

Does Soft Computing Classify Research in Spiking Neural Networks?

Liam Maguire

Intelligent Systems Research Centre
School of Computing and Intelligent Systems

University of Ulster, Derry, Northern Ireland, BT48 7JL, UK
lp.maguire@ulster.ac.uk

Abstract

The last fifty years has witnessed considerable activity in research that develops computational approaches inspired
by nature. There are a number of umbrella terms used by researchers to classify their contributions. This can cause
problems in disseminating and sharing results and potentially restricts research due to a lack of knowledge of the
varied contributions. This paper reviews research in spiking neural networks and attempts to determine if the term
Soft Computing can be used to classify contributions in this area.

Keywords: Spiking neural networks, classification.

1. Introduction

For thousands of years man has taken inspiration from
his environment to solve everyday problems. Initial
examples include the ability to use and craft objects for
hunting, to ignite and then control fire, to use natural
materials for clothing and shelter, and to innovate and
create technical solutions such as the wheel. Initial
developments were undoubtedly prompted by survival
instincts, but progressive advancements have resulted in
the human race becoming so sophisticated that man is
attempting to mimic the natural world so that we can
imbue artificial objects with human characteristics.
Although such an objective is associated with
considerable ethical and technical challenges it is clear
that there has been significant acceleration towards this
goal over the last fifty years due to the complementary
developments in computing power. The current
availability of massively parallel, high speed processors
offer not only a readymade prototyping test bed but also
enable us to estimate the potential that we could achieve
in the future.

These developments have also introduced a range of
scientific disciplines that support and introduce further
innovation. However, the inherent knowledge
accumulated in these disparate disciplines has
necessitated the specialization of researchers
(particularly during the last 100 years) to enable them to
operate and contribute to the advancement in their
respective domains. Unfortunately this specialization
restricts the ability of researchers to work in other
domains and has created academic silos with one
community often ignorant of the developments in the
other. It is generally accepted that much of the new
innovation will be spawned from the collaboration of
experts across the boundaries of specialist areas.
However, this is often restricted by the different
language/terminology, methodologies and reference
material drawn on by each discipline and which is not
readily accessible or indeed easily shared across the
boundary. As a result many researchers from different
backgrounds have identified the need to establish large
collaborative groupings across these boundaries.
Fortunately this has also been recognized by national

International Journal of Computational Intelligence Systems, Vol.3, No. 2 (June, 2010), 176-189

Published by Atlantis Press
 Copyright: the authors
 176

zegerkarssen
Texte tapé à la machine

zegerkarssen
Texte tapé à la machine
Received: 17-11-2009
Accepted: 28-05-2010

and international funding bodies who are encouraging
such collaboration.

However, one of the major stumbling blocks
towards improved collaboration and cooperation is the
different terminology that has emerged. The area of
research that attempts to draw on inspiration from
biology or nature is not immune to this characteristic.
Many young and idealistic PhD students despair at the
variety of terminology defining similar areas and
contributions within the area. This paper attempts to
explore these different classifications in the context of
the author’s research. Section 2 introduces the main
terms used to describe and represent the area whereas
section 3 introduces the author’s current research and
reviews the current contributions in that domain.
Section 4 attempts to classify that research and the
paper concludes with a discussion of these issues.

2. Nomenclature

Recent developments have introduced spiking neurons
which closely resemble the current understanding of
neural mechanisms within the human brain. Such
models range from computationally efficient yet
biologically implausible models to more biologically
accurate approaches that are associated with huge
computational overheads. This trade-off can be
overcome by drawing on advances from neuroscience
research to determine those biological features that
improve computational capability and yet enable
effective description of the inherent neuron dynamics.
Current research has presented network architectures,
hardware/software implementations and introduced
learning strategies for this new generation of spiking
neural networks. However, the longer term challenge is
to provide a computational approach that implements
learning and reasoning in a human fashion that can be
used by engineers to solve real world problems. This
area of research has been represented by a number of
widely used terms that are summarized here for
convenience:

Computational Intelligence describes the area of
research that emulates nature for problem solving. The
techniques include neural networks, fuzzy systems, and
evolutionary computing which have been inspired by
learning, reasoning and adaptive processes within the
natural world. Computational Intelligence research has
been characterised by a progressively greater emphasis

on providing biological plausibility and encouraging the
integration of different techniques.

Soft Computing is defined as that area of research
which is tolerant of imprecision, uncertainty, partial
truth, and approximation as inspired by the human
mind. The main constituents of Soft Computing are
fuzzy logic, neural computing, evolutionary
computation, machine learning and probabilistic
reasoning. The techniques listed as constituents of Soft
Computing are complementary rather than competitive.

