mechanical design 
optimization problems. The numerical results and 
comparisons with solutions from other methods show 
that our proposed algorithm improves performances in 
terms of search quality, efficiency, and robustness. The 
numerical results obtained by the proposed algorithm 
are better than or equal to those obtained from other 
existing methods. 

An issue for future work is to improve the 
feasibility-based rule because it is not completely 
reasonable that feasible solutions are always considered 
better than infeasible ones in the rule. This could lead to 
overpressure from selecting feasible solutions and lead 
to premature convergence. For example, the constraint 
boundary handling method has not been taken into 
account, while many real-world constrained 

optimization problems have optimum solutions in or 
near the boundary of the feasible region. 
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