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Abstract

The aim of this study is to evaluate the susceptibility of landslides at Klang valley area, Malaysia, using a
Geographic Information System (GIS) and remote sensing. Landslide locations were identified in the study area
from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite
images were collected, processed, and constructed into a spatial database using GIS and image processing. A data
derived model (frequency ratio) and a knowledge-derived model (fuzzy operator) were combined for landslide
susceptibility analysis. The nine factors that influence landslide occurrence were extracted from the database and
the frequency ratio coefficient for each factor was computed. Using the factors and the identified landslide, the
fuzzy membership values were calculated. Then fuzzy algebraic operators were applied to the fuzzy membership
values for landslide susceptibility mapping. Finally, the produced map was verified by comparing with existing
landslide locations for calculating prediction accuracy. Among the fuzzy operators, in the case in which the gamma
operator (λ = 0.8) showed the best accuracy (91%) while the case in which the fuzzy algebraic product was applied 
showed the worst accuracy (79%).

Keywords: Fuzzy relations; Fuzzy membership; Landslide susceptibility; GIS; Remote sensing; Klang valley;
Maalysia.

1. Introduction

Landslide presents a significant constraint to
development in many parts of Malaysia. Damages and
losses are regularly incurred because, historically, there
has been too little consideration of the potential
problems in land use planning and slope management.
Landslides are mostly occurred in Malaysia mainly due
to heavy rainfall. In recent years greater awareness of
landslide problems has led to significant changes in the
control of development on unstable land, with the
Malaysian government and highway authorities
stressing the need for local planning authorities to take
landslide into account at all stages of the landslide
susceptibility mapping process. So far, few attempts
have been made to predict these landslides or

preventing the damage caused by them. Through this
prediction model, landslide damage could be greatly
decreased. Through scientific analysis of landslides, we
can assess and predict landslide-susceptible areas, and
thus decrease landslide damage through proper
preparation. To achieve this aim, landslide
susceptibility analysis techniques have been applied,
and verified in the study area using fuzzy logic
operators.

Landslide occurrence areas were detected in the
Klang valley area, Malaysia by interpretation of aerial
photographs and field surveys. A landslide map was
prepared from aerial photographs, in combination with
the GIS, and this were used to evaluate the frequency
and distribution of shallow landslides in the area.
Topography and lithology databases were constructed
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and lineament, land cover and vegetation index value
extracted from Landsat TM satellite image for the
analysis. Then, the calculated and extracted factors were
converted to a 10m × 10m grid (ARC/INFO GRID
type). Fuzzy operator model was applied using the
database and landslide susceptibility map was created.
Finally, the map was verified and compared using
known landslide locations for quantitative verification.
In the study, Geographic Information System (GIS)
software, ArcView 3.2, and ArcGIS 9.0 version
software packages were used as the basic analysis tools
for spatial management and data manipulation.

Using the factors and the detected landslide, the
relationships were calculated using the frequency ratio,
one of the probabilistic models. Then, the fuzzy
membership values were also calculated using the
frequency ratio. The fuzzy membership values were
combined using the fuzzy and, fuzzy or, fuzzy algebraic
product, fuzzy algebraic sum and fuzzy gamma
operators (13 cases) for landslide susceptibility
mapping. Finally, the map was verified by comparing
with existing landslide locations for calculating
prediction accuracy.

Many studies have been carried out applying GIS to
landslide susceptibility analysis. Guzzetti et al. (1999)1

summarized many landslide susceptibility evaluation
studies. In addition, many studies on landslide
susceptibility mapping using probabilistic methods have
been described2-17. Many authors have applied the
logistic regression method for landslide susceptibility
mapping18-27. Other methods like geotechnical and the
safety-factor models have been applied in different
areas28-29. New statistical approaches such as data
mining, fuzzy logic, and artificial neural network
methods have been applied in various case studies30-55.
In this paper, a total of 9 landslide conditioning factors
were derived from the topographical, geological and
geomorphological data which were only available for
the study area. Pradhan and Lee (2009) 36-39 worked on
the different regions of Malaysia and found these
parameters are quite suitable for the regional landslide
susceptibility analysis.