Artificial Intelligence is the area of computer
science focusing on creating machines that can engage
on behaviors that humans consider intelligent. The field
of Artificial Intelligence has split into two basic
approaches; bottom-up and top-down. Bottom-up
theorists believe the best way to achieve artificial
intelligence is to build electronic replicas of the human
brain's complex network of neurons ie neural networks
and parallel computation whereas the top-down
approach attempts to mimic the brain's behavior with
approaches such as expert systems.

Intelligent Systems is that area of research that
includes areas like artificial intelligence, models and
computational theories of human cognition, perception
and motivation; brain models, artificial neural nets and
neural computing. It covers contributions from the
social, human and computer sciences to the analysis and
application of information technology. The field also
covers critical analysis of intelligent systems, and
addresses philosophical questions that arise.

Biologically-inspired (or bio-inspired) systems is the
area of research into the use of computers to model
nature, and simultaneously the study of nature to
improve the usage of computers. The area relies heavily
on the fields of biology, computer science and
mathematics and the inherent computational techniques
include evolutionary computation, swarm intelligence,
neural networks, fuzzy systems, rough sets, and
quantum computing.

The similarity and indeed huge overlap of these five
terms is immediately obvious as each area claims
common technologies; for example neural networks are
a component technology in all five terms! These five
generic names are widely used in the literature and are
often interchanged by authors within their papers.
Table 1 summarises searches performed using IEEE
Xplore in an attempt to present a representative usage of
these classifications by the research community. The

Published by Atlantis Press
 Copyright: the authors
 177

ordering of Table 1 highlights (not surprisingly) that
Artificial Intelligence is the most commonly used
generic classification term which may be largely
explained by its longevity. There is some anecdotal
evidence to suggest that many researchers deliberately
turned away from using this term in the 1980s and
1990s as they believed the area to be discredited due to
the failure to deliver on the ambitious claims made by
the initial contributors to such research. This may
explain why in the last 10 years there appears to be
more frequent reference to newer terms such as soft
computing and bio-inspired systems as evidenced by the
last column in Table 1. However, the use of the term
artificial intelligence continues to dominate as the most
prevalent term.

Table 1: Summary of searches using IEEE Xplore

Term Term in

Article
Title

Term in
all fields

Term in all
fields with
search
restricted to
post 2000 (% of
total)

Artificial
Intelligence

692 39858 27100 (68%)

Computational
Intelligence

512 10777 7818 (73%)

Intelligent
Systems

616 10445 7069 (68%)

Soft Computing 312 1142 857 (75%)
Bio-inspired
systems

11 828 761 (92%)

Unfortunately, this classification is also associated

with a small number of dedicated researchers who
appear to be resolute in their defense and protection of
their area to the exclusion of others working in related
areas. While this contradicts the spirit of openness and
enquiry of researchers it also highlights the difficulties
for researchers working in those areas that naturally
transcend such boundaries. Neural network research is
representative of one such area and the following
section reviews the recent contributions relating to
spiking neurons.

3. Spiking Neural Network Research

Experimental studies in neurobiology have attempted to
define the dynamics of the neuron and in particular, the
synapse, in greater detail than ever before. A neuron is
classified as either excitatory, and thus responsible for
routing information through the network, or it is
inhibitory and its function is to regulate the activity of
excitatory neurons. Unsurprisingly, there are typically
more excitatory than inhibitory neurons1 although the
role and configuration of inhibitory to excitatory
neurons in any given biological network is unclear
beyond these basic insights. Additionally it is known
that synaptic transmission is unreliable.2,3 In vivo
experiments have shown that repeated stimulus of a
neuron can lead to varying responses in the resulting
transmission of spikes at a synapse.4 Synapses have
limited resources that they consume and replenish by
varying rates. Typically, two types of behaviour of the
synapse are distinguished, that of facilitating and
depressing.5 Facilitating synapses relay information
through biological networks whereas depressing
synapses are coincidence detectors. Facilitating
synapses consume their resources gradually and have
abundantly more resources than depressing synapses. In
contrast, depressing synapses consume all their
resources in the first few spikes they transmit, taking
significant time to replace them. Similarly, the
disposition of these types of synapses in a network is
unclear.

With regard to learning in a SNN, it is known that
synaptic efficacy is altered by coincidental firing
between neurons. This is the basis of the well known
Hebbian-type learning and explains the algorithm’s
historical endurance.6 It is also clear that learning occurs
strictly in a local sense. Hebbian learning of course, is
typically an unsupervised learning algorithm in ANN
research. However, it has also been adopted for
supervised learning algorithms in SNN research due to
its biological plausibility. SNNs exploit time as a
resource so Hebbian learning algorithms needs to be
temporal. STDP is an example of a temporal
interpretation of Hebbian learning.7,8,9 However, STDP
is an unsupervised learning algorithm, and as such is not
suited to tasks requiring a specific goal definition.
Additionally, whereas a supervised learning algorithm
will meet these requirements, it must also be locally-
based.

