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Abstract

Embedding of paths have attracted much attention in the
parallel processing. Many-to-many communication is one
of the most central issues in various interconnection net-
works. A graphG is globally two-equal-disjoint path cov-
erable if for any two distinct pairs of vertices(u, v) and
(w, x) of G, there exist two disjoint pathsP andQ sat-
isfied that(1) P joins u to v and Q joins w to x, (2)
|P | = |Q|, and(3) V (P ∪ Q) = V (G). In this paper,
we prove thatCQn is globally 2-equal-disjoint path cov-
erable forn ≥ 5.

Keywords: Interconnection network; Crossed cube; dis-
joint path; k-equal-disjoint path cover, 2-equal-disjoint
path coverable.

1. Introduction

For the graph definition and notation we follow [1].G =
(V,E) is a graph ifV is a finite set andE is a subset
of {(a, b) | (a, b) is an unordered pair ofV }. We say
thatV is thevertex set andE is theedge set. A path of
lengthk from x to y is a finite sequence of distinct ver-
tices 〈v0, v1, v2, . . . , vk〉, wherex = v0, y = vk, and
(vi−1, vi) ∈ E for all 1 ≤ i ≤ k. For convenience, we
use the sequence〈v0, . . . , vi, P, vj , . . . , vk〉, whereP =
〈vi, vi+1, . . . , vj〉 to denote the path〈v0, v1, v2, . . . , vk〉.
Note that it is possible that the pathP has length
0. We can also write the path〈v0, v1, v2, · · · , vk〉 as
〈v0, P1, vi, vi+1, · · · , vj , P2, vt, · · · , vk〉, whereP1 is the
path〈v0, v1, · · · , vi〉 andP2 is the path〈vj , vj+1, · · · , vt〉.
We used(u, v) to denote the distance betweenu andv,
i.e., the length of the shortest path joiningu andv.
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A path is aHamiltonian path if it contains all vertices
of G. A graphG is Hamiltonian connected if there exists
a Hamiltonian path joining any two distinct vertices. A
cycle is a path (except the first vertex is the same as the
last vertex) containing at least three vertices. A cycle ofG
is aHamiltonian cycle if it contains all vertices. A graph
is Hamiltonian if it has a Hamiltonian cycle.

Finding node-disjoint paths is one of the important is-
sues of routing among nodes in various interconnection
networks. Node-disjoint (abbreviated as disjoint) paths
can be used to avoid communication congestion and pro-
vide parallel paths for an efficient data routing among
nodes. Moreover, multiple disjoint paths can be more
fault-tolerant of node or link failures and greatly enhance
the transmission reliability. Disjoint paths generally fall
into three categories: one-to-one, one-to-many, and many-
to-many. The one-to-one disjoint path is built with one
source and one destination. The one-to-many disjoint
paths like a tree structure, they contain one source and
many distinct destination nodes. The many-to-many dis-
joint paths involvek, k ≥ 1, disjoint paths withk pairs
distinct source and destination nodes.

A disjoint path cover in a graphG is to find disjoint
paths containing all the vertices inG. For an embedding
of linear arrays in a network, the cover implies every node
can be participated in a pipeline computation. One-to-
one disjoint path covers in recursive circulants [10] and
one-to-many disjoint path covers in some hypercube-like
interconnection networks [11] were studied. The many-
to-manyk-disjoint path cover is proposed by Park etc.
in [12]. In this paper, we call such many-to-manyk-
disjoint path cover (abbreviated ask-disjoint path cover)
as many-to-manyk-equal-disjoint path cover (abbreviated
ask-equal-disjoint path cover) thatk disjoint paths have
same lengths. Thek disjoint paths with equal length im-
plies that the parallel processing ofk pipeline is guaran-
teed accurately. Furthermore, a graph is called globally
k-equal-disjoint path coverable if there exists ak-equal-
disjoint path cover for anyk distinct source-destination
pairs.



An n-dimensional crossed cube,CQn[3], is a variation
of hypercube, which is derived from hypercube by chang-
ing the connection of some hypercube links. Though
some topological properties of crossed cubes have been
studied in the literature [2, 3, 4, 5, 6, 7, 8, 9, 15, 16]. In
this paper, we prove that the crossed cube is globally two-
equal-disjoint path coverable. In next section, we give
the definition of two-equal-disjoint path coverable prob-
lem and Crossed Cubes. Then we prove that the crossed
cube is globally two-equal-disjoint path coverable in the
section 3. In the final section, we give the conclusion.