2. Study area

The eastern part of Selangor state has suffered much
landslide damage following heavy rains, was selected as
a suitable pilot area to evaluate frequency and
distribution of landslides (Fig. 1). Selangor is one of the

13 states of the Federation of Malaysia. The study area
is located on the south west coast of the Malaysian
peninsular. It is bounded to the north and east by the
state of Perak, Pahang and to the south by Negeri
Sembilian, Melaka. The study area is located
approximately between 3º 23’ 53.6”E and 3º 45’
18.05”E and 101º 30’ 55.33”N and 101º 3’ 36.3”N. The
landuse at the study area is mainly peat swamp forest,
plantation forest, inland forest, scrub, grassland and ex-
mining area. The landform of the area ranges from very
flat terrain, especially for the peat swamp forest, ex
mining, grassland and scrub area, to quite hilly area for
the natural forest ranging between 0- 420 meter above
sea level. Based on Malaysian Meteorological Services
Department, the temperature of northern part of
Selangor is between 29º C to 32º C and mean relative
humidity of 65% to 70%. The highest temperature is
between April to June while the relative humidity is
lowest in June, July and September. The rainfall about
58 mm to 240 mm per month was recorded in the study
area (Tanjung Karang weather station provided by
Malaysian Meteorological Services Department).

3. GIS database construction

To apply the fuzzy model, a spatial database that
considers landslide-related factors was designed and
constructed. These data are available in Malaysia either
as paper or as digital maps. The spatial database
constructed is listed in Table 1. The lineament and land
cover were detected from satellite images such as
Landsat TM (Thematic Mapper) images. There were ten
landslide inducing factors considered in calculating the
fuzzy membership function. These factors were
transformed into a vector-type spatial database using the
GIS. For the DEM creation, 10 m interval contours and
survey base points showing the elevation values were
extracted from the 1:25,000-scale topographic maps and
TIN (Triangulated Irregular Network) was made using
the elevation value. A DEM (digital elevation model)
was made using the IDW (inverse distance weighting)
interpolation method with 10 m resolution. Using this
DEM, slope angle, slope aspect, and plan curvature
were calculated. The plan curvature is prepared using
the DEMAT extension of the ArcView 3.2. In addition,
the distance from drainage was calculated using the
topographic database. The drainage buffer was
calculated at 100 m intervals and classified into 10
equal area classes. The lithology map is prepared from a
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1:63,300-scale geological map. A structural geologist
interpreted the Spot 5 image by photo interpretation and
detected the lineaments. Further the distance from
lineament is calculated based on the Euclidean distance
method in ArcView 3.2. The lineament buffer was
calculated in 100 m intervals and classified into 10
equal area classes. Landuse map was prepared using
Landsat TM image (30 m spatial resolution) using
unsupervised classification (ISODATA) method and
field survey. There were 11 landuse classes identified,
such as urban, water, forest, agriculture, and barren
area. The soil map was digitised from a 1:100,000-scale
soil map (Source: Department of Irrigation and
Drainage, Malaysia).

Finally, the Normalized Difference Vegetation Index
(NDVI) map was generated from SPOT 5 (2.5 m spatial
resolution) satellite images. The NDVI value was
calculated using the formula NDVI = (IR – R) / (IR +
R), where IR is the energy reflected in the infrared
portion of the electromagnetic spectrum, and R is the
energy reflected in the red portion of the
electromagnetic spectrum. The NDVI is useful in
delineating vegetation. Overall, the Klang valley data
set comprised 12131 rows by 21258 columns, for a total
pixel number of 257880,798. Landslides had occurred
in 326 of these pixels.

