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Abstract

In this paper, robust adaptive tracking control is proposed for the underwater robot in the presence of para-
metric uncertainties and unknown external disturbances. Backstepping control of the system dynamics
is introduced to develop full state feedback tracking control. Using parameter adaptation, backstepping
control and variable structure based techniques, the robust adaptive tracking control is presented for un-
derwater robots to handle the uncertainties, saturation and dead-zone characteristics of actuators. Actuator
nonlinearities comprising of dead-zone and saturation are explicitly considered in the tracking control de-
sign. Under the proposed tracking control, semi-global uniform boundedness of the closed-loop signals
is guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness
of the proposed robust adaptive tracking control.
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1. Introduction

In the marine engineering, various underwater ro-
bots and vehicles have been designed and developed
for practical applications such as the exploration
of deep sea environments, structure and subsurface
monitoring, subsea maintenance, and biological sur-
veys. The robust adaptive control for underwater
robots with parametric uncertainties and unknown
external disturbances is important for achieving the

above mentioned tasks. A large number of effec-
tive control techniques have been proposed for un-
derwater robots such as robust adaptive control [1],
sliding mode control [2], and neural network control
[3]. In [1], robust feedback control was proposed for
underwater robotic vehicles. Neural network based-
time optimal sliding mode control was presented for
an autonomous underwater robot [2]. In [3], ro-
bust neural control was studied for underwater ro-
bot manipulators. In practice, the system uncertainty
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and the external disturbance of the underwater ro-
bot should be explicitly considered in control design
to enhance the disturbance rejection ability of the
closed-loop system.

Since marine control applications are charac-
terized by widely changing environmental distur-
bances and various sea conditions, the dynamics of
the underwater robot should be treated as an uncer-
tain multi-input and multi-output (MIMO) nonlinear
system. To tackle the unknown term of uncertain
nonlinear systems, universal function approximators
including neural networks (NNs) have been exten-
sively used in the control design due to their univer-
sal approximation capabilities. In [4], an approxi-
mation based method has yielded promising results
in handling model uncertainties and unknown dis-
turbances for fully actuated ocean surface vessels.
Neural network systems for online control adapta-
tion were investigated for the underwater robot [5].
However, the input nonlinearity of the actuator has
not been explicitly considered in the control design
of the underwater robot.

Actuator saturation and dead-zone are the most
important non-smooth nonlinearities which can
severely degrade the closed-loop system perfor-
mance if ignored in the control design. Dead-zone
is a static input-output relationship which provides
zero output for a range of input values. To han-
dle the actuator dead-zone problem, robust adaptive
controls have been proposed for uncertain plants in
[6-9]. Adaptive neural control of MIMO nonlin-
ear time varying delay systems with unknown dead-
zone and gain signs has been developed via the pro-
posed description of a general nonlinear dead-zone
model [10]. Adaptive dynamic surface control was
proposed to handle a class of pure-feedback non-
linear systems with unknown dead zone and per-
turbed uncertainties [11]. Similarly, actuator satu-
ration can severely degrade the closed-loop system
performance. The analysis and design of control
systems with actuator saturation nonlinearities have
been studied in [12-14]. A nonlinear control method
was proposed to achieve the attitude maneuver of a
three-axis stabilized flexible spacecraft with control
input nonlinearity [15]. Combined dead-zone and
saturation is seldom considered, especially for un-

certain nonlinear systems. In this paper, the back-
stepping tracking control is proposed for the uncer-
tain MIMO nonlinear dynamics of an underwater ro-
bot with input dead-zone and saturation.

In recent twenty years, backstepping control has
become one of the most popular control techniques
for some special classes of uncertain nonlinear sys-
tems [16,17]. On the other hand, neural network
(NN) or fuzzy logical system (FLS) as the approxi-
mator has been adopted in the robust control design
for the uncertain nonlinear systems [18-26]. Com-
bining backstepping approach with NN to control
nonlinear system has received increasing attention
[18-25]. In [18], adaptive NN control was inves-
tigated for strict-feedback nonlinear systems using
backstepping design. Adaptive NN control was de-
veloped for nonlinear systems by state and output
feedback [19]. In [20], the stable adaptive control
was proposed for a class of nonlinear multivariable
systems using nonlinearly parametrized function ap-
proximators. By exploiting the special properties of
affine terms, adaptive neural control for two classes
of uncertain MIMO nonlinear systems was proposed
[21]. Adaptive backstepping NN control was pro-
posed for a class of affine nonlinear systems in [23].
In [24], stable neural control was developed for un-
known nonlinear systems using backstepping con-
trol method.

