
 

Soft Computing: A Continuously Evolving Concept 

Piero P. Bonissone 

General Electric Global Research, One Research Circle K1-4A10A 

Niskayuna, NY 12309, USA 

E-mail: bonissone@ge.com 

 

 

 

Abstract 

Abstract. Soft Computing (SC) is a concept with constantly evolving semantics, as researchers have adopted its 

main philosophy while adding various interpretations and facets to this concept.  Originally defined as a loose 

association or partnership of components, SC has gone through several transformational phases.  This paper will 

trace some of the phases experienced by the author as part of his understanding of the evolution of SC and its role 

in constructing decision-making models.  The first phase is the hybridization phase, driven by the inherit ease of 

integration of SC components. The second phase is a two-level model characterization, based on the split between 

object-level and meta-level reasoning. This phase, inspired by traditional AI problem formulation, led to a third 

phase, in which we addressed the knowledge and meta-knowledge representation required by each of these 

reasoning levels using a linguistics analogy. The fourth phase is the extension of the heuristics used at the meta-

level, e.g.  Metaheuristics (MH’s) from evolutionary algorithms to other search methods.  The fifth and last phase, 

further described in this paper, is the proposal for a strong separation between offline MH’s (used for design and 

tuning) and online MH’s (used for models selection or aggregation.) This last view suggests a broader use of SC 

components, since it enables us to use hybrid SC techniques at each of the MH’s levels as well as at the object 

level.  Furthermore, this separation facilitates the model lifecycle management, which is required to maintain the 

models vitality and prevent their obsolescence over time. 

Keywords: Fuzzy sets, Neural networks, Evolutionary Algorithms, Metaheuristics, Meta-reasoning. 

1. Historic Background 

1.1. The Origins 

Soft Computing (SC) is a concept with constantly 

evolving meaning, which has benefitted from the initial 

vision of Prof. Zadeh and the contributions of many 

researchers in the field, who have provided additional 

facets and semantic variations. 

 

The coining of this term goes back to 1994, when Prof. 

Lotfi Zadeh at IIZUKA’94 introduced this concept as 

“an association of computing methodologies that 

includes as its principal members fuzzy logic (FL), 

neuro-computing (NC), evolutionary computing (EC) 

and probabilistic computing (PC)”.
1
  Furthermore, 

Zadeh contrasted this new concept with Hard 

Computing by highlighting SC ability to “exploit the 

tolerance for imprecision, uncertainty, and partial truth 

to achieve tractability, robustness, low solution cost, and 

better rapport with reality”- although these properties 

are more typical of fuzzy systems than of the other SC 

components.   

 

International Journal of Computational Intelligence Systems, Vol.3, No. 2 (June, 2010), 237-248

Published by Atlantis Press 
    Copyright: the authors 
                    237

zegerkarssen
Texte tapé à la machine

zegerkarssen
Texte tapé à la machine
Received: 03-11-2009
Accepted: 28-05-2010



P. Bonissone 

 

The concept “association of components” has rather 

loose semantics, and as such it allowed many 

researchers to provide their own interpretations of this 

idea, refining this term in various ways, not always 

coherent among themselves.  At the same time, we 

witnessed the advent of a similar concept, 

Computational Intelligence, which came of age in 1994 

with the launch of the First IEEE World Congress on 

Computational Intelligence (WCCI), in Orlando Florida. 

This congress was allegedly the first organized attempt 

to create a common forum for three of SC basic 

technologies (fuzzy, neural, and evolutionary 

computation). Computational Intelligence (CI) has a 

broad overlapping with Soft Computing.  Based on the 

definition provided by the IEEE Computational 

Intelligence, CI covers biologically and linguistically 

motivated computational paradigms.
2
 Its scope seems to 

exclude probabilistic reasoning systems, while including 

other nature-inspired methodologies, such as swarm 

computing, ant colony optimization, etc. Readers 

interested in the origins of the CI concept should consult 

references.3-5 Rather than trying to differentiate between 

the two terms, we will follow the evolution of Soft 

Computing and trace this evolution within the context of 

creating SC based decision-making models.  

2. A Personal, Retrospective View of Soft 

Computing 

2.1. Phase 1: Hybridization 

In 1997, the author noted that the various SC 

components not only were coming of age but they were 

slowly converging to create Hybrid Soft Computing 

systems.
6 The SC components were labeled as reasoning 

and search techniques.  We considered the reasoning 

techniques as knowledge-driven tools to translate 

domain knowledge into models, while we considered 

the search techniques as data-driven tools to extract 

models from the data, rather than starting from the 

domain expert.  Figure 1 (adapted from reference 6) 

Probabilistic 

Models

Bayesian 

Belief Nets

Dempster- 

Shafer theory

Approximate Reasoning Approaches

Multivalued   

and Fuzzy Logics

MV-Algebras

Mechanism: Conditioning Mechanism: Modus Ponens

Neural Networks

Feedforward

Search/Optimization Approaches

Evolutionary 

Computation

Evol. 

Strat.

Evol. 

Progr.

Local search, Fine granule Global search, Large granule

Feedback

Gen. 

Algor.

Gen. 

Progr.

Single 

Layer

Multi 

Layer

RBF 

nets
Compet. 

nets

Kohonen 

SOM

ART 

models

Hopfield 

nets

Probability  

of  fuzzy 

event

Belief of 

fuzzy event

NN parameters 

(learning rate)  

controlled by FL 

GA parameters 

controlled by 

FL

Fuzzy 

Logic

FL Controllers 

tuned by NNs

NN topology and 

weights 

generated by GAs

FL Controllers 

generated and 

tuned by GAs

GA parameters 

(Pop size, select.) 

controlled by GA

Hybrid SC Systems

 

Fig. 1.  Soft Computing Overview (adapted from reference 6). 