Published by Atlantis Press
 Copyright: the authors
 178

Perhaps the only reasonable biological interpretation
of supervised learning is supervision of a neuron by
another neuron. In this instance, the supervisory neuron
causes the supervised neuron to spike at desired times
by transmitting spikes into the supervised neuron.10, 11
In practice this supervised Hebbian learning (SHL)
scheme has some drawbacks, chiefly among them that
the weights of the network continue to be adjusted even
after the desired output has been reached. A variation of
the SHL learning algorithm can be made where the
supervisory spike trains are not actually delivered to the
network but are used ‘remotely’ to modify the weights.
Employing a combination of STDP and anti-STDP, the
Remote Supervision Method (ReSuMe)12 is capable of
‘propping up’ inactive synaptic weights. ReSuMe is
characterised by a capability to produce precise spike
timing in an accurate and stable manner.

Modelling biologically plausible SNNs presents a
significant challenge given the vast scale of real
networks. An indication of the complexity required to
model such architectures is readily demonstrated by
considering the relationship between a biological neuron
and the basic building block of the Integrated Circuit
(IC), the transistor. The human brain is estimated to
contain in the region of 1011 neurons, whereas the most
advanced processor devices currently contain
approximately 2x109 individual transistors.13 However,
the comparison is further complicated by the
recognition that. the inherent dynamics of the
underlying neuron behaviour is significantly more
complex than the basic switching principle of the
transistor. Nonetheless, a number of strategies to
address this significant challenge have been reported in
the literature.

Given the high level of flexibility afforded, it is
unsurprising that software based approaches have been
heavily investigated. Examples of this include
specialised simulation tools such as Neuron21,
Genesis14, Emergent15, SNNS16, SpikeNET17 and third
party toolboxes such as BNN18 and Neurosolutions19
which are integrated within commercial general purpose
simulation tools such as Matlab.20 Whilst such tools
provide powerful simulation environments for studying
relatively small populations of neurons, the sequential
Von Neumann serial processing architecture is simply
not scalable towards simulating networks on the
biological scale without incurring significant
computation times. With the growing advent of multi-

core and many-core processing, in recent years an
increasing emphasis has been placed on the
development of parallel simulators for multi-processor
systems or computer clusters. For example, the
developers of Neuron have released a parallel version of
their software, for Genesis the PGenesis version is
available whilst simulators such as neocortical
simulation (NCS)22 and neural simulation toolbox
(NEST)23 also offer support for parallel simulations.
Whilst primarily developed to accelerate graphics
rendering, the highly parallel structure of Graphics
Processing Units (GPUs) has more recently attracted
increasing interest amongst researchers aiming to model
NN structures. 24-27 On a much larger scale, approaches
such as the Blue Brain Project28 and SpiNNaker29
propose the use of a multitude of processing cores for
the purpose of modeling very large scale SNNs. For
example, the Blue Brain Project has performed
simulations of the neocortex comprising up to 22
million neurons and 11 billion synapses utilising up to
8,192 processors operating simultaneously on the IBM
Blue Gene/L supercomputer platform.30 SpiNNaker has
proposed a target architecture containing over 1 million
ARM968 processor cores capable of simulating up to 1
billion neurons in real time. Whilst such approaches
have significant potential, the reality is that access to
such supercomputing power is not readily available.

As an alternative approach, extensive research has
been conducted into custom hardware based NN
implementations under the premise that when
implemented in hardware, NNs can take full advantage
of their inherent parallelism in a manner which is
difficult to achieve with software.31 Digital based
approaches32-34 are attractive in that they tend to offer
high computational precision, high reliability, and high
programmability. The primary disadvantages of these
approaches however include the large amount of silicon
area and power that is required for computation circuits
such as multiplication and the relative slowness of
computation. Analogue Application Specific Integrated
Circuits (ASICs) on the other hand, offer interesting
opportunities for NN implementations.35 Calculations
which, when modelled using digital techniques can be
computationally intensive, can be reduced to simpler
physical processes such as summing of currents or
charges. Such devices, where analogue circuitry is used
to model neuro-biological architectures, are often
referred to as neuromorphic hardware.36 Disadvantages

Published by Atlantis Press
 Copyright: the authors
 179

of analogue technology meanwhile include the
susceptibility to noise, heat and process-parameter
variations that limit computational precision and the
difficulty in managing weight storage. Hence, a large
number of groups have targeted the development of
mixed signal ASIC devices for neural processing,
combining the strengths of both digital and analogue
techniques.37-44 In reality, although an attractive option
in some regards, developing custom ASIC devices for
NNs is both time consuming and expensive and as such,
their use tends to be concentrated in areas where very
either high performance is required or where large
quantities will be deployed such as consumer products.
An important aspect of biological networks is their
inherent plasticity, something not easily integrated in
ASIC design. While ASICs are very flexible in the
design stage as they can implement any desired
function, once manufactured they can no longer be
modified without a re-spin and a modification of the
basic neuron model would require a new development
cycle to be undertaken. As a platform for neuroscientists
and engineers to explore neuron models, parameters and
network topologies, such a constraint is an important
factor to be considered.