In the tracking control of underwater robots, ac-
tuators such as thrusters and rudders which inher-
ently possesses nonlinearities are used. Thus, this
work is motivated by the tracking control of the un-
derwater robot with uncertainties, input dead-zone
and saturation. The control objective is to track a
desired trajectory in the presence of parametric un-
certainties and the time varying disturbances. The
main contribution of the paper are as follows:

(i) a tracking control in combination with variable
structure control (VSC), approximation-based and
parameter adaptation techniques is developed
which can reduce the requirement on the knowl-
edge of the underwater robot parameters.

(ii) Actuator nonlinearities such as saturation and
dead zone are explicitly considered in the control
design stage.

(iii) rigorous stability analysis is guaranteed using
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Lyapunov analysis which shows the semiglobal
uniform boundedness of all closed-loop signals.

The organization of the paper is as follows. Sec-
tion 2 details the problem formulation for the track-
ing control of underwater robots. Section 3 presents
the proposed robust adaptive tracking control design
considering the dead-zone and saturation nonlinear-
ity of actuators. Simulation studies of the proposed
control are shown in Section 4 to demonstrate the ef-
fectiveness of our approach, followed by some con-
cluding remarks in Section 5.

2. Problem Formulation

Considering the dead-zone and saturation nonlinear-
ity of actuators, the dynamic behavior of an under-
water robot with external disturbance and input non-
linearity can be described in the form of [27]

η̇ = J(η)ν
Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ +d(ν ,η , t)

τ = Φ(u)
y = η (1)

where J(η) =




cos(ηψ) −sin(ηψ) 0
sin(ηψ) cos(ηψ) 0

0 0 1


 is the

Jacobin transformation matrix, η = [ηx,ηy,ηψ ]T ∈
R3 represents the Earth fixed positions and heading,
respectively, ν = [νx,νy,νψ ]T ∈ R3 denotes the body
fixed surge, sway, and yaw velocities, respectively,
d(ν ,η , t) ∈ R3 is the unknown disturbance, M, C(ν)
and D(ν) are the inertia matrix, coriolis and cen-
tripetal terms, and the damping matrix respectively,
g(η) is an unknown vector of restoring forces due to
buoyancy and gravitational forces and moments, τ
is the generalized control vector produced jointly by
all actuators. Φ(u) is the input nonlinearity which
denotes input dead-zone and saturation. Next, as-
sumptions and lemmas required for subsequent de-
velopments are presented.

Assumption 1: [15] The considered control
input Φ(u) satisfies the saturation and dead-zone
nonlinearity. That is, the control signal u(t) =
[u1(t),u2(t),u3(t)]T is constrained by the saturation

value umax and dead-zone value u0, expressed by

ui(t)−ui0 6 uimax, for ui > ui0(t)
ui(t)+ui0 >−uimax, for ui 6−ui0(t) (2)

where, without loss of generality, a conservative
common saturation limit uimax and dead zone ui0
have been adopted to streamline the analysis. Equa-
tion (2) can be written as

Φ(ui) = χ(ui−ui0)(ui−ui0), for ui > ui0(t)
Φ(ui) = χ(ui +ui0)(ui +ui0), for ui 6−ui0(t)
Φ(ui) = 0, for −ui0(t) 6 ui 6 ui0(t) (3)

where i = 1,2,3 and

χ(.) =





uimax
ui−ui0

, if ui−ui0 > uimax

1,





if ui−ui0 6 uimax,
for ui > ui0

if ui +ui0 >−uimax,
for ui 6−ui0

− uimax
ui+ui0

, if ui +ui0 <−uimax

(4)

such that 0 < χ(.) 6 1.
Assumption 2: [11] For the continuous func-

tions di(ν ,η , t) : R3×R3×R+ → R, i = 1,2,3, there
exists known smooth functions ρi(ν ,η) and un-
known bounded constants θi such that ∀(ν ,η , t) ∈
R3×R3×R+ satsify

|di(ν ,η , t)|6 ρi(ν ,η)θi (5)

Lemma 1: [4, 23] For bounded initial con-
ditions, if there exists a C1 continuous and the
positive definite Lyapunov function V (x) satisfy-
ing γ1(‖x‖) 6 V (x) 6 γ2(‖x‖), such that V̇ (x) 6
−κV (x)+c, where γ1,γ2 : Rn → R are class K func-
tions and c is a positive constant, then the solution
x(t) is uniformly bounded.