2. Preliminary

In this section, we will first give the definition of glob-
ally two-equal-disjoint path coverable problem of a graph
G, and then we will give the relevant definitions in graph
theory and the definition of the Crossed cubes.

Definition 1 A graph G is (u, v, w, x)-two-equal-disjoint
path coverable if there are two disjoint paths P and Q
such that P joins the vertices u to v, Q joins the vertices
w to x, and V (P ∪ Q) = V (G).

Definition 2 A graph G is globally two-equal-disjoint
path coverable if for any two distinct pairs of vertices
(u, v) and (w, x), the (u, v, w, x)-two-equal-disjoint path
cover exist.

To define the Crossed cubes, as proposed by Efe [3],
the notion so called ”pair related” relation is introduced.

Definition 3
Let R = {(00, 00), (10, 10), (01, 11), (11, 01)}. Two two-
digit binary strings u = u1u0 and v = v1v0 are pair
related if and only if (u, v) ∈ R.

The following is the recursive definition of then-
dimensional Crossed cubeCQn.

Definition 4 [3] The Crossed cube CQ1 is a complete
graph with two nodes labelled by 0 and 1, respectively.
For n ≥ 2, an n-dimensional Crossed cube CQn consists
of two (n − 1)-dimensional sub-Crossed cubes, CQ0

n−1

and CQ1
n−1, and a perfect matching between the nodes of

CQ0
n−1 and CQ1

n−1 according to the following rule:

Let V (CQ0
n−1) = {0un−2un−3...u0 : ui = 0 or 1}

and V (CQ1
n−1) = {1vn−2vn−3...v0 : vi = 0 or 1}. The

node u = 0un−2un−3...u0 ∈ V (CQ0
n−1) and the node

v = 1vn−2vn−3...v0 ∈ V (CQ1
n−1) are adjacent in CQn

if and only if

(1) un−2 = vn−2 if n is even, and

(2) (u2i+1u2i, v2i+1v2i) ∈ R, for 0 ≤ i < ⌊n−1

2
⌋.

If u andv are two adjacent vertices inCQn andj is
the leftmost differing bit, we say thatv is thej-neighbor
of u. Moreover,u represents the(n − 1)-neighbor ofu
in CQn. We then introduce a important fault Hamiltonian
result for proving the main theorem in the next section of
this paper. A graphG is k-fault Hamiltonian connected if
for any faulty setF ⊂ V (G) ∪ E(G) such that|F | ≤ k,
G − F is still Hamiltonian connected.

Lemma 1 [7] CQn is n−3 fault Hamiltonian connected.

3.  Crossed cube is globally two-
disjoint equal path coverable

As a starting point we present the lemma below which
establishes the base case of Theorem 1.

Lemma 2 CQ3 and CQ4 are not globally two-equal-
disjoint path coverable.

Proof. To prove this lemma, we give a counter example
for each case. Given two pair of vertices0, 1 and 2, 3,
there is no two-equal-disjoint path and cover all vertices
in CQ3. Given two pair of vertices0, 3 and4, 7, there is
no two-equal-disjoint path and cover all vertices inCQ4

also. 2

Lemma 3 CQ5 is globally two-equal-disjoint path cov-
erable.

Proof. To prove this case is very tedious. With long and
detail discussion, we have completed theoretical proof for
CQ5. Nevertheless, we do not present it in this paper for
reducing complexity. However, we can also verify this
small case directly using computer. 2

Next we formally show the main result thatCQn, n ≥
5, is globally two-disjoint equal path coverable.

Theorem 1 Crossed cube, CQn, is globally two-equal-
disjoint path coverable for n ≥ 5.

Proof. We prove this theorem by induction onn. The base
case isCQ5. With Lemma 3, the base case holds. By
induction hypothesis, we can assume thatCQn is glob-
ally two-equal-disjoint path coverable. Now, we need to
show thatCQn+1 is also globally two-equal-disjoint path
coverable. Let(a, b) and (c, d) be two distinct source-
destination pairs ofCQn+1. In the following, we estab-
lish two disjoint pathsP,Q of length 2n − 1 with end
vertices(a, b) and(c, d), respectively. By the relative po-
sitions of the four vertices, we divide the proof into four
cases as follows.
Case 1:a, b, c andd are all in sameCQn, sayCQ0

n, of
CQn+1.