Significant advancements in the domain of
reconfigurable computing has resulted in FPGAs
becoming increasingly popular for implementing
complex computational systems.45 FPGAs permit the
implementation of digital systems, providing an array of
logic components that can be configured in a desired
way by a configuration bitstream.31 These devices,
which can be quickly and easily programmed and
reprogrammed to perform a large variety of functions, 46
are particularly appealing when attempting to recreate to
some degree the natural plasticity and self-adaptation of
biological systems in electronic hardware. Early
approaches that reported on the use of FPGAs for
modelling SNNs sought to maximise the network
population density by using highly simplified neuron
models that were highly abstracted from the biological
principles of neuronal signalling in the brain.47-53
Whilst such approaches have reported on the successful
implementation of networks ranging from 3 to 100
neurons, they are simply not scalable towards
simulating large scale network sizes, irrespective of how
much the neuron model can be optimised. Also, there
will always be a demand for platforms that will provide
more biological plausibility. An implementation of a

highly complex model such as that by Mak et al54
illustrates that while this is achievable, the logic
demands were such that only a single neuron could be
accommodated on the target FPGA device. Such
approaches however, utilizing fully parallel
implementation approaches, reported huge performance
increases in terms of the computation time. A number of
researchers therefore explored the possibility of
balancing this speed/area trade off, employing the use of
resource sharing or TDM to increase the network
density achievable whilst still offering performance
improvements over software based implementations.
One such approach that reports on the use of time
multiplexing has been presented by Graas et al.55 As
opposed to the more simplified models, this approach is
built upon highly detailed neuron models closely
aligned with biological principles. For example, two
neuron models were implemented in FPGA hardware,
the Hodgkin Huxley (HH) model56 and the Booth and
Rinzel two-compartment model of a motoneuron.57 The
target platform incorporated a Xilinx Virtex series
XCV1000 FPGA device and the Xilinx System
Generator (XSG) tool was used as the design
environment. Extensive use of pipelining was used in
conjunction with a simple TDM control mechanism to
support the simulation of up to 170 independent neurons
whereby a speed-up factor of 16 was achieved over a
software simulation on a 1.3GHz AMD processor.

A key limitation of this implementation however
was the lack of support for modelling networks at the
population level although a subsequent revision of the
system addressed this issue.58 The updated approach
was validated with a 40-neuron population model
consisting of HH style conductances and fully
interconnected synapses59 implemented on a Xilinx
Virtex 4 series XC4VSX35 device. While the authors
state that the approach caters for neural populations in
the 10’s-100’s range they identify that further
refinements are required to enable networks containing
thousands of neurons. Whilst this work comprises a
significant contribution to the research field, alternative
strategies are required to enable the simulation of large
scale networks. Using the less complex Leaky Integrate
and Fire (LIF) neuron model, Schrauwen et al60 reported
on the implementation of networks containing 200
neurons. Using serial processing to sum the synaptic
inputs to the neuron and parallel arithmetic for the
neuron computation, the authors found that performance

Published by Atlantis Press
 Copyright: the authors
 180

of up to 347 times faster than real time could be
achieved using 60% of the available FPGA logic
resources on a Xilinx Virtex 4 XC4VSX35 device.
Alternatively, using serial processing to sum the
synaptic inputs and serial arithmetic for the neuron
computation the authors found that real time
performance could be maintained whilst using
considerably less hardware resources, i.e. 4% of the
available FPGA logic on the XC4VSX35. Whilst this
work demonstrated that real time performance could be
guaranteed for relatively modest networks containing up
to 200 neurons, an approach offering similar real time
performance for larger networks has been reported by
Pearson.61,62 Using biologically plausible mammalian
neuron topologies such as sections of the basal ganglia
and the trigeminal sensory complex of the rodent brain
stem, networks incorporating up to 1,100 LIF neurons
have been successfully implemented on a XC2V1000
Xilinx Virtex 2 series FPGA device. A limitation of this
approach however, is the relatively small ratio of
synapses per neuron (16:1) that can be accommodated.
As acknowledged by the authors, this is insufficient for
many networks. A related approach by Ros et al,
employing the Spike Response Model (SRM) as the
basic underlying neuron model, suggests a more
scalable architecture whilst also targeting guaranteed
real time performance.63 A hardware software
partitioning strategy is adopted whereby the hardware
component consists of a Peripheral Component
Interface (PCI) based FPGA development board acting
as a reconfigurable neuroprocessor while the software
component running on the host PC is responsible for
maintaining the network connectivity, for routing spikes
between neurons and for implementing learning
algorithms. The authors make extensive use of
pipelining in their neuron computation circuitry
implemented on the FPGA hardware and also employ
several Processing Units (PUs), operating in parallel to
maximise system performance. Using the RC1000
prototyping platform, which incorporates a Xilinx
Virtex-2000E device, the authors have implemented and
tested the system with 1,024 neurons with up to four
PUs operating in parallel. Unlike many of the other
approaches, this architecture also offers support for on
chip training. A limitation of the approach however is
that the learning algorithms are computed in the
software component of the system with significant

performance degradation being observed if training is
employed for more than 5% of the network synapses.