4. Landslide susceptibility analysis using fuzzy
model

The fuzzy set theory introduced by Zadeh (1965)40-44 is
one of the tools used to handle the complex problems.
Therefore, the fuzzy set theory has been commonly used
for many scientific studies in different disciplines. The
idea of fuzzy logic is to consider the spatial objects on a
map as members of a set. In the classical set theory, an
object is a member of a set if it has a membership value
of 1, or is not a member if it has a membership value of
0. In the fuzzy set theory, membership can take on any
value between 0 and 1 reflecting the degree of certainty
of membership. The fuzzy set theory employs the idea
of a membership function that expresses the degree of
membership with respect to some attribute of interest.
With maps, generally, the attribute of interest is
measured over discrete intervals, and the membership
function can be expressed as a table relating map classes
to membership values. Fuzzy logic is attractive because
it is straightforward to understand and implement. It can
be used with data from any measurement scale and the

weighting of evidence is controlled entirely by the
expert. The fuzzy logic method allows for more flexible
combinations of weighted maps, and could be readily
implemented with a GIS modeling language. This is
different from data-driven approaches such as weights
of evidence or logistic regression, which use the
locations of known objects such as landslides to
estimate weights or coefficients. The idea of using fuzzy
logic in landslide susceptibility mapping is to consider
the spatial objects on a map as members of a set. For
example, the spatial objects could be areas on an
evidence map and the set defined as ‘areas susceptible
to landslide’. Fuzzy membership values must lie in the
range (0, 1), but there are no practical constraints on the
choice of the fuzzy membership values. Values are

Fig. 1. This is the caption for the figure. If the caption is less
than one line then it is centered. Long captions are justified
manually.
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chosen to reflect the degree of membership of a set,
based on subjective judgment. Given two or more maps
with fuzzy membership functions for the same set, a
variety of operators can be employed to combine the
membership values.

Zimmerman (1996)45 discussed a variety of
combination rules. Bonham-Carter (1994)46 discussed
five operators, namely the fuzzy and, fuzzy or, fuzzy
algebraic product, fuzzy algebraic sum and fuzzy
gamma operator. This study uses the five fuzzy
operators for combining the fuzzy membership
functions.

The fuzzy and is equivalent to a Boolean AND
(logical intersection) operation on classical set values of
(1,). It is defined as:

combination = MIN (A, B, C, …) (1)

where combination is the calculated fuzzy
membership function, A is the membership value for
map A at a particular location and B is the value for
map B, and so on.

The fuzzy or is like the Boolean OR (logical union in
that the output membership values are controlled by the
maximum values of any of the input maps. The fuzzy or
is defined as:

combination = MAX (A,B,C, …). (2)

The Fuzzy Algebraic Product is defined as:

combination = 


n

i 1

I, (3)

where i is the fuzzy membership function for the i-
th map, and i = 1, 2, …, n maps are to be combined.

The fuzzy algebraic sum is complementary to the
fuzzy algebraic product, being defined as:

combination = 1 – 


n

i 1

(1 –i). (4)

The gamma operation is defined in terms of the
fuzzy algebraic product and the fuzzy algebraic sum by:

combination = (Fuzzy algebraic sum) * (Fuzzy algebraic
product) 1– , (5)

whereis a parameter chosen in the range (0,1), and the
fuzzy algebraic sum and fuzzy algebraic product are
calculated using equations (3) and (4) respectively. In

the fuzzy gamma operation, when  is 1 the
combination is the same as the fuzzy algebraic sum, and
when is 0 the combination equals the fuzzy algebraic
product. Judicious choice of produces output values
that ensure a flexible compromise between the
‘increase’ tendencies of the fuzzy algebraic sum and the
‘decrease’ effects of the fuzzy algebraic product.

Like the membership function, the frequency ratio
was calculated. The frequency ratio is shown in Table 2
for all factors. The spatial relationships between the
landslide location and each landslide-related factor were
analyzed by using the probability model–frequency
ratio. The frequency ratio, a ratio between the
occurrence and absence of landslides in each cell, was
calculated for each factor’s type or range that had been
identified as significant with respect to causing
landslides. An area ratio for each factor’s type or range
to the total area was calculated. Finally, frequency ratios
for each factor’s type or range were calculated by
dividing the landslide occurrence ratio by the area ratio.
If the ratio is greater than 1, the relationship between
landslides and the factors is higher and, if the ratio is
less than 1, the relationship between landslide and each
factor’s type or range is lower. Then, the frequency ratio
was normalized between 0.00 and 1.00 to create the
fuzzy membership value.