Remark 1: Assumption 1 implies that the in-
put nonlinearity Φ(u) of the underwater robot satis-
fies the conservative common saturation and dead-
zone. Thus, the control input u(t) is constrained
by saturation umax and dead-zone value u0. As-
sumption 2 means that the time-varying multivari-
able disturbance term di(ν ,η , t) are bounded which
generally includes exogenous effects and uncertain-
ties. It is apparent that the boundary of disturbance
term di(ν ,η , t) are unknown due to the unknown θi.
Hence, Assumption 2 is reasonable.
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In this paper, the control objective is to follow a
given desired trajectory of the underwater robot in
the presence of parametric uncertainties, input non-
linearity and the disturbance form the external envi-
ronment. For the desired trajectory ηd , the proposed
robust adaptive tracking control must ensure that all
closed-loop signals are bounded, and the tracking er-
rors converge to a very small neighborhood of the
origin, i.e. limt→∞ ‖y−ηd‖< εt for any εt > 0.

3. Adaptive Variable Structure Tracking
Control

We employ an approximation-based control in com-
bination with VSC formulated through backstepping
control of the system dynamics to follow a desired
trajectory of the underwater robot (1). The full-state
feedback tracking control will be developed for the
system (1) with input nonlinearities. Rigorous sta-
bility analysis through Lyapunov method is carried
out to show the semi-global uniform boundedness of
the closed-loop system.

3.1. Neural Network Approximators

Neural networks (NNs) are often used as approxima-
tors for system parametric uncertainties due to their
inherent approximation capabilities [28]. A class of
linearly parameterized NN used to approximate the
continuous function ω(Z) : Rq → R may be repre-
sented as

ω(Z) = Ŵ T φ(Z)+ ε(Z) (6)

where Z = [z1,z2, . . . ,zq]T ∈ Rq is the input vector of
the NNs, Ŵ ∈ Rp is a vector of adaptable weights,
φ(Z) = [φ1,φ2, . . . ,φp]T is the vector of known con-
tinuous (linear or nonlinear) basis functions, and ε
is the approximation error, bounded over the com-
pact set ΩZ , i.e., |ε(Z)| 6 ε0, ∀Z ∈ ΩZ , where
ε0 > 0 is an unknown constant. A linearly para-
meterized neural network can smoothly approximate
ω(Z) over the compact set ΩZ ∈ Rq to arbitrary ac-
curacy as

ω(Z) = W ∗T φ(Z)+ ε∗(Z), ∀Z ∈ΩZ ⊂ Rq (7)

where W ∗ denotes the optimal weights, ε∗(Z) is the
approximation error for the case where Ŵ = W ∗.
Under the optimal weight value, there exists

||ω(Z)−W ∗T φ(Z)||= ‖ε∗(Z)‖6 ‖ε‖ (8)

where the optimal weight value of NN is defined as

W ∗ = arg min
Ŵ∈Ωω

[
sup
z∈SZ

∣∣∣ω̂(Z|Ŵ )−ω(Z)
∣∣∣
]

(9)

Here, SZ ⊂ Rn is an allowable set of the state vector,
and Ωω is a valid field of the parameter. We con-
sider Gaussian Radial Basis Function Neural Net-
work (RBFNN) [29] which is a particular network
architecture that uses l Gaussian functions of the
form

φi(Z) = exp
[−(Z−µi)T (Z−µi)

η2
i

]
, i = 1,2, ..., l

(10)
where µi = [µi1,µi2, ...,µiq]T is the center of the re-
ceptive field and ηi is the width of the Gaussian
function.