While significant progress has already been made in
understanding neurons dynamics, considerably less has
been achieved in developing efficient spiking neural
learning mechanisms. To date, a number of supervised
and unsupervised learning methods have been
developed, most of which do not scale up and would
require retraining in a continuously changing
environment.

SpikeProp is an adaptation of the classical
backpropagation algorithm that can perform complex
non-linear classification in fast temporal coding just as
well as rate-coded networks.64 Moore65 attempted to
replicate the findings of Bohte and the weights were
initialized with the values that led the network to
successful training in a similar number of iterations, but
with large learning rates. Xin and Embrechts66
proposed a modification of the learning algorithm by
including the momentum term in the weight update
equation. It has been demonstrated that this
modification significantly speeded up the convergence
of SpikeProp. Additional learning rules were
introduced to make it possible to learn not only the
weights, but also the synaptic delays, time constants and
the neurons’ thresholds. This resulted in smaller
network topologies and with faster algorithm
convergence. Inspired by learning rules for locally
recurrent analog neural networks, Schrauwen and
Campenhout67 also presented a new learning rule for
spiking neurons that used the general population-
temporal coding model. As a result the learning rule
was able to operate on a broad class of output codings
smoothly and quickly. Tiňo and Mills68 extended
SpikeProp to recurrent network topologies, to account
for the temporal dependencies in the input stream. Wu
et al69 applied weight limitation constraints to the
SpikeProp algorithm and presented a novel solution to
the problem raised by non-firing neurons which makes
the learning algorithm converge reliably and efficiently.
Silva made corrections and improvements to the
standard SpikeProp training based on the Levenberg-
Marquardt method by introducing a new encoding
scheme with fast convergence.70 Finally McKennoch et
al71 developed and analyzed SNN versions of Resilient
Propagation (RProp) and QuickProp, both training
methods used to speed up training in ANNs by making
certain assumptions about the data and the error surface.

Published by Atlantis Press
 Copyright: the authors
 181

Modifications were made to both algorithms to adapt
them to SNNs. Results generated on standard XOR and
IRIS dataset were shown an average of 80% faster than
using SpikeProp on its own.

Neither the original SpikeProp method nor any of
the proposed modifications enable learning of patterns
composed of more than one spike per neuron. But the
fact that temporal events can happen more than once,
make temporal patterns actually different from static
patterns. So in order to process such patterns with an
SNN, the neurons have to be able to spike more than
once. Xie and Seung72 presented a synaptic update rule
for learning in networks of spiking neurons. It was
shown that irregular spiking similar to that observed in
biological neurons could be used as the basis for a
learning rule. The learning rule was derived based on a
special class of model networks in which neurons fire
spike trains. The learning rule was on average
performing gradient ascent on an expected reward
function. Booij and Hieu73 presented a supervised
learning rule for SNN that can cope with neurons that
spike multiple times. The rule was developed by
extending the existing SpikeProp algorithm, and was
successfully tested on a classification task of Poissonian
spike trains. These gradient based algorithms are
computationally powerful, are often regarded non-
biologically plausible because these algorithms required
nonlocal spread of error signals from one synapse to
another.

Synfire Chains based on a Hebbian learning rule
describe neural maps organised in a feedforward
manner with random connections between maps
showing synchronous activity.74 It was assumed that the
time of postsynaptic neuron firing depends mostly on
the signal propagation delay in the presynaptic neurons.
The ‘time-weight’ dependence is neglected and the
topology of the network is modified to obtain the
desired delay between input and output. Ruf and
Schmitt presented a supervised-Hebbian learning
methods, one of the first spike-based methods for
classification task.10 In Ref 75, a supervised-Hebbian
learning method was realised by the extra input currents
injected to the learning neuron, the learning neuron was
forced to fire at the target points in time and prevented it
from firing at other times. The learning algorithm was
able to approximate the given target transformations
quite well although parameters continued to be changed
even if the neuron fired already exactly at the desired

times. The presented method proved high ability to
implement the precise spike timing coding scheme.
ReSuMe12 integrated the concept of learning-windows
with the novel concept of remote supervision. The
experiment confirmed that ReSuMe can efficiently learn
the desired temporal sequences of spikes and that the
learning process converges quickly. This method
enables the network to learn multiple patterns of spikes.
Since the synaptic weights are updated in an
incremental manner and the method is suitable for
online processing. In other work that also used the
STDP rule, a supervised training algorithm was
developed that affected weights both locally and at
network level.76