The input factors were combined for assigning
membership functions. Nine landslide causal factors
(slope, aspect, curvature, distance from drainage, soil,
distance from lineament, NDVI and land cover) were
combined to generate the final susceptibility map using
fuzzy operators such as fuzzy and, fuzzy or, fuzzy
algebraic product, fuzzy algebraic sum and fuzzy
gamma operator. In the case of fuzzy gamma operator,
the value of was set to 0.025, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.975 to detect its effect
on the landslide susceptibility map.

Table 1. GIS data layer of study area

Spatial Database Factor Spatial Database
Landslide Landslide 1:25,000

Slope
AspectTopographic Map
Curvature

1:25,000

Drainage Map Distance from
drainage

Soil Map Types 1:100,000
Litho types

Geology Map Distance from
lineaments

1:63,300

Land Cover Land Cover 30 m × 30 m
NDVI NDVI 10 m x 10 m
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5. Results and discussion

Using the fuzzy membership function from Table 2 and
the fuzzy relations (from Eqs. (1) to (5)), the landslide
susceptibility index (LSI) values were computed for the
17 cases including the 13 cases in which the gamma
operator was used. The computed LSI values were
mapped to allow interpretation such as that illustrated
for example in Fig. 2. The values were classified into
equal areas and grouped into five classes for visual
interpretation. For example, in the case of applying the
fuzzy And product, the minimum, mean, maximum and
standard deviation values of each LSI are 0.0548,
0.5856, 0.9929 and 0.2609 respectively. In the case of
applying the fuzzy algebraic sum, the minimum, mean,
maximum and standard deviation values of each LSI are
0.0546, 0.5238, 0.9701 and 0.2777 respectively. In the
case of applying the gamma operator (= 0.9), the
minimum, mean, maximum and standard deviation
values of each LSI are 0.0475, 0.6074, 0.9976 and
0.2672, respectively. Also, in the case of applying the
gamma operator ( = 0.8), the minimum, mean,
maximum and standard deviation values of each LSI are
0.7532, 0.9434, 0.9434 and 0.1588, respectively.

The frequency ratio model depicts the relationship
between landslide occurrence and slope (Table 2) shows
that steeper slopes have greater landslide probabilities.
Below a slope of 8°, the frequency ratio was 0.12,
which indicates a very low probability of landslide
occurrence. For slopes above 8°, the ratio was >1,
which indicates a high probability of landslide
occurrence. This means that the landslide probability
increases with slope angle. As the slope angle increases,
then the shear stress in the soil or other unconsolidated
material generally increases. Gentle slopes are expected
to have a low frequency of landslides because of the
generally lower shear stresses associated with low
gradients. Steep natural slopes resulting from
outcropping bedrock, however, may not be susceptible
to shallow landslides.

In the case of the aspect (Table 2), landslides were
most abundant on south-facing and southwest-facing
slopes. The frequency of landslides was lowest on east-
facing, and southeast-facing slopes, except in flat areas.

Table 2. Spatial relationships between each factor and landslide and fuzzy membership values