3.2. Adaptive Tracking Control Design with
Full-State Feedback

In this subsection, we develop the tracking control
scheme for the case where all states are available.
Full state feedback tracking control is developed
using adaptive NN, VSC and parameter adaptation
in combination with backstepping control [30] of
the system dynamics. To develop the robust adap-
tive tracking control, we define ξ = J(η)ν which
is an auxiliary design variable, the error variables
z1 = η − ηd and z2 = ξ − α1. It is apparent that
ν → 0 if ξ → 0 due to the nonsingularity of J(η).

Step 1: Considering (1) and differentiating z1
with respect to time yields

ż1 = η̇− η̇d = ξ − η̇d = z2 +α1− η̇d (11)

The virtual control law α1 is designed as

α1 =−K1z1 + η̇d (12)

where K1 = KT
1 > 0.

Substituting (12) into (11), we obtain

ż1 =−K1z1 + z2 (13)
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Consider the Lyapunov function candidate V1 =
1
2 zT

1 z1. The time derivative of V1 is given by

V̇1 =−zT
1 K1z1 + zT

1 z2 (14)

The first term on the right-hand side is negative, and
the second term will be canceled in the next step.

Step 2: Considering (1) and differentiating z2
with respect to time, we have

ż2 = ξ̇ − α̇1 = J̇(η)ν + J(η)ν̇− α̇1

= J̇(η)ν + J(η)M−1(−C(ν)ν−D(ν)ν
− g(η)+Φ(u)+d(ν ,η , t))− α̇1 (15)

where α̇1 = η̈d −K1ż1.
To tackle the dead-zone of the input for the un-

derwater robot, the VSC is employed to design the
robust tracking control in this paper. The sliding sur-
face is chosen as

S = c1z1 + z2 (16)

where c1 > 0.
Consider the following Lyapunov function can-

didate

V ∗
2 = V1 +

1
2δ

ST MS (17)

where δ > 0 is a design parameter which is an un-
known auxiliary constant and is defined as follows

0 < δ 6 δ 6 δ 6 χi(.) 6 1 (18)

where δ > δ > 0.
Differentiating V ∗

2 , we have

V̇ ∗
2 6−zT

1 K1z1 + zT
1 z2 +

1
δ

ST MṠ (19)

Invoking (16), we have

z2 = S− c1z1 (20)

Considering (14), (15), and Assumption 2, sub-
stituting (20) into (19) yields

V̇ ∗
2 6 −zT

1 K1z1− c1zT
1 z1 +

1
δ

ST (δ z1− c1MK1z1

+ c1Mz2 +MJ̇(η)ν− J(η)C(ν)ν
− J(η)D(ν)ν− J(η)g(η)−Mα̇1)

+
ST J(η)

δ
Φ(u)+λST Sgn(S)ρ(ν ,η)θ (21)

where λ = ‖J(η)‖, Sgn(S) := diag{sgn(S j)},
ρ(ν ,η)= diag{ρ j(ν ,η)} and θ = [θ1/δ ,θ2/δ ,θ3/δ ]T ,
j = 1,2,3.

Since M, C(ν), D(ν), δ and θ are all unknown,
the robust tracking control cannot be directly de-
signed. To solve this problem, we use adaptation
technique to handle the unknown parameter θ and
NN is employed to approximate the unknown term
h(Z) which is given by

h(Z) = − 1
δ

(δ z1− c1MK1z1 + c1Mz2 +MJ̇(η)ν

− J(η)(C(ν)ν +D(ν)ν +g(η))−Mα̇1)(22)

where Z = [ηT ,νT ,αT
1 , α̇T

1 ].
The approximation output of NN for the un-

known term h(Z) can be expressed as

ĥ(Z) = Ŵ T φ(Z) (23)

where Ŵ = blockdiag
[
Ŵ T

1 ,Ŵ T
2 ,Ŵ T

3

]T
are the

neural network parameters, φ(Z) = [φ T
1 (Z),φ T

2 (Z),
φ T

3 (Z)]T represents the basis functions, and Ŵ T φ(Z)
approximates W ∗T φ(Z) given by

ρ(Z) = W ∗T φ(Z)+ ε (24)

Substituting (24) into (21), we obtain

V̇ ∗
2 6 −zT

1 K1z1− c1zT
1 z1

− STW ∗T φ(Z)+λST Sgn(S)ρ(ν ,η)θ

− ST ε +ST J(η)
δ

Φ(u) (25)