In Ref 77, learning was achieved by synaptic
changes that depended on the firing of pre- and
postsynaptic neurons, and that were modulated with a
global reinforcement signal. The efficacy of the
algorithm was verified in a biologically-inspired
experiment. In Ref 78, the modulation of the STDP by
a global reward signal led to reinforcement learning.
However, it was only applied to the XOR problem and
still need to be demonstrated on large datasets. Seung79
provided the explanations for different dynamics of the
synaptic plasticity related to the reward signal. Based
on direct reinforcement learning algorithm, overall
qualitative performance was comparable to the classic
algorithms based on temporal difference and value
function approximation, but with a higher
computational cost.80 Based on a use dependent synaptic
potentiation and depotentiation, a self-organisation
algorithm81 was developed and successfully performed
in autonomous robot application. The time needed for
the training using self-organization method was much
less than with genetic evolution. Amin82 presented a
new learning algorithm that can perform learning in one
step and utilises only synaptic weights for learning. The
proposed algorithm was simpler than past approaches
and more practical to implement in hardware. It was
demonstrated on sound classification and function
approximation. A new learning algorithm for SNNs
that uses the inter-spike times within a spike train was
introduced.83 The learning algorithm utilised the spatio-
temporal pattern produced by the spike train input
mapping unit and adjusts synaptic weights during
learning and the approach was demonstrated on
classification problems.

Published by Atlantis Press
 Copyright: the authors
 182

Belatreche et al. proposed a derivative-free
supervised learning algorithm and used an evolutionary
strategy to minimise the error between the output firing
times and the corresponding desired firing times.84 Also
in Ref 85, based on evolutionary computation
techniques, the ability of the robots to distinguish
sounds composed of parts of real canary songs and to
navigate to the recognised signal was evaluated.
Palvidis et al86 developed a Parallel Differential
Evolution algorithm which was successfully tested on
well-known and widely used classification problems.
Johnston et al87 developed a hybrid learning algorithm
fusing STDP with genetic algorithms based explicit
delay learning. As the training is an evolutionary
strategy-based iterative process, the training procedure
was extremely time consuming and is not suitable for
online learning. Barber88 proposed a statistical learning
criterion to derive a supervised spike-based learning
algorithm. The method considered supervised learning
for neurons operating on the discrete time scale. Pfister
et al. extended this study to the continuous case.89

Unsupervised spike-based learning methods, such as
Long-term Potentiation (LTP), Long-term Depression
(LTD), Spike-Timing Dependent Plasticity (STDP) and
Hebbian learning have already been widely investigated
and described in the literature.90-92 In Ref 91, several
mathematical formulations of correlation-based Hebbian
learning were reviewed. The state of the presynaptic
neuron was described either by a firing rate or by
presynaptic spike arrival. The state of the postsynaptic
neuron can be described by its firing rate, its membrane
potential or the timing of backpropagating action
potentials. Due to its intrinsic normalization properties,
Hebbian synaptic plasticity stabilised postsynaptic firing
rates and led to subtractive weight normalisation.
Kistler92 presented a phenomenological model of STDP
that was based on a Volterra series-like expansion.
Integral kernels were used to describe synaptic weight
changes as a function of the relative timing of pre- and
postsynaptic spikes.

In Ref 93 it was showed how a SNN based on spike-
time coding and Hebbian learning performed
unsupervised clustering successfully from realistic data.
In SNNs, delay learning is achieved through delay
selection and delay shift. Adibi et al90 introduced a new
delay shift approach for learning in RBF-like SNNs.
There were single delayed connections between the
input and the RBF neurons and the delays were adapted

in an unsupervised learning process. It was shown the
clustering precision of the proposed network was
considerably higher than that of the similar neural
networks. Wade et al94 presented an unsupervised
training algorithm for SNNs that merged the
Bienenstock-Cooper-Munro (BCM) learning rule with
STDP, stimulated using spike trains. The BCM rule
combined with STDP modulated the height of the
plasticity window. The network was applied to the IRIS
dataset and the results showed convergence accuracy
comparable to other SNN training algorithms.

Wysoski et al95 presented a simple online procedure
to perform learning for a four layers of hierarchical
neural network of two-dimensional integrate-and-fire
neuronal maps. The training was done through synaptic
plasticity and adaptive network structure. Event driven
approach was used to optimize computation speed in
order to simulate networks with large number of
neurons. The training procedure was applied to a
publicly available face recognition dataset, and the
obtained performance was comparable to the optimised
off-line method. In Ref 96, a simple artificial gustatory
model was used in SNNs for taste recognition. An
evolving learning algorithm was developed based on
simple integrate-and-fire neurons with rank order coded
inputs. How the information encoding in a population
of neurons influenced the performance of the networks
was also explored. However, these approaches still
need to address a number of issues such as fine tuning
of learning parameters, automatic update of learning
parameters in continuously changing environments (as
these were set manually), improving learning speed for
large size datasets, and the effect of handling
imbalanced datasets on the training performance.
Alnajjar et al97 developed a novel self-adaptation system
to train a real mobile robot for optimal navigation in
dynamic environments by training SNNs having the
STDP property. All the trained SNNs were stored in a
tree-type memory structure that were used as
experiences for the robot to enhance its navigation
ability in new and previously trained environments. The
memory was designed to have a simple searching
mechanism. Forgetting and on-line dynamic clustering
techniques were used in order to control the memory
size. Experimental results showed that a robot provided
with learning and memorizing capabilities was able to
survive in complex and dynamic environments.