Factor Class Pixels in
domain Pixel %

Landslide
occurrence

points

Landslide
occurrence
points %

Frequency
ratio

Fuzzy
membership
function

Slope

0°
1 ~ 3°
4 ~ 8°
9 ~ 12°
13 ~ 16°
17 ~ 20°
21 ~ 23°
24 ~ 27°
28 ~ 32°
33 ~ 86°

13593532
2477185
2490574
2536839
2403719
1943819
1933459
2251344
1911594
1378122

41.29
7.52
7.57
7.71
7.30
5.90
5.87
6.84
5.81
4.19

4
3

55
34
43
25
32
34
34
62

1.23
0.92
16.87
10.43
13.19
7.67
9.82
10.43
10.43
19.02

0.03
0.12
2.23
1.35
1.81
1.30
1.67
1.53
1.80
4.54

0.00
0.02
0.49
0.29
0.39
0.28
0.36
0.33
0.39
1.00

Aspect

Flat
North
Northeast
East
Southeast
South
Southwest
West
Northwest

12283094
2585339
2643883
2582813
2615946
2602947
2585338
2556343
2464484

37.31
7.85
8.03
7.85
7.95
7.91
7.85
7.77
7.49

2
41
41
33
39
42
46
44
38

0.61
12.58
12.58
10.12
11.96
12.88
14.11
13.50
11.66

0.02
1.60
1.57
1.29
1.51
1.63
1.80
1.74
1.56

0.00
0.89
0.87
0.71
0.83
0.90
1.00
0.97
0.86

Curvature
Concave
Flat
Convex

57103
80738
56844

29.33
41.47
29.20

132
56

138

40.49
17.18
42.33

1.38
0.41
1.45

0.93
0.00
1.00

Distance from
drainage

0 ~ 20m
22 ~ 50m
53 ~ 80m
82 ~ 120m
121 ~ 183m
184 ~ 357m
358 ~ 804m
805 ~ 1546m
1547 ~ 2765m
2766 ~ 9912m

3537061
3505922
3317942
3591455
3743192
3177946
3037862
3090958
2972570
2945279

10.74
10.65
10.08
10.91
11.37
9.65
9.23
9.39
9.03
8.95

20
33
38
53
41
38
23
33
33
14

6.13
10.12
11.66
16.26
12.58
11.66
7.06
10.12
10.12
4.29

0.57
0.95
1.16
1.49
1.11
1.21
0.76
1.08
1.12
0.48

0.09
0.47
0.67
1.00
0.62
0.72
0.28
0.59
0.63
0.00
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Geology

Acid intrusives (undifferentiated)
Acid intermediate volcanics
Basic intrusives, mainly gabbro
Clay and silt (marine)
Clay and silt, sand and gravel
Isolated continental basin deposit
Limestone/marble
Peat, humic clay and silt
Phyllite, schist and slate
Phyllite, slate, shale and sandstone
Sandstone and mudstone
Schist
Schist, phyllite, slate & limestone
Vein quartz

16004821
3287743

0
3560830
227099

2167048
1738659
146224
12229

4896610
0

831509
29530
17882

48.62
9.99
0.00
10.82
0.69
6.58
5.28
0.44
0.04
14.87
0.00
2.53
0.09
0.05

196
29
0

19
1
6
7
2
0

59
0
7
0
0

60.12
8.90
0.00
5.83
0.31
1.84
2.15
0.61
0.00
18.10
0.00
2.15
0.00
0.00

1.24
0.89
0.00
0.54
0.44
0.28
0.41
1.38
0.00
1.22
0.00
0.85
0.00
0.00

0.90
0.65
0.00
0.39
0.32
0.20
0.29
1.00
0.00
0.88
0.00
0.62
0.00
0.00

Distance from
lineaments

0 ~ 601m
602 ~ 1244m
1245 ~ 1990m
1991 ~ 2890m
2891 ~ 4011m
4012 ~ 5556m
5557 ~ 7792m
7793 ~ 10998m
10999 ~ 17570m
17571 ~ 39268m

3303257
3294265
3297547
3290818
3293456
3290390
3289082
3288531
3287297
3285544

10.03
10.01
10.02
10.00
10.00
10.00
9.99
9.99
9.99
9.98

45
33
31
25
32
16
47
29
48
20

13.80
10.12
9.51
7.67
9.82
4.91
14.42
8.90
14.72
6.13

1.38
1.01
0.95
0.77
0.98
0.49
1.44
0.89
1.47
0.61

0.90
0.53
0.47
0.28
0.50
0.00
0.97
0.41
1.00
0.13

Soil

rgm
stp
dld
tvy-bgr
laa-col
mun-sbn
sdg-mun
sdg-kdh-drn
isa
sdg-mun-kdh
mca
sdg-mun-sbn
kdh-btm-drn
jbu
mph-akb
slr-brh
kdh-sdg-mun
knj
knj-msa
slr-tla
Brh