Published by Atlantis Press 
    Copyright: the authors 
                  238



 SC: A Continuously Evolving Concept 

 

illustrates this concept. The hybridization was a natural 

consequence of trying to integrate domain knowledge 

with field data.  Other researchers
7
 considered other 

facets of the concept of SC, which was also revisited by 

Zadeh in 1998.
8
 

 

In 1999, the author focused on the ease with which SC 

components could be integrated to form hybrid SC 

systems.
9
 Specifically, we stated that “we have seen an 

increasing number of hybrid algorithms, in which two 

or more SC technologies have been integrated to 

leverage the advantages of individual approaches. By 

combining smoothness and embedded empirical 

qualitative knowledge with adaptability and general 

learning ability, these hybrid systems improve the 

overall algorithm performance.”  In the same paper, we 

also focused on the synergy generated by the use of 

search components to generate or tune reasoning 

components and illustrated this synergy in four real-

world applications. 

 

The concept of hybrid SC was embraced and further 

developed by many other researchers, who explored the 

use of global search methods, such as evolutionary 

algorithms for generating probabilistic systems,
10

 fuzzy 

systems,11 and neural networks,12 to mention a few. 

2.2. Phase 2: Two-level Modeling (Object- and 

Meta-Reasoning)  

In 2003, the author proposed to view the modeling 

problem as a two-level problem.
13

 This view was 

influenced by traditional AI problem formulation 

approaches. The first level was the object-level, in 

which SC techniques were used to implement run-time 

models to solve domain-specific problems.  The second 

one was the meta-level, in which SC techniques were 

used to generate, improve, update, and control the 

object-level models. This two-level decomposition also 

suggested symmetry between reasoning and search 

methodologies, so that we could use knowledge and 

reasoning to control search and vice-versa.  In the same 

reference 13, and later in reference 14, the author 

proposed a distinction between offline and online 

Metaheuristics (MH’s). Offline MH’s deal with the 

batch design of object-level models.  Once the design is 

complete, run-time object-level models are generated 

and used to solve the problem without further 

modifications.  This relationship is analogous to the 

compiler/run-time model relationship that we find in 

Machine Learning, where ML algorithms extract 

relevant information from the training set and generate 

run-time models. Online MH’s on the other hand, are 

used to monitor, guide, and control the resources of the 

run-time model. Figures 2 and 3 (adapted from 

reference 14) illustrate the use of offline MH’s for 

model parameter design and on-line MH’s for model 

parameter run-time control. 

2.3. Phase 3: Domain Knowledge Representation 

Having established this two-level structure, we decided 

to focus on the knowledge representation required by 

each structure.  To measure the depth of such 

knowledge, the author proposed a linguistics analogy, in 

which the knowledge’s depth ranges from lexical (e.g., 

event codes), to morphological (e.g., event code 

 

 

 

 

 

 

Fig. 2.  Schematic of Offline Meta-Heuristics  

(adapted from reference 14). 

 

 

 

 

 

Fig. 3.  Schematic of Online Meta-Heuristics  

(adapted from reference 14). 

Object-level Problem

Object-level PS

Controller

State Variables:
Performance of 

Object-level PS

KB

Control Variables:

Modified parameters 

for Object-level PS

Off-line KB definition

Run-time EnvironmentRun-time Environment

On-line MH

Object-level Problem

Object-level 

Problem Solver (PS)

Run-time 
Parameters for 

Object-level PS

Object-level 
Problem Solver (PS)

Meta- Level PS

Suite of Representative  
Problems

Performance of 
Object-level PS

Off-line Tuning

Run-time Environment

Parameters of 
Object-level PS

Published by Atlantis Press 
    Copyright: the authors 
                  239



P. Bonissone 

 

taxonomy), syntactic (e.g., signatures derived from 

event code ordering), semantic, (e.g., first-principle 

based meaning) and pragmatic (e.g., context-dependent 

model selection).15 

 

This domain knowledge ordering was used to establish a 

decision framework defined as the cross-product of the 

time-horizon over which a decision was needed (from 

single decision to short, medium, long and life-long 

term) and the knowledge depth required by the decision 

making model, as illustrated in Figure 4. By observing 

this figure, we observe that only for short-term (tactical) 

horizon applications we can develop models that are 

based on relatively shallow knowledge (from lexical to 

syntactic). In these cases, it is common to construct an 

ensemble of such models, ensuring their diversity (in 

the sense of errors' uncorrelation) and performing a 

fusion to increase the output's reliability.   

As the time horizon increases, deeper domain 

knowledge is required to create the object-level models, 

the models outputs are usually complex (schedules, 

plans) and become less suitable for fusion. Such 

sophisticated models require the use of semantics, since 

- as it in the case of system analysis – semantics allows 

us to decompose the meaning of a communication 

(model) into the meanings of its components and their 

relationships.  

 

For instance, by incorporating engineering knowledge, 

we can identify key system variables, leverage their 

functional dependency to verify the correctness of other 

variables, extract the most informative features to create 

more compact representations, etc.  Furthermore, the 

performance metrics associated with these tasks become 

less precise and more qualitative in nature. This 

characteristic is very suitable for the use of fuzzy 

system as possible fitness evaluator for the evolutionary 

algorithms that might be used to explore the models. 