Published by Atlantis Press
 Copyright: the authors
 183

There has been considerable research focus on
developing offline approaches for SNNs, but very little
has been achieved in developing online learning
approaches for SNNs. Developing efficient online
learning approaches for SNNs is thus very important for
increasing the applicability of SNNs as an intelligent
system capable of handling continuous streams of
information, scaling up and adapting to continuously
changing environments. Similarly there are ongoing
challenges of scale such that we can realize more
realistic networks that can solve real world problems.
This will involve hardware implementations to ensure
real time operation. Thus further research contributions
will involve input from biologists, engineers,
mathematicians, physicists, psychologists, computer
scientists etc and will thus demand a common
terminology to ensure ease of communication across
these diverse disciplines.

4. Commentary

The previous section presented a review of the recent
research contributions in the area of spiking neural
networks which has highlighted the various engineering
contributions that attempt to address the challenges
facing this embryonic research area, many of which are
common to the more traditional neural networks. It is
thus very clear that spiking neural networks are just
another variant of classical neural networks and indeed
have already been identified as the third such generation
of neural networks.98 However, the question now
remains on how to classify this research area within the
more generic terms. Initially this appears as quite a
trivial challenge as neural networks are already
associated with each area but surely a more careful
consideration is required if not simply to offer a term
that provides an onomatopoeia-like reference for other
researchers. Furthermore, such a definition should also
consider that such research often draw heavily on other
areas and indeed are characterized by developments in
hybrid technologies. For example, a recent
development in spiking neural networks has witnessed
the introduction of fuzzy reasoning that has introduced a
new computational paradigm.99

Before attempting to consider the suitability of each
term it is more appropriate to first define the motivation
for research into spiking neural networks and thus map
its rationale onto such a generic term. Neural networks
are essentially connectionist models of biological

neurons that attempt to harness the massively parallel,
distributed computation of biological brains. Neural
network research is characterised by a progressively
greater emphasis paid to biological plausibility. Spiking
neurons are based on the realisation that the precise
mechanism by which biological neurons encode and
process information is still poorly understood. In
particular, biological neurons communicate using action
potentials also known as spikes or pulses. The spatio-
temporal distribution of spikes in biological neurons is
believed to ’hold the key’ to understanding the brain’s
neural code. Spiking neurons model this form of input
stimulus and in this way exploit time as a resource in
the neural code. There exists a multitude of spiking
neuron models that can be employed in SNNs. The
models range from the computationally efficient on the
one hand to the biologically accurate on the other100; the
former are typically of the integrate-and-fire variety and
the latter are of the Hodgkin-Huxley type. All the
models in this range exploit time as a resource in their
computations but vary significantly in the number and
kinds of neuro-computational attributes.

The definition of Soft Computing includes neural
networks and thus would also include spiking neural
network research; although its name does not suggest its
inclusion. In the author’s opinion the term “soft
computing” is not descriptive of this area and in many
ways misleading; the use of the word “soft” may
suggest easy, rather than a collection of intelligent
technologies. This may be controversial within the
constraints of this special issue but the term Soft
Computing is more closely associated with the fuzzy
community, and it is undoubtedly more appropriate in
that context as it highlights and represents the vagueness
of decision boundaries.

Similarly the term Artificial Intelligence in some
ways suggests that the inherent intelligence is not
natural but rather contrived as artificial, and thus not
inspired from the biology. Many of the initial
contributions in Artificial Intelligence were indeed
motivated by this premise as researchers developed
computing techniques and algorithms that could be
described as intelligent. Thus Artificial Intelligence
does not seem to be an appropriate generic term for
spiking neural networks as this research domain is
primarily motivated by biological plausibility. Spiking
neural network researchers would rarely use the term
Artificial Intelligence and generally avoid the sub-

Published by Atlantis Press
 Copyright: the authors
 184

symbolic descriptions of their networks in this domain.
The field of artificial intelligence is normally concerned
with a more abstract or high level approach to
representing intelligence. Artificial Intelligence is now
confined to the discipline of Computer Science
encompassing expert systems, high level reasoning,
database mining, knowledge based systems, and natural
language processing.