4045115
12676854
4164688
156068

3037752
1285130
1042998
893747

1448454
679084
17885

2465815
161728

0
0

442264
293005

0
0
0

6633

12.33
38.63
12.69
0.48
9.26
3.92
3.18
2.72
4.41
2.07
0.05
7.51
0.49
0.00
0.00
1.35
0.89
0.00
0.00
0.00
0.02

67
108
46
0

49
13
3

14
2
1
0

15
1
0
0
1
2
0
0
0
0

20.81
33.54
14.29
0.00
15.22
4.04
0.93
4.35
0.62
0.31
0.00
4.66
0.31
0.00
0.00
0.31
0.62
0.00
0.00
0.00
0.00

1.69
0.87
1.13
0.00
1.64
1.03
0.29
1.60
0.14
0.15
0.00
0.62
0.63
0.00
0.00
0.23
0.70
0.00
0.00
0.00
0.00

1.00
0.51
0.67
0.00
0.97
0.61
0.17
0.94
0.08
0.09
0.00
0.37
0.37
0.00
0.00
0.14
0.41
0.00
0.00
0.00
0.00

Land cover

Primary Forest
Secondary forest
Mangrove
Rubber
Mining
Palm oil
Urban areas
Settlements
Water body

477918
14612240

107336
1477595
689659

8881804
3911625
2027737
730593

1.45
44.43
0.33
4.49
2.10
27.00
11.89
6.17
2.22

0
127

0
17
4

95
36
27
20

0.00
38.96
0.00
5.21
1.23
29.14
11.04
8.28
6.13

0.00
0.88
0.00
1.16
0.59
1.08
0.93
1.34
2.76

0.00
0.32
0.00
0.42
0.21
0.39
0.34
0.49
1.00

NDVI

-0.917 ~ -0.746
-0.746 ~ -0.575
-0.575 ~ -0.404
-0.404 ~ -0.233
-0.233 ~ -0.063
-0.063 ~ 0.108
0.108 ~ 0.279
0.279 ~ 0.45
0.45 ~ 0.621
0.621 ~ 0.792

3309526
3298502
3289839
3376070
3301110
3597510
3253993
3176526
3202393
3114718

10.05
10.02
9.99
10.26
10.03
10.93
9.88
9.65
9.73
9.46

48
47
52
47
24
32
27
17
16
16

14.72
14.42
15.95
14.42
7.36
9.82
8.28
5.21
4.91
4.91

1.46
1.44
1.60
1.41
0.73
0.90
0.84
0.54
0.50
0.52

0.88
0.85
1.00
0.82
0.21
0.36
0.31
0.04
0.00
0.02

Table 3. Verification results using Receiver Operating Characteristic (ROC) and Area Under Curve (AUC)

Fuzzy Operator AUC (%)

Fuzzy And 84.34

Fuzzy Or 79.86
Fuzzy Algebraic Sum 82.39
Fuzzy Algebraic Product 79.63
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Gamma (λ) = 0.025 80.92
Gamma (λ) = 0.05 80.92
Gamma (λ) = 0.1 80.92
Gamma (λ) = 0.2 80.92
Gamma (λ) = 0.3 80.92
Gamma (λ) = 0.4 80.92
Gamma (λ) = 0.5 80.92
Gamma (λ) = 0.6 80.92
Gamma (λ) = 0.7 80.92
Gamma (λ) = 0.8 83.87
Gamma (λ) = 0.9 91.30
Gamma (λ) = 0.95 91.20
Gamma (λ) = 0.975 91.20

(a) (b)

(c) (d)
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Fig. 2. Landslide susceptibility maps using various fuzzy operators: (a) Application of fuzzy algebraic “sum” operator; (b) Application
of fuzzy algebraic “and” operator;  (c) Application of fuzzy gamma (λ = 0.8) operator;  (d) Application of fuzzy gamma (λ = 0.9) 

operator; and (e) Application of fuzzy gamma (λ = 0.975) operator.