 

To build meta-level models, we need to use pragmatics, 

which uses external, contextual knowledge to fully 

understand the meaning of our communication. While 

all prior levels dealt with information contained in the 

message itself (object-level), pragmatics requires 

higher-level knowledge (meta-level) to provide the 

contextual information needed to disambiguate a 

sentence, correctly interpret its meaning, etc. For model 

building, this consists in leveraging contextual 

        

Time 

Horizon
Multilple Decisions

Single 

Decision

Model 

Update & 

Maintenance

Pragmatics

Semantics

Syntax

Marked-up

Lexicon

Morphology

Lexicon

Lifecycle

Long-Term 

Planning

Contingency 

Planning

Asset Mgmt.

Multi-Obj. Opt.

Tradeoffs Aggr.

MCMD

Scheduling

Planning

Readiness 

Assessment

Asset Allocation

Optimization

DM

Anomaly Id. 

Diagnostics

Prognostics

Control

Transactional 

Decision

Scheduling
Anomaly Id. 

Diagnostics

Anomaly 

Detection

Anomaly 

Identification

Anomaly 

Detection

StrategicOperationalTacticalReal-time

Multilple Decisions
Single 

Decision

Model 

Update & 

Maintenance

Pragmatics

Semantics

Syntax

Marked-up

Lexicon

Morphology

Lexicon

Lifecycle

Long-Term 

Planning

Contingency 

Planning

Asset Mgmt.

Multi-Obj. Opt.

Tradeoffs Aggr.

MCMD

Scheduling

Planning

Readiness 

Assessment

Asset Allocation

Optimization

DM

Anomaly Id. 

Diagnostics

Prognostics

Control

Transactional 

Decision

Scheduling
Anomaly Id. 

Diagnostics

Anomaly 

Detection

Anomaly 

Identification

Anomaly 

Detection

StrategicOperationalTacticalReal-time

Domain 

Knowledge

Decision 

Horizon

Knowledge 

Depth

 

Fig. 4.  Framework for SC applications (adapted from reference 15). 

Published by Atlantis Press 
    Copyright: the authors 
                  240



 SC: A Continuously Evolving Concept 

 

information (such as operational regimes, environmental 

conditions, health deterioration) to determine the degree 

of applicability of local models and to select the best (or 

the best mixture).  

 

The selection of the most appropriate SC techniques, in 

conjunction with "sibling" disciplines, such as Al, 

Statistics, and Information Theory, depends on the type 

of available domain knowledge. Table 1 depicts the 

most useful SC approaches for different knowledge 

types (labeled according to our linguistics analogy).  

 

Examples of two-level models and their required 

knowledge types are illustrated in Figure 5 and 6, which 

have been adapted from reference 13 to incorporate the 

view presented in reference 15.  

In Figure 5 we can observe a variety of object-level 

models or problem solvers (PS) based on fuzzy sets, 

neural networks, traditional controllers, Bayesian 

networks, etc. Each model needs specific parametric 

information that was instantiated and tuned offline by a 

meta-level PS (either a neural network (NN) using local 

search, or an evolutionary algorithm (EA) using global 

search.) More specific information about these 

applications can be found in references 12 and 16-21. 

In Figure 6 we can observe three object-level models 

based fuzzy logic control (FLC), a neural fuzzy system 

(ANFIS), and an evolutionary algorithm (EA).  Each of 

these models is supervised at run-time by a fuzzy 

controller (FLC) or a combination of fuzzy sets (FS) 

and statistics based models to determine the best 

mixture of object-level models, or to modify their 

resources or parameters, such as population size and 

probability of mutation for the EA.  More specific 

information about these applications can be found in 

references 22-26. 

2.4. Phase 4: Extending Offline Metaheuristics  

The two-level approach was further refined in reference 

27.  When dealing at the meta-level, we extended global 

search techniques from evolutionary algorithms to a 

variety of meta-heuristics, such as relaxation and search 

MH’s.  With this extension we emphasized the fact that 

the meta-heuristics were used to perform a search in the 

object-model design space. As such, we should be able 

to use a variety of search methods, such as taboo search, 

scatter search, hill climbing, greedy like, multi-start, 

variable neighborhood, simulated annealing, 

evolutionary search, etc.  This is illustrated in Figure 7, 

adapted from reference 27. 

Table 1.   SC Techniques & Domain Knowledge. 

  SC/Stat/AI Techniques 
Domain 

Knowledge 

Self-Organizing Maps (SOM) Kolmogorov Complexity, One-class Support Vector Machine, 

Neural Networks, Unsupervised Machine Learning techniques, fuzzy clustering, non-

parametric statistics 

Lexicon and 

Morphology 

Supervised Machine Learning techniques, NN, Fuzzy Classifiers, CART, Random Forest, 

MARS 

Marked-up 

Lexicon 

Automated Kernel Splitting, Grammatical Inference, Evolutionary Algorithms (EA) Syntax 

Feature extraction/selection, fuzzy models, 1st Principle based simulations, temporal 

reasoners, Case-based Reasoners, planners, Evolutionary Algorithms  
Semantics 

Model Selection/Mixing, EA, MOEA, Fuzzy models for preference aggregation and tradeoffs Pragmatics 

 

Published by Atlantis Press 
    Copyright: the authors 
                  241



P. Bonissone 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Example of Offline Meta-Heuristics (adapted from reference 15).  

 

 

 

 

 

 

 

 

 

Fig. 6.  Example of Online Meta-Heuristics (adapted from reference 15).  

Control

Problem

FLC

EA

Prediction

Problem

FS

NN

Control

Problem

Controller

Optimiz.

Problem

NN

EA

Optimiz.

Problem

EA

EA

Classif.

Problem

BBN

EA

Classif.