The term Intelligent Systems provides a more
generic term for the research community and the name
provides a clear definition of the area. However, in
many ways the term is too generic as it can be used to
classify any engineering system that demonstrates
intelligent behaviour. Such systems could be motivated
from diverse areas such as social or mechanical
engineering and as a result may have little or no
computational requirements. Similarly the term Bio-
Inspired systems is also representative but would also
suffer from this “too generic” label. However both
terms are highly descriptive of the spiking neural
network research area but should be reserved for higher
level adjectives describing the wider context of the
research area.

The final term to consider is Computational
Intelligence which in the author’s opinion is the most
suitable umbrella term for this area. This term clearly
identifies a research area that attempts to emulate
intelligent systems on a computational platform. The
area includes a collection of research techniques that
have been inspired from biology and which includes
neural networks, fuzzy reasoning and evolutionary
computing which have been inspired by learning,
reasoning and adaptive processes within the natural
world. Computational Intelligence research has been
characterised by a progressively greater emphasis on
providing biological plausibility and encouraging the
integration of different techniques. Such biological
plausibility is an important motivation for spiking
neural network researchers and the computational
aspects clearly differentiate the area from related
developments in the wider neuroscience community.
The definition of the area is also not restrictive and will
readily accommodate new computational developments
in the area.

5. Conclusion

This paper has attempted to navigate through the
various definitions of the research area that claim to

represent the contributions in spiking neural network
research. The review section provided an overview of
spiking neural network research including its motivation
and main contributions. The previous discussion
presented the author’s opinion on this classification and
the use of terms to represent the area. It is clear there is
widespread acceptance of a number of descriptive terms
and that no single consensus can be reached. However,
the discussion concluded that a number of terms are
more suitable to represent the research area and
suggested that there is a hierarchy of such terms.

At the bottom of this hierarchy is the research area
of spiking neural networks used by the author to
illustrate this classification. This area is clearly related
to the more traditional neural network research and thus
related to other areas such as fuzzy logic and
evolutionary computing. These techniques are all
characterized by computational approaches to emulate
the learning, reasoning and adaptive processes within
the natural world. Thus the most appropriate term to
define these areas is Computational Intelligence. Other
terms at this next level that could be considered were
Soft Computing and Artificial Intelligence. However,
both were discounted as they did not reflect the
biological plausibility of the research area or indeed did
the terms suggest its inclusion. There is no doubt that
there is some overlap with the inherent technologies
associated with the three terms at this level; in many
ways the boundaries between each are vague or fuzzy!
This vagueness of decision boundaries is further
compounded if we consider that at this level the term
Computational Neuroscience could also be used to
classify spiking neural networks in the wider research
domain of Neuroscience. However, the important term
in this context is computation as it sets the context that
the research is to be realised on a computational
platform. Finally, the higher level term that should be
used to represent the areas of Computational
Intelligence, Soft Computing and Artificial Intelligence
is Intelligent Systems/Bio-inspired Systems. The use of
word “systems” clearly highlights a higher level
representation of the area and provides an all-
encompassing onomatopoeia-like reference for other
researchers.

Acknowledgements

The author acknowledges the support of the Intelligent
Systems Research Centre, University of Ulster and the

Published by Atlantis Press
 Copyright: the authors
 185

contribution of the following colleagues in this research:
Martin McGinnity, Liam McDaid, Ammar Belatreche,
Brendan Glackin and Cornelius Glackin.

References

1. Braitenberg, V; Schuz, A: “Cortex-statistics and
geometry of neuronal connectivity,” Springer, 1998.

2. Allen, C; Stevens, CF: “An evaluation of causes for
unreliability of synaptic transmission,” Proceedings of
the National Academy of Sciences, vol. 91, no. 22, pp.
10380-10383, 1994.

3. Senn, W; Schneider, M; Ruf, B: “Activity-dependent
development of axonal and dendritic delays, or, why
synaptic transmission should be unreliable,” Neural
Computation, vol. 14, no. 3, pp. 583-619, 2002.

4. Thomson, AM; Deuchars, J: “Temporal and spatial
properties of local circuits in neocortex,” Trends in
Neuroscience, vol. 17, no. 3, pp. 119, 1994.

5. Charlton, MP; Smith, SJ; Zucker, RS: “Role of
presynaptic calcium ions and channels in synaptic
facilitation,” The Journal of Physiology, vol. 323, no. 1,
pp. 173-193, 1982.

6. Hebb, DO: “The Organization of Behavior: A
Neuropsychological Theory,” Wiley, 1949.

7. Bi, GQ; Poo, MM: “Distributed synaptic modification in
neural networks induced by patterned stimulation,”
Nature, vol. 401, no. 6755, pp. 792-795, 1999.

8. Song, S; Miller, KD; Abbott, LF: “Competitive Hebbian
learning through spike-timing-dependent synaptic,”
Nature Neuroscience, vol. 3, pp. 919-926, 2000.

9. Abbott, LF; Nelson, SB: “Synaptic plasticity: Taming the
beast,” Nature Neuroscience