The curvature values represent the morphology of the
topography. A positive curvature indicates that the
surface is upwardly convex at that pixel. A negative
curvature indicates that the surface is upwardly concave
at that pixel. A value of zero indicates that the surface is
flat. As shown in Table 2 from the results of the
frequency ratio model, the more positive or negative the
curvature value the higher the probability of landslide
occurrence. Flat areas had a low curvature value of 0.41
whereas concave shape had highest value of 1.45. The
reason for this is that following heavy rainfall, a convex
or concave slope contains more water and retains this
water for a longer period which could lead to failure of
slope triggering landslide.

Analysis was carried out to assess the influence of
drainage lines on landslide occurrence. For this
purpose, the proximity of landslide to drainage line was
identified by buffering (Table 2). It can be seen from
the results of the frequency ratio model that as the
distance from a drainage line increases, the landslide
frequency generally decreases. At a distance of <357 m,
the ratio was >1, indicating a high probability of
landslide occurrence, and at distances >358 m, the ratio
was <1, indicating very less probability. This can be
attributed to the fact that terrain modification caused by
gully erosion may influence the initiation of landslides.
However, at a distance of <20m, the frequency ratio is
0.57 which is due to the less number of previous
occurred landslides.

For geological factors using frequency ratio model,
such as the lithology (Table 2) and the distance from
lineament (Table 2), it was found that in the case of the
lithology, the frequency ratio was higher (1.24) in acid
intrusive; peat, humic clay and silt; phyllite, slate and
shale, and was lower (0.0) in schist and basic intrusive
areas. In case of the distance from lineament, the closer
the distance was to lineament, the greater was the
landslide-occurrence probability. For distances of
<1244 m, the ratio was >1, indicating a high probability
of landslide occurrence, and for distances of >1244 m,
the ratio was <1, indicating a low probability. This
means that the landslide probability decreases with
increasing distance from lineament. As the distance
from lineament decreases, the fracture of the rock
increases, and the degree of weathering increases
resulting in greater chances of landslides.

In the case of soil using frequency ratio model
(Table 2), the landslide-occurrence values were higher
in rgm, dld, laa-col series. In the case of landcover
(Table 2), the landslide-occurrence values were higher
in tin mine and rubber plantation areas. In the case of
the normalized differential vegetation index using
frequency ratio model (Table 2), for NDVI values
below -0.233, the frequency ratio was <1, which
indicates a low landslide-occurrence probability, and
for NDVI values above -0.233, the frequency ratio was
>1, indicating a high landslide-occurrence probability.

(e)
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6. Verification of susceptibility maps and
success rate curve

The landslide susceptibility analysis was performed
using various fuzzy operators, and the analysis results
were verified using Receiver Operating Characteristic
(ROC) analysis. ROC analysis is suitable to assess the
validity of a model that predicts the location of the
occurrence of a class by comparing the predicted image
with the actual presence of the class (Pontius, 2001)47.
The ROC analysis was used to validate the results
obtained from the three models. The verification
method was performed by comparison of existing
landslide data and landslide susceptibility maps. The
comparison results are shown in Table 3.

Landslide susceptibility analysis results were
verified using known landslide locations. The rate
curves were created for three cases of susceptibility
maps using the existing landslide location data. The rate
explains how well the model and factor predict the
landslide (Chung and Fabbri, 1999)48. So, the area
under curve can assess the prediction accuracy
qualitatively. To obtain the relative ranks for each
prediction pattern, the calculated index values of all
cells in the study area were sorted in descending order.
Then the ordered cell values were divided into 100
classes, with accumulated 1% intervals. The rate
verification results appear as a line in Fig. 3. The
comparison results are shown in Fig. 3 as a line graph,
which illustrates how well the landslide susceptibility
maps of nine cases match with respect to the landslides
used in constructing those landslide susceptibility maps.
To obtain the data for Fig. 3, relative ranks of landslide
susceptibility map and landslide occurrence were
compared for each case. For this aim, the probabilities
were divided into classes of accumulated area ratio %
(X-axis) according to the landslide susceptibility index
value (Y-axis).