Problem

F-IBM

EA

Tuning
NN Parameters

Evolving

Tuning Bayesian 

Classifiers

Tuning
EA Parameters

Object-Level PS

Meta-Level PS

Tuning

Gain Schedule 

Parameters

Generation and tuning of fuzzy rule-based systems for 

classification, control, fusion, etc.

EA: Pragmatics
FS: Semantics

Generation and tuning of fuzzy instance- or case-based

systems for classification, prediction, etc.
EA: Pragmatics
FS: Semantics

Tuning Fuzzy 
Instance Based 

Classifiers

Tuning FLC 

Parameters

Tuning FS 

Parameters

Tuning of Evolutionary Algorithm Parameters EA: Pragmatics

FS: Semantics

EA

[16] [19] [20-21][17] [18] [10][12]

Control

Problem

FLC

FLC

Optimiz.

Problem

EA

FLCMeta-Level PS

Object-Level PS

Prediction

Problem

ANFIS

FS + 

Stats

Fuzzy control of 
evolutionary algorithms’
parameters

FS: Pragmatics
EA: Semantics

Fuzzy Control of lower-level 
fuzzy controllers: Fuzzy 
Supervisory Control

FS: Pragmatics
FS: Semantics

[22] [23-24] [25-26]

Published by Atlantis Press 
    Copyright: the authors 
                  242



 SC: A Continuously Evolving Concept 

 

3. A Prospective View of Soft Computing 

Guided by the retrospective view described in the 

previous section, we will extend our definition of 

building SC models by suggesting the following steps:  

• Create a strong separation between offline MH’s, 

which are applied in batch mode during the 

model(s) design phase, and online MH’s, which - if 

needed - will be part of the run-time model 

architecture and will be designed by the offline 

MH’s. 

• Use SC technologies to build any of the MH’s and 

object-level models. 

 

Specifically, when building a model we will distinguish 

among these stages:  

(i) Model Design: Offline-MH’s to design, tune, 

optimize, adapt to changes, and maintain the run-

time models over time. 

(ii) Model Architecture:  

(a) Online-MH’s to integrate/interpolate among 

multiple (local) object-models, manage their 

complexity, and improve their overall 

performance; 

(b) Multiple object-models, either in parallel 

configuration (ensemble) or sequential 

configuration (cascade, loop), to integrate 

functional approximation with optimization 

and reasoning with imperfect data (imprecise 

and uncertain); or for simpler problems: 

(c) Single object-model to provide an individual 

SC functionality (functional approximation, 

optimization, or reasoning with imperfect 

data).  

(iii) Model Representation: structure and parameters for 

each (MH’s and object) model.  

 

This strategy allows us to leverage SC capabilities at 

every level.  We can manage complexity by finding the 

best model architecture to support problem 

decomposition, create high-performance local models 

with limited competence regions and allow for smooth 

interpolations among them, and promote robustness to 

imperfect data by aggregating diverse models.  In the 

next section we will examine a case study to further 

describe this concept. 

4. Examples of SC to Develop Offline MH’s, 

Online MH’s, and Object-level Models 

Let’s take a brief look at some case studies where we 

employed SC techniques for model design (using offline 

MH’s), for model control (using online MH’s), and for 

object-level models generation.  Table 2 illustrates 

various instances of this use of SC techniques. 

4.1.  Anomaly Detection Model 

For illustration purpose we will analyze the third case 

study of Table 2, which deals with a classification 

problem (anomaly detection) for a fleet of physical 

assets (such as an aircraft engines or a gas turbines). A 

critical component of the Prognostics and Health 

Management (PHM) of these assets is the timely and 

correct detection and identification of any abnormal 

behavior. Anomaly detection leverages unsupervised 

learning techniques, such as clustering.  Its goal is to 

extract the underlying structural information from the 

data, define normal structures and regions, and identify 

departures from such regions.   After detecting an 

abnormal change, (e.g. a departure from a normal 

region), we need to identify its cause. There are many 

factors that could cause such change:  

• A system fault, which could eventually lead to a 

failure; 

• A sensor fault, which is creating an incorrect 

measurement; 

• An inadequate anomaly detection model that is 

creating false alarms due to bad model design, 

inadequate model update, execution outside the 

model’s region of competence, etc; 

• A sudden, unexpected operational transient, 

which is stressing the system by creating an abrupt 

load change.  In turn, this transient could be 

originated by an operator error, who is requesting 

such sudden change; by an incorrect reference (set-

up) vector – in case of operation automation - 

which is also requesting such abrupt change; or by 

 

 

 

 

 

Fig. 7.  Meta-Heuristics Extension (adapted from reference 27).  

Probabilistic
Models

Multi-valued &
Fuzzy Logic

Neural 
Networks

Meta-
heuristics 

Hybrid Models

Evolutionary MH

Relaxation MH

Ind. Search MH

Mult. Search MH

Approximate 

Reasoning

Functional Approximation / 

Randomized Search

Other MH’s

Published by Atlantis Press 
    Copyright: the authors 
                  243



P. Bonissone 

 

a bad controller, which is over- or under-

compensating for some perceived state change. 
 

In this case study, further described in references 31-32, 

we focused on the prevention of false alarms caused by 

anomaly detection models whose accuracy was 

inadequate when compared with the signal level of the 

anomaly.  