Considering the nonsingular matrix J(η), define
ϑ = J(η)T S = [ϑ1,ϑ2,ϑ3]T . Then, the following
VSC law with nonlinearity/dead-zone is proposed:

ui =




−ui0 +ui0, if ϑi < 0
0, if ϑi = 0
−ui0−ui0, if ϑi > 0

(26)

where ui0 = (ST ΛS + ‖ST‖‖Ŵ T φ(Z)‖ +
λ‖ST‖‖Sgn(S)ρ(ν ,η)θ̂‖) ϑi

‖ϑ‖2 , Λ = ΛT > 0 is an
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appropriate dimension positive definite matrix, and
ui0, i = 1,2,3 is the known dead-zone values.

To further design and analyze, the following
Lemma is required.

Lemma 2: If the input nonlinearities Φ(u) sat-
isfying Assumptions 1, the VSC law (26) can make
the following inequality always hold:

ST J(η)Φ(u) 6 −δ (ST ΛS +‖ST‖‖Ŵ T φ(Z)‖
+ λ‖ST‖‖Sgn(S)ρ(ν ,η)θ̂‖)(27)

Proof: From equations (3) and (26), ui > ui0 implies
that ϑi < 0 and thus

(ui−ui0)Φ(ui) =−ui0Φ(ui) > δ (ui−ui0)2 = u2
i0 (28)

Whereas for ui <−ui0, ϑi > 0 and there yields

(ui +ui0)Φ(ui) =−ui0Φ(ui) > δ (ui +ui0)2 = u2
i0 (29)

Considering (28) and (29) yields

ϑiΦ(ui) 6 −δ
ϑ 2

i

‖ϑ‖2 (ST ΛS +‖ST‖‖Ŵ T φ(Z)‖

+ λ‖ST‖‖Sgn(S)ρ(ν ,η)θ̂‖) (30)

Therefore, the following inequality always
holds:

ST J(η)Φ(u) =
3

∑
i=1

ϑiΦ(ui)

6 −δ (ST ΛS +‖ST‖‖Ŵ T φ(Z)‖
+ λ‖ST‖‖Sgn(S)ρ(ν ,η)θ̂‖)(31)

This concludes the proof, and the lemma shows that
the input nonlinearity combining with the sliding
surface satisfies a given inequation (31). ♦

Substituting (31) into (25) yields

V̇ ∗
2 6 −zT

1 K1z1− c1zT
1 z1−ST ΛS−STW ∗T φ(Z)

+ STŴ T φ(Z)−ST ε−‖ST‖‖Ŵ T φ(Z)‖
− STŴ T φ(Z)+λST Sgn(S)ρ(ν ,η)θ
− λ‖ST‖‖Sgn(S)ρ(ν ,η)θ̂‖
+ λST Sgn(S)ρ(ν ,η)θ̂ −λST Sgn(S)ρ(ν ,η)θ̂
6 −zT

1 K1z1− c1zT
1 z1−ST ΛS−STW ∗T φ(Z)

+ STŴ T φ(Z)−ST ε +λST Sgn(S)ρ(ν ,η)θ̂
− λST Sgn(S)ρ(ν ,η)θ (32)

To analyze the stability of error signals W̃i :=
Ŵi−W ∗

i and θ̃ := θ̂ −θ ∗, the augmented Lyapunov
function can be written as

V2 = V ∗
2 +

1
2

3

∑
i=1

W̃ T
i Λ−1

i W̃i +
1
2

θ̃ T Λ−1
0 θ̃ (33)

where Λi = ΛT
i > 0, i = 0,1,2,3.

Differentiating (33) along (32) yields

V̇2 6 −zT
1 K1z1− c1zT

1 z1−ST ΛS−STW ∗T φ(Z)

+ STŴ T φ(Z)−ST ε +
3

∑
i=1

W̃ T
i Λ−1

i
˙̂W i

+ θ̃ T Λ−1
0

˙̂θ −λST Sgn(S)ρ(ν ,η)θ

+ λST Sgn(S)ρ(ν ,η)θ̂ (34)

Considering −ST ε 6 1
2(ST S + εT ε), inequality

(34) can be expressed as

V̇2 6 −zT
1 K1z1− c1zT

1 z1−ST ΓS +
3

∑
i=1

W̃ T
i φi(Z)Si

+
3

∑
i=1

W̃ T
i Λ−1

i
˙̂W i +

1
2
‖ε‖2

+ λST Sgn(S)ρ(ν ,η)θ̃ + θ̃ T Λ−1
0

˙̂θ (35)

where Γ = Λ− 1
2 I3×3.