For example, when applying fuzzy algebraic sum,
the 90%–100% (10%) class with the highest probability
of a landslide contains 32% and the 80%–100% class
(20%) contains 58% of the landslides of study area. In
the case of applying the fuzzy And product, the 90%–
100% (10%) class with the highest probability of a
landslide contains 37% and the 80%–100% class (20%)
contains 62% of the landslides of study area. In the case
of the gamma operator (= 0.9), the 90%–100% (10%)
class with the highest possibility of a landslide contains
62% and the 80–100% class (20%) contains 92% of the

landslides of study area. In the case of applying the
gamma operator (= 0.8), the 90%–100% (10%) class
with the highest possibility of a landslide contains 40%
and 80%–100% class (20%) contains 63% of the
landslides of study area.

To compare the results quantitatively, the areas
under the curve were recalculated taking the total area
as 1, which means perfect prediction accuracy (Chung
and Fabbri, 1999)48. So, the area under a curve can be
used to assess the prediction accuracy qualitatively for
landslide susceptibility mapping. The area under the
curve is shown in Table 3. For example, in the case of
applying fuzzy algebraic And, the area ratio was 0.8434
and we could say that the prediction accuracy is
84.34%. In the case of applying fuzzy algebraic sum,
the area ratio was 0.6477 and we could say that the
prediction accuracy is 82.39%. In the case of applying
the gamma operator (= 0.975), the area ratio was
0.9120 and the prediction accuracy is 91.20%.
Although, for the first five classes (50 to 100%), the
gamma operator “0.9” is a little better than those from
the remainder of the classes (0–50%), the gamma
operators produced somewhat similar results in all
classes.

7. Conclusions

Different fuzzy operators and different values for the
gamma operation were tested on the input fuzzy
membership functions to generate the most reliable
landslide susceptibility map. The membership values
assigned to each evidence map also play an important
role in the final results. The fuzzy operators used in the
first or further steps of analyses also affect the
possibilities obtained in the final susceptibility map.

After verification, among the 17 cases, the case of
applying the gamma operator (= 0.9), showed the best
accuracy (90.30%), whereas the fuzzy algebraic product
(79.63%) and fuzzy or (79.86%) operators showed the
worst accuracy. In the case of applying the gamma
operator with different value, the prediction accuracy
had a similar upward trend value, between 80.92% and
83.87%. Generally, the verification results showed
satisfactory agreement between the susceptibility map
and the existing data from landslide locations. The
effect of choosing different values of gamma (between
0 and 1) is not large. Because the landslide
susceptibility maps using different values of gamma
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(Fig. 3) are very similar and the prediction accuracy
after verification is also very similar.

In the study the data derived model (frequency ratio)
and the knowledge-derived model (fuzzy logic) were
combined. As a result, the combined data and
knowledge derived model is useful for landslide
susceptibility mapping considering the prediction
accuracy. Decision making under uncertainty is closely
related to susceptibility analysis. Landslide
susceptibility map will help for decision making for
planners. These decisions are usually in the form of
technical countermeasures, regulatory management or
combinations of the two. Classic examples of
regulatory management are zoning maps which, for
instance, exclude some areas from habitation. Landslide
susceptibility maps are of great help to planners and
engineers for choosing suitable locations to implement
development action plans. Their results can be used as
basic data to assist slope management and land-use

planning. The models used in the study are valid for
generalized planning and assessment purposes,
although they may be less useful at the site-specific
scale where local geographic and geological
heterogeneities may prevail. In spite of a number of
weaknesses in the database, the Fuzzy logic modelling
approach, combined with the use of remote sensing and
GIS spatial data, yields a reasonable accuracy for the
landslide prediction. In order to be applied in a more
way, more landslide data are needed, as well as
applications to more regions.
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Fig. 3. Success rate evaluation of landslide susceptibility models using area under the curve (AUC).
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