4.1.1. Object-level models (AANN’s) 

One of the best techniques to detect anomalies is the 

auto-associative neural networks (AANN’s). They are 

feedforward neural networks with network structure 

satisfying requirements for performing restricted auto-

association. The inputs to the AANN’s go through a 

dimensionality-reduction, as their information is 

combined and compressed in intermediate layers.  In the 

ideal case, the AANN’s outputs should be identical to 

the inputs. Their differences (residuals) and their 

gradient information are used to train the AANN’s to 

minimize such differences. This network computes the 

largest Non-Linear Principal components (NLPCA’s) – 

the nodes in the intermediate layer– to identify and 

remove correlations among variables.  When an 

anomaly occurs, the AANN’s will detect a departure 

from the covariance information obtained during 

training and captured by the NLPCA’s. This disruption 

will generate larger residuals that will trigger the 

anomaly notification.40-41 

4.1.2. Online MH’s (fuzzy supervisory system) 

Training a global AANN on the entire operating space 

of the asset usually does not produce the required 

accuracy.  Global models are designed to achieve a 

compromise among completeness (for coverage) and 

high-fidelity (for accuracy). As a result, we typically 

end up with models that have small biases but large 

variability. This variability is usually too large to allow 

us to distinguish between model error and anomalous 

asset behavior. To achieve the required accuracy we 

used an ensemble of local models (AANN’s) with 

limited, overlapping regions of applicability aggregated 

by a fuzzy supervisory system. This allowed us to 

leverage the performance of customized local models 

and combine their outputs, using a smooth interpolation 

mechanism as we moved across adjacent operating 

regions. 

4.1.3. Offline MH’s (evolutionary algorithms) 

Having established a structure for the run-time AD 

model we needed to design the AD model.  We trained 

Table 2.   SC Techniques & Domain Knowledge. 

Problem 

Instance 
Problem Type 

Model Design 

(Offline MH’s) 

Model 

Controller 

(Online MH’s) 

Object-level models References 

Anomaly 

Detection 

(System) 

Classification 
Model T-norm 

tuning 

Fuzzy 

Aggregation 

Multiple Models:  

SVM, NN, Case-Based, MARS 
[28] 

Anomaly 

Detection 

(System) 

Classification Manual design Fusion 

Multiple Models:  

Kolmogorov Complexity, SOM. 

Random Forest, Hotteling T2, 

AANN 

[29, 30] 

Anomaly 

Detection (Model) 

Classification & 

Prediction 

EA tuning of 

fuzzy supervisory 

termset 

Fuzzy 

Supervisory 

Multiple Models:  

Ensemble of AANN’s 
[31, 32] 

Insurance 

Underwriting: 

Risk management 

Classification EA Fusion 
Multiple Models: 

NN, Fuzzy, MARS, 
[33, 34] 

Load, HR, NOx 

Forecast 
Prediction 

Multiple CART 

trees 
Fusion 

Multiple Models: 

Ensemble of NN’s 
[35, 36] 

Aircraft Engine 

Fault Recovery 

Control/Fault 

Accommodation 

EA tuning of 

linear control 

gains 

Crisp 

supervisory 

Multiple Models (Loop):  

SVM + linear control 
[18] 

Power Plant 

Optimization 
Optimization Manual design Fusion 

Multiple Models (Loop):  

MOEA + NN’s 
[36, 37, 38] 

Flexible Mfg. 

Optimization 
Optimization Manual design 

Fuzzy 

supervisory 
Evolutionary Algorithms [14, 39] 

 

Published by Atlantis Press 
    Copyright: the authors 
                  244



 SC: A Continuously Evolving Concept 

 

each AANN separately, within its region of 

competence, and we defined a set of fuzzy transition 

rules for the supervisory controller. Then we defined an 

Offline MH, using an Evolutionary Algorithm to tune 

the parameters of the membership functions of the fuzzy 

supervisory to minimize a figure of merit that 

aggregated all the residuals during normal conditions.   

This process is illustrated in Figure 8. 

 

In the left part of figure 8 we can observe the run-time 

anomaly detection (AD) model. In the center part of 

figure 8 we can see an instance of the term set used by 

the fuzzy supervisory system (the scale of the 

operational state variables was normalized as a 

percentage of the range of values to preserve proprietary 

information). In the right part of figure 8, we can see the 

offline MH’s, based on an evolutionary algorithm (EA) 

in a wrapper configuration, used to tune the term set.  

More information about this application can be found in 

references 31-32.  

5. Conclusions and Remarks on Model 

Lifecycle Management  

We have established that Soft Computing is an evolving 

concept, a multifaceted idea that gives the model-

builder a gamut of techniques for integrating domain 

knowledge with data-extracted information at any 

model-building level. 

5.1. Designing and Structuring SC models  

Rather than creating amorphous hybrid SC systems, we 

are advocating a design methodology based on the use 

of offline MH’s to search for the most appropriate 

models. The design of these models usually needs to 

follow a problem decomposition strategy to manage 

problem complexity and create manageable components 

that can be adapted to changes, and maintained over 

time. To address this complexity, we also advocate the 

use of a hierarchical architecture, controlled by an 

online MH’s, which usually acts as a supervisor, a 

fusion mechanism, or a resource controller to integrate 

multiple (local) object-level models, improving 

performance (e.g., accuracy) and robustness when 

dealing with imperfect data.  Finally the object-level 

models could be individual (for simple problems) or 

multiple models (in parallel or serial configuration) to 

address the performance/complexity tradeoff.  The 

        

Sensor 

Data

Operational 

State Vector

Engine Physics-based Simulator

Run-Time Anomaly Detection Model

Online MH:

Fuzzy 

Supervisory 

System

Residual Analysis

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

( )11,1 InputV

( )33,3 InputV

( )11,2 InputV

( )11,3 InputV

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

Altitude

Ambient Temperature

Mach #

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

Offline MH: 

Evolutionary Algorithm

Fuzzy Supervisory Rule Set

Fuzzy Supervisory Term Set

Compute residuals between 

nine simulated sensors 

& interpolated AANN’s output

Compute Fitness Function 

based on aggregate 

of nine sensor residuals

Evolutionary Algorithm 

based on Fitness Function

Fuzzy Supervisory 

interpolates among

AANN’s using termset

Individual in EA 
population defines 

Fuzzy Sup. Termset

Object 

Models: 

AANN’s

Operational

Envelope

AANN-1 AANN-2 AANN-3

 

Fig. 8.  Offline MH (EA) to tune a run-time AD model composed of an Online MH (Fuzzy Supervisory System) and an ensemble of 

local object-level models (AANN’s) - (adapted from reference 32). 