Consider the adaptation laws for Ŵi and θ̂ as

˙̂W i = −Λi(φi(Z)Si +βiŴi) (36)
˙̂θ = −Λ0(Sgn(S)ρ(ν ,η)S +β0θ̂) (37)

where βi > 0 and β0 > 0.
Substituting (36) and (37) into (35) yields

V̇2 6 −zT
1 K1z1− c1zT

1 z1−ST ΓS−
3

∑
i=1

βi

2
‖W̃i‖2

+
3

∑
i=1

βi

2
‖W ∗

i ‖2− β0

2
‖θ̃‖2 +

β0

2
‖θ ∗‖2 +

1
2
‖ε‖2

6 −κV2 +C (38)

Published by Atlantis Press 
    Copyright: the authors 
                  651



Robust Adaptive Tracking Control of the Underwater Robot . . .

where

κ : = min


 2λmin(K1 + c1I3×3),

2δλmin(Γ)
λmax(M) ,

mini=1,2,3

(
βi

λmax(Λ−1
i )

)
, β0

λmax(Λ−1
0 )




C : =
3

∑
i=1

βi

2
‖W ∗

i ‖2 +
β0

2
‖θ ∗‖2 +

1
2
‖ε‖2 (39)

To ensure that κ > 0, the matrices K1, Λ and the de-
sign parameter c1 are chosen to satisfy the following
conditions:

λmin(K1 + c1I3×3) > 0, λmin(Γ) > 0 (40)

The above design procedure can be summarized in
the following theorem, which contains the results for
full state feedback control of the system dynamics
(1) with the input dead-zone and saturation.

Theorem 1: Consider the underwater robot dy-
namics (1) with the Assumption 1 and Assump-
tion 2, given that the system initial conditions are
bounded, and that full state information is available,
under the control law (26) and adaptation laws (36)
and (37), the closed-loop system is semi-globally
uniformly stable and error signals z1, S, W̃ and θ̃
remains within the compact sets Ωz1, Ωz2 and Ωθ
respectively, defined by

Ωz1 :=
{

z1 ∈ R3| ‖z1‖6
√

D
}

ΩS :=
{

z2 ∈ R3| ‖z2‖6
√

D
λmax(Γ−1)

}

ΩW̃ :=
{

W̃ ∈ Rl| ‖W̃‖6
√

D
λmax(Λ−1

i )

}

Ωθ̃ :=
{

θ̃ ∈ R3| ‖θ̃‖6
√

D
λmax(Λ−1

0 )

}

where D = 2(V2(0)+ C
κ ) with C and κ as defined in

(39).
Proof: Utilizing (38) and Lemma 2, it can di-

rectly show that the signals z1, S, W̃ and θ̃ are semi-
globally uniformly bounded. For completeness, the
details of the proof are provided here. Multiplying
(38) by eκt and performing integration on the in-
equality yields

V2 6
(

V2|t=0−C
κ

)
e−κt +

C
κ

6 V2|t=0 +
C
κ

(41)

Considering (33), the bounds of z1 can be found as

1
2
‖z1‖2 6 V2|t=0 +

C
κ

(42)

Hence, there yields

‖z1‖6
√

2
(

V2|t=0 + C
κ

)
(43)

and the bounds of S, W̃ and θ̃ can be similarly
shown. This concludes the proof. ♦

Remark 2: The uniform boundedness of all
closed-loop signals established in Theorem 1 is
semi-global due to the use of approximation-based
control, which are only valid within a compact set.
In the design process of tracking control, the aux-
iliary design constant δ is used which satisfies 0 <
δ 6 χi(.) 6 1. We treat it as an unknown part of
the compound system uncertainty h(Z) and the un-
known parameter θ . Then, h(Z) is approximated by
the NN and θ is canceled using parameter adapta-
tion, respectively. δ does not appear in the design of
parameter adaptive laws and control law.

