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Abstract—Gear boxes and direct-drive systems are 
commonly used in the transmission of large wind turbines. 
The components such as blades, rotor, gear box and the 
generator should be set up coaxially in the nacelle. Thus, the 
total weights of the nacelle increases with the size of the wind 
turbines. This research develops a hydrodynamic variable 
rotational speed transmission system combining with 
planetary gear-sets and the hydrodynamic transmission 
system for a 2MW wind turbine. The nonlinear dynamic 
models of hydrodynamic transmission system and planetary 
gear-sets are derived firstly. The dynamic simulation 
analysis for the feedback type hydrodynamic transmission 
system (FHDTS) with feedback planetary gear-sets is 
implemented using MATLAB/ SIMULINK. Finally, the 
closed-loop variable rotational speed control simulation 
combined with an intelligent controller can be achieved for 
evaluating the feasibility. 

Keywords-hydrodynamic transmission system; torque 
converter; planetary gear-set; feedback type; rotational speed 
control. 

I. INTRODUCTION 
The hydraulic transmission system can be classified to 

different types: direct-driven hydrostatic transmission 
system, feedback hydrodynamic transmission system, and 
feedback hydrostatic transmission system. The direct-
driven hydrostatic transmission system for large wind 
turbines has been investigated in [1]. By using variable 
displacement pumps and motors, this research reduced the 
total weights of transmission system. Furthermore, the 
variable displacement motor could maintain a steady 
generator-side speed to make a stable output. Despite of 
the hydrostatic system, hydrodynamic system combined 
with pump and motor together to expand a larger volume 
of container. Besides, the efficiency can be enhanced 
because that the hydrodynamic system only needed single 

hydraulic unit while the hydrostatic system contained two 
machines (pump, motor). In 1977, Zarotti and Nervenga 
[2]  analysed the influence on torque changed by the 
impeller angles. Subsequently, Kesy, et al based on the 
high adaptive characteristic, building a mathematic model 
to analyse the damping effect of the transmission system 
[3]. Since 2000, Behrens, et al [4] simplified the nonlinear 
dynamics and J.Murin applied it to build up a 
hydrodynamic transmission model with diesel engine.  

Therefore, the main contribution is to develop an 
enhanced hydrodynamic transmission model that can be 
used in the large wind turbine including model analysis 
and validation. Besides, by using the control theory, we 
not only verify the system can be applied to the large 
wind turbine transmission, but also improve the dynamic 
response and the tracking performance. 

II. DESIGN OF HYDRODYNAMIC TRANSMISSION 
SYSTEM 

To design a model, the architecture block diagram is 
required. As figure 1, this transmission system consists of 
a group of feedback planetary gear-sets components and a 
hydrodynamic unit. The rotor combines with the planet 
gear in first-side(V1) then the planetary gear-set directly 
derive the generator and the hydrodynamic system in the 
second-side(V3). More precisely, the planetary gear-set 
was used as gear shifting to change the rotational speed 
while the hydrodynamic unit was loaded by the second-
side rotor and compensated as a feedback system. 
Through these procedures, we could output a desired 
generator-side speed by the compensation of 
hydrodynamic output speed (V2) even if the first-side 
speed is unstable or fluctuating. Therefore, the 
controllability of the hydrodynamic system leads 
dominance in this study. 
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derive the following equations with the concepts that we 
mentioned before. 

21
2f fp C QρΔ =                                      (6) 

        (7) 
( ) ( )2 2 2 0T P P TIQ H G Q E Fω ω ω ω⇒ + − − + =             (8) 

then we get an equation of internal volume flow as, 

  (9) 
To simplify the equation, we use some variables as 

substitution in Eq.(6)~(8) which can be shown in Table 1.: 

TABLE I. THE SUBSTITUTION OF VARIABLES 
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With Eq.(9), we can substitute the input torque and 

input angular speed into it to get the output torque and 
angular speed. 

IV. SIMULATION RESULTS 
The simulation results were used to verify the models 

derived. Meanwhile, by compensating with the controller, 
the tracking performance could be enhanced even if the 
nonlinearity and coupling phenomenon. The closed loop 
feedback control compensation could not only linearize 
the FHDTS, but also compensate the tracking 

performance. The controller was based on fuzzy sliding 
mode control theory with high robustness and high 
response. 

The realistic wind condition was random and unsteady. 
In this section, we designed a mixed trajectory as a 
random wind speed. The illustration of Fig. 3 was given 
as follows. The speed shown in Fig. 3(b) can remain 
stable even if the input loading was oscillated. The results 
showed that by compensating with a controller, the 
FHDTS performed with high robustness and high 
disturbance rejection. 

 

 

 
Figure 3. Various loading torque closed-loop response: (a) input torque (b) tracking performance (c) tracking error (d) input voltage (e) pump side reacting 

torque (f) output torque 

V. CONCLUSION 
This study developed a feedback type hydrodynamic 

transmission system. Through the combination of 
planetary gear-sets, we successively applied to the 2MW 
wind turbine transmission. Furthermore, we verified the 
validity by open-loop dynamic simulation and the 
nonlinearity could be conquered by the controller in 

closed-loop dynamic simulation. The dynamic simulation 
analysis for the feedback type hydrodynamic transmission 
system (FHDTS) with feedback planetary gear-sets was 
implemented using MATLAB/ SIMULINK. Finally, the 
closed-loop variable rotational speed control simulation 
combined with an intelligent controller could be achieved 
for evaluating the feasibility.  
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(a) Plot of Wind Turbine Torque
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(c) Plot of control error
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(d) Plot of control input
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(e) Plot of Pump Torque

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

Time (sec)

Tu
rb

in
e 

to
rq

ue
 (k

N
-m

)

(f) Plot of Turbine Torque
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