Published by Atlantis Press 
    Copyright: the authors 
                  245



P. Bonissone 

 

intrinsic ability of SC techniques to be easily integrated 

with other sibling techniques (such as Statistics or AI) 

allows us to leverage SC at all three levels of modeling.  

The timeline depicting the author’s perception of the 

evolution of the concept of Soft Computing is illustrated 

in Figure 9. 

5.2. Model Lifecycle for SC models 

The strong separation between offline and online MH’s 

advocated in this paper allows us to address another 

challenge: the automation of SC models lifecycle.
21,42-45 

 

 

In reference 21, we noted that “in real-world 

applications, before we can use a model in a production 

environment we must address the model’s entire 

lifecycle, from its design and implementation, to its 

validation, tuning, production testing, use, monitoring, 

and maintenance. By maintenance we mean all the steps 

required to keep the model vital (e.g. non obsolete) and 

able to adapt to changes”. 

 

What causes models to become obsolete?  Models are 

built under contextual, domain-knowledge, and data 

assumptions. When any of these assumptions becomes 

invalid, the conditions for the models applicability no 

longer hold and the models must be updated.  In the 

case of manually-designed models, their updating must 

also follow a manual process, creating potential 

bottlenecks and scalability risks.  On the other hand, in 

the case of automatically-designed models, their 

updating will benefit from the re-use of the same 

process (e.g., Offline MH’s) to create the models new 

versions.  

 

As an illustrative example of this concept – further 

documented in references 45-46 - we describe the 

automation of the underwriting of insurance policy 

applications, based on an assessment of the applicants’ 

risk. 

5.2.1. Run-time model (fuzzy classifier) 

The run-time model for this application was a fuzzy 

classifier, whose boundaries were computed to 

minimize the cost of misclassification.  The fuzzy 

boundaries were used to capture a tradeoff between risk 

reduction (leading to stringent restrictions) and price 

competitiveness (leading to more tolerant restrictions.) 

5.2.2. Offline MH’s for model generation 

(evolutionary algorithms) 

Since we wanted to minimize the cost of 

misclassification, it was necessary to establish a 

baseline of correct decisions or standard reference 

decision (SRD) set. First we collected about 3,000 cases 

of insurance policies that were underwritten in the past 

under currently valid assumptions.  After scrubbing 

about 10% of these cases to remove questionable 

decisions, we refined the original set and created the 

SRD, which represented the behavior of the model 

(classifier) which we wanted to build.  Then, we built a 

fitness function based on the cost of misclassification 

using the SRD as our target and used evolutionary 

search in the space of fuzzy classifiers to instantiate and 

evolve populations of competing models.  After a 

sufficient number of generations, we selected the best 

individual of the final population to become the run-

time model (classifier) to be placed in production. 

         

 

 

 

 

 

 

Fig. 9.  Timeline depicting the author’s perception of SC evolution. 

SC term

is coined 

by Zadeh

1991

SC concept

is formalized 

[1]

1994 1997

Hybrid SC 

Concept

is formalized 

[6]

Synergy of

Hybrid SC 

is illustrated 

[9]

Association of Components
Hybrid SC: Synergy between 

Reasoning & Search

1999 2003

Hybrid SC 

is presented as a

2-level modeling:

meta & object 

level [13]

Two Level modeling: 

Meta- & Object- level

Knowledge 

Representation

for Hybrid SC: 

meta & object

knowledge [14]

2006

Representing 

Meta- & Object- level 

knowledge

Generalizing Meta-

Heuristics to search 

for Object-models

Family of

Meta-

Heuristics (MH): 

searching for

object -models 

[27]

2008 2010

Offline MH to design 

Online MH &

Object-models

Offline MH

(design)

Online MH 

(control, fusion)

Object models

(problem solver) 

[this paper]

Published by Atlantis Press 
    Copyright: the authors 
                  246



 SC: A Continuously Evolving Concept 

 

5.2.3. Offline MH’s for model updating 

(evolutionary algorithms) 

As noted earlier, during the life of the classifier it might 

be necessary to change some of the underwriting rules 

embedded in the classifier. These modifications could 

be caused by new government regulations, changes 

among data suppliers, new medical findings, different 

competitive market pressures, etc. We identified the 

subset of SRD cases whose decisions were affected by 

the changes and we requested a panel of expert 

underwriters to assign new decisions (if needed) to the 

selected cases.  The edited and updated SRD 

represented the new target that we wanted our classifier 

to approximate.  At this point, we used the same EA-

based optimization tool, employed during the initial 

tuning, to find a parametric configuration that defined 

the new classifier that better approximated the new 

SRD.  

 

The proposed methodology for using SC components to 

build decision-making models provides a clean 

separation between design and run-time issues, and 

furthermore supports the models lifecycle maintenance, 

a necessary step for their deployment in real-world 

applications. 