By induction, there are two disjoint paths(a, P0, b)
and (c,Q0, d) in CQ0

n, where|P0| = |Q0| = 2n−1 −
1. Let (w, x) and (y, z) be two edge onP0 and
Q0, respectively, and letP0 = (a, P 1

0 , w, x, P 2
0 , b)

and Q0 = (c,Q1
0, y, z,Q2

0, d). By induction again,
we have two disjoint pathsP1 and Q1 of length
2n−1 − 1 with end verticesw, x, y and z in CQ1

n.
Let P = (a, P 1

0 , w,w, P1, x, x, P 2
0 , b) and Q =

(c,Q1
0, y, y,Q1, z, z,Q2

0, d). Clearly, P and Q are two
disjoint paths and|P | = |Q| = 2n − 1. (See Fig. 1)

a


b


c


d


w

x


y

z


x


w


y

1


0
P


1
P


1
Q


2

0
P


1

0
Q


2

0
Q


Z


Figure 1:a, b, c andd are inCQ0
n.

Case 2:a, b andc are in sameCQn, sayCQ0
n, of CQn+1;

d is in CQ1
n.

Let x be a vertex inCQ0
n and x /∈ {a, b, c, d}. By

hypothesis, there are two disjoint paths< a,P0, b > and
< c,Q0, x > with |P0| = |Q0| = 2n−1 − 1 in CQ0

n.
Let w be the neighbor ofb on the pathP0. If w 6= d and
b 6= d, we can get two disjoint paths< w,P1, b > and
< x,Q1, d > with |P1| = |Q1| = 2n−1 − 1 in CQ1

n.
(See Fig. 2) LetP =< a,P0, w, w, P1, b, b > andQ =<
c,Q0, x, x,Q1, d >. In this case,P andQ are also two
disjoint paths with|P | = |Q| = 2n − 1. However, if
w = d or b = d. Choosinga and the neighbor ofa on
the pathP0 to replaceb andw, we can rebuild another
two-equal-disjoint path cover by the similar technique.

x


d


w


x


w


b


0
P


c


a


b


1
P


0
Q

1
Q


Figure 2:a, b andc are inCQ0
n; d is in CQ1

n.

Case 3: a and b are both in sameCQn, sayCQ0
n, of

CQn+1; c andd are both inCQ1
n.

By Lemma 1, there exists a Hamiltonian pathP (Q
resp.) joininga (c resp.) andb (d resp.) inCQ0

n (CQ1
n

resp.). (See Fig. 3)
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Figure 3:a andb are inCQ0
n; c andd are inCQ1

n.

Case 4: a and c are both in sameCQn, sayCQ0
n, of

CQn+1; b andd are both inCQ1
n.

Let w andx be any two distinct vertices inCQ0
n except

a andc andw /∈ {b, d}, x /∈ {b, d}. By hypothesis, there
are two disjoint paths< a,P0, w > and< c,Q0, x > with
|P0| = |Q0| = 2n−1 − 1 in CQ0

n. Similarly, there are two
disjoint paths< w,P1, b > and< x,Q1, d > with |P1| =
|Q1| = 2n−1−1 in CQ1

n. LetP =< a,P0, w, w, P1, b >
andQ =< c,Q0, x, x,Q1, d >. In this case,P andQ are
also two disjoint paths with|P | = |Q| = 2n − 1. (See
Fig. 4)
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Figure 4:a andc are inCQ0
n; b andd are inCQ1

n.
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4.  Conclusion

In this paper, we discussed the two-equal-disjoint path
coverable problem and proved that Crossed CubesCQn

are globally two-equal-disjoint path coverable forn ≥ 5.
The globally two-equal-disjoint path coverable problem
is a extension of Hamiltonian connected problem. We can
see Hamiltonian connected problem as globally one-path
coverable problem, and then we extended this property



to globally two-equal-disjoint path coverable. This work
may help to discuss the many-to-many disjoint path cov-
erable problem.
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