4. Simulation Results

In our simulation study, extensive simulation has
been carried to demonstrate the effectiveness of the
state feedback tracking control designed in Setion
3. Assume that the underwater robot is a scale
replica of a underwater robot which can be repre-
sented using (1) and detailed parameters obtained
from [27,31]. As detailed in [27], the parameters of
the dynamical model of Cybership II are as follows:

M =




25.8 0 0
0 33.8 1.09
0 1.09 2.76


 ,

J(η) =




cos(ηψ) −sin(ηψ) 0
sin(ηψ) cos(ηψ) 0

0 0 1


 ,

C(ν) =




0 0 C13
0 0 −25.8νx

C31 25.8u 0


 ,

D(ν) =




D11 0 0
0 D22 D23
0 D32 D33


 .
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where C31 = −C13 = 33.8νy + 1.09νψ , D11 =
0.723+1.33|νx|+57.8ν2

x , D22 = 0.861+36.3|νy|+
0.01|νψ |, D23 = −0.108 + 0.005|νy| + 0.01|νψ |,
D32 = −0.105− 5.04|νy|+ 0.001|νψ | and D33 =
0.5+0.0007|νy|+0.001|νψ |.

The disturbance d is defined as a stochastic, time
varying force dependent on η and t. Its expression
is [4]

d(η , t) = J(η)T fd(t) (44)

where fd = [3 + 0.7sin(0.4t) + 0.2cos(0.2t) +
0.2sin(0.3t),0,0]T .

The control objective is to follow a certain de-
sired trajectory of the underwater robot. Here,
we suppose that the expect trajectory is ηd =
[10sin(0.05t),0,0]T . In this simulation study, the
RBFNNs are used as feedforward approximators of
function uncertainties h(Z). Using (12), α1 can be
computed. According to (26), (36) and (37), the con-
trol law and parameter updated laws are proposed.

By choosing K1 = diag{0.5}3×3, Λ1 = Λ2 =
Λ3 = diag{1×10−6}, βi = 1×10−5, ε = 0.01, c1 =
0.8, the dead-zone values u10 = u20 = 0.5, u30 =
0.2, and the saturation values u1max = u2max = 5.0,
u3max = 3.5. Ŵ = diag{ŴT

1 ,ŴT
2 ,ŴT

3} is the adapt-
able parameter of RBFNN. It is easy to check that
the condition (40) are satisfied. The initial state con-
ditions are arbitrarily chosen as η0 = [0.5,2.0,0.1]T ,
ν0 = [0.2,0,0]T , Ŵi = [0,0,0]T , i = 1,2,3, and θ̂ =
[0,0,0]T .

Under the proposed tracking control, from fig-
ures 1 and 2, it can be observed that the tracking
performance is satisfactory under the time-varying
disturbance and parametric uncertainty that act on
it. According to Figures 3, we can see that the surge,
sway and yaw velocities response of underwater ro-
bots can also quickly converge to desired values.
The input saturation can be observed form the Figure
4 which is produced by the input constraint. From
Figure 5, the convergence performance of neural
network weight value norms can be guaranteed with
the proposed tracking control scheme. Based on
these simulation results, we can obtain that the pro-
posed full state feedback tracking control is valid
for the underwater robot in presence of parametric
uncertainties, external disturbance, input dead-zone

and input saturation.
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Fig. 1. Positions and heading response of underwater robots
under the proposed control.
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Fig. 2. Tacking errors.
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Fig. 3. Surge, sway and yaw velocities response of under-
water robots.
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Fig. 4. Control input of underwater robots.
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Fig. 5. Norms of the Neural network weight values.

5. Conclusions

Robust adaptive tracking control has been proposed
for the underwater robot with parametric uncertain-
ties, external disturbance, input dead-zone and satu-
ration in this paper. To tackle saturation and dead-
zone nonlinearities of actuators, the sliding mode
tracking control using the full state feedback has
been proposed for the underwater robot with back-
stepping method and neural networks. In this pa-
per, two auxiliary design variables have been intro-
duced to design backstepping control to simplify the
derivation computation of the virtual control law and
to tackle the input nonlinearity. Finally, simulation

studies have been given to illustrate the effectiveness
of the proposed tracking control.
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