 

References 

1. L. A. Zadeh, “Fuzzy logic and soft computing: Issues, 

contentions and perspectives”, in Proc. IIZUKA’94: 3rd 

Int. Conf. Fuzzy Logic, Neural Nets and Soft Computing, 

(1994), pp. 1–2. 

2. http://ieee-cis.org/about_cis/scope/ 

3. J. Bezdek, On the relationship between Neural Networks, 

Pattern Recognition, and Intelligence, International 

Journal Approximate Reasoning, vol. 6, (Elsevier, 

Amsterdam,1992), pp. 85-107. 

4. R. Marks II, Computational versus Artificial, IEEE 

Transactions on Neural Networks, 4(5) (1993) 737-739. 

5. J. Bezdek, What is Computational Intelligence?, in 

Computational Intelligence Imitating Life, J. Zurada, R. 

Mark II, C. Robinson eds., (IEEE Press, New York, NY, 

1994). 

6. P. P. Bonissone, Soft computing: The convergence of 

emerging reasoning technologies, Soft Computing Fusion 

of Foundations, Methodologies Applications, 1(1) (1997) 

6–18. 

7. D. Dubois and H. Prade, Soft computing, fuzzy logic, and 

Artificial Intelligence, Soft Computing Fusion of 

Foundations, Methodologies Applications, 2(1) (1998) 7–

11. 

8. L. A. Zadeh, Some reflection on soft computing, granular 

computing and their roles in the conception, design and 

utilization of information/intelligent systems, Soft 

Computing Fusion of Foundations, Methodologies 

Applications, 2(1) (1998) 23–25. 

9. P. P. Bonissone, Y-T Chen, K. Goebel, & P. Khedkar, 

Hybrid Soft Computing Systems: Industrial and 

Commercial Applications, Proceedings of the IEEE, 

87(9) (1999), pp. 1641-1667. 

10. P. Larrañaga, J.A. Lozano, Synergies between 

evolutionary computation and probabilistic graphical 

models, International J. Approximate Reasoning, 31(3) 

(Elsevier, Amsterdam, 2002), pp. 155–156. 

11. O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. 

Magdalena, Ten years of genetic fuzzy systems: current 

framework and new trends, Fuzzy Sets and Systems 

141(1) (Elsevier, Amsterdam, 2004), pp. 5–31. 

12. X. Yao, Evolving Artificial Neural Networks, 

Proceedings of the IEEE, (87)9 (1999), pp. 1423-1447. 

13. P. Bonissone, Soft computing and meta-heuristics: using 

knowledge and reasoning to control search and vice-

versa, Proc. of the SPIE, Vol. 5200, Applications and 

Science of Neural Networks, Fuzzy Systems and 

Evolutionary Computation V, (2003), pp. 133–149. 

14. P. Bonissone, R. Subbu, N. Eklund, and T. Kiehl, 

Evolutionary Algorithms + Domain Knowledge = Real-

World Evolutionary Computation, IEEE Transactions on 

Evolutionary Computation, 10(3) (2006), pp. 256-280. 

15. P. Bonissone, Domain Knowledge and Decision Time: A 

Framework for Soft Computing Applications, 2006 

International Symposium on Evolving Fuzzy Systems 

(EFS 2006), (2006), pp 19-24. 

16. P. Bonissone, P. Khedkar, Y-T Chen, Genetic Algorithms 

for Automated Tuning of Fuzzy Controllers: A 

Transportation Application, Proceedings of the 1996 

IEEE Conference on Fuzzy Systems (FUZZ-IEEE'96), 

(1996), pp. 674-680. 

17. J.S.R. Jang, ANFIS: Adaptive-network-based-fuzzy-

inference-system, IEEE Trans. on Systems, Man, and 

Cybernetics, 23(3) (1993), pp. 665-685. 

18. K. Goebel, R. Subbu, P. Bonissone, “Controller 

Adaptation to Compensate Deterioration Effects”, GE GR 

Technical Report, 2006GRC298, May 4, 2006. 

19. J. J. Grefenstette, Optimization of control parameters for 

genetic algorithms, IEEE Trans. Systems, Man, Cybern., 

16(1) (1986),  pp. 122–128. 

20. P. Bonissone, A. Varma, Predicting the Best Units within 

a Fleet: Prognostic Capabilities Enabled by Peer 

Learning, Fuzzy Similarity, and Evolutionary Design 

Process”, in Proc. FUZZ-IEEE 2005, (2005), pp. 312-

318. 

21. P. Bonissone, A. Varma, K. Aggour, and Feng Xue, 

Design of local fuzzy models using evolutionary 

algorithms, Computational Statistics and Data Analysis, 

51, (2006), pp. 398-416. 

22. P. Bonissone and K. Chiang, Fuzzy Logic Hierarchical 

Controller for A Recuperative Turboshaft Engine: from 

Mode Selection to Mode Melding, in Industrial 

Published by Atlantis Press 
    Copyright: the authors 
                  247



P. Bonissone 

 

Applications of Fuzzy Control and Intelligent Systems, J. 

Yen, R. Langari, and L. Zadeh (eds.), (IEEE Press, 1995). 

23. P. Bonissone and K. Goebel, When will it break? A 

Hybrid Soft Computing Model to Predict Time-to-break 

Margins in Paper Machines, Proc. SPIE 2002, (2002), pp. 

53-64. 

24. P. Bonissone, K. Goebel, Y-T Chen, Predicting Wet-End 

Web Breakage in Paper Mills, Proc. AAAI Spring 

Symposium, (2002). 

25. F. Xue, A.C. Sanderson, P. Bonissone, R.J. Graves, 

Fuzzy Logic Controlled Multi-Objective Differential 

Evolution, in Proc. FUZZ-IEEE 2005, (2005), pp. 720-

725. 

26. R. Subbu and P. Bonissone, A Retrospective View of 

Fuzzy Control of Evolutionary Algorithm Resources, in 

Proc. FUZZ-IEEE 2003, (2003), pp. 143-148. 

27. J. L. Verdegay, R. Yager, and P. Bonissone, On 

Heuristics as a Fundamental Constituent of Soft 

Computing, Fuzzy Sets and Systems, 159(7) (Elsevier, 

Amsterdam, 2008), pp. 846-855. 

28. P. Bonissone, K. Goebel, and W. Yan, Classifier Fusion 

using Triangular Norms, in Proc. Multiple Classifier 

Systems (MCS) 2004, (2004), pp. 154-163. 

29. P. Bonissone. N. Iyer, Soft Computing Applications to 

Prognostics and Health Management (PHM): Leveraging 

field data and domain knowledge, in Proc. 9th 

International Work-Conference on Artificial Neural 

Networks (IWANN 2007), (2007), pp. 928-939. 

30. A. Varma, P. Bonissone, W. Yan, N. Eklund, K. Goebel, 

N. Iyer, S. Bonissone, Anomaly Detection using Non-

Parametric information, in Proc. ASME Turbo Expo 

2007: Power for Land, Sea and Air, (2007). 

31. X Hu, P. Bonissone, R. Subbu, Robust Model Selection 

Decision-making using a Fuzzy Supervisory Approach, 

in Proc. IEEE Symposium on Computational Intelligence 

in Multi-Criteria Decision-Making 2009, (2009). 

32. P. Bonissone, X Hu, R. Subbu, A Systematic PHM 

Approach for Anomaly Resolution: A Hybrid Neural 

Fuzzy System for Model Construction, in Proc. PHM 

2009, (2009). 

33. P. Bonissone, “Automating the Quality Assurance of an 

on-line Knowledge-Based classifier by fusing multiple 

off-line classifiers”, in Modern Information Processing: 

From Theory to Applications, Bouchon-Meunier, Coletti, 

Yager (Eds.), (Elsevier, 2005), pp. 147-158. 

34. P. Bonissone, R. Subbu, and K. Aggour, Evolutionary 

Optimization of Fuzzy Decision Systems for Automated 

Insurance Underwriting, in Proc. FUZZ-IEEE 2002, 

(2002), pp. 1003-1008.  

35. F. Xue, R. Subbu, P. Bonissone, Locally Weighted 

Fusion of Multiple Predictive Models, in Proc. IEEE 

International Joint Conference on Neural Networks 

(IJCNN’06), (2006), pp. 2137-2143. 

36. P. Bonissone, F. Xue, and R. Subbu, “Fast Meta-models 

for Local Fusion of Multiple Predictive Models” Applied 

Soft Computing Journal, 2008, 

doi:10.1016/j.asoc.2008.03.006 

37. R. Subbu, P. Bonissone, S. Bollapragada, K. 

Chalermkraivuth, N. Eklund, N. Iyer, R. Shah, F. Xue 

and W. Yan, A review of two industrial deployments of 

multi-criteria decision-making systems at General 

Electric, in Proc. IEEE Symposium on Computational 

Intelligence in Multi-Criteria Decision-Making (MCDM 

2007), (2007). 

38. R. Subbu, P. Bonissone, N. Eklund, W. Yan, N. Iyer, F. 

Xue, R. Shah, Management of Complex Dynamic 

Systems based on Model-Predictive Multi-objective 

Optimization, in Proc. CIMSA 2006, (2006), pp. 64-69. 

39. R. Subbu and P. Bonissone, A Retrospective View of 

Fuzzy Control of Evolutionary Algorithm Resources, in 

Proc. FUZZ-IEEE 2003, (2003), pp. 143-148. 

40. M.A. Kramer, Autoassociative neural networks, 

Computers & Chemical Engineering, 16(4) (1992), pp. 

313-328. 

41. J.W. Hines, I E. Uhrig, Use of Autoassociative Neural 

Networks for Signal Validation, Journal of Intelligent 

and Robotic Systems, 21(2) (1998), pp. 143-154. 

42. P. Bonissone, A. Varma, K. Aggour, An Evolutionary 

Process for Designing and Maintaining a Fuzzy Instance-

based Model (FIM), in Proc. First Workshop of Genetic 

Fuzzy Systems (GFS 2005), (2005). 

43. P. Bonissone, The life cycle of a fuzzy knowledge-based 

classifier, in Proc. North American Fuzzy Information 

Processing Society (NAFIPS 2003), (2003), pp. 488-494. 

44. P. Bonissone, Development and Maintenance of Fuzzy 

Models in Financial Applications, in Soft Methodology 

and Random Information Systems, Lopez-Diaz, Gil, 

Grzegorzewski, Hyrniewicz, Lawry (eds.), (Springer, 

2004). 

45. A. Patterson, P. Bonissone, and M. Pavese, Six Sigma 

Quality Applied Throughout the Lifecycle of and 

Automated Decision System, Journal of Quality and 

Reliability Engineering International, 21(3) (2005), pp. 

275-292. 

46. K. Aggour, P. Bonissone, W. Cheetham, R. Messmer, 

Automating the Underwriting of Insurance Applications, 

AI Magazine, 27(3) (2006), pp. 36-50. 

 

Published by Atlantis Press 
    Copyright: the authors 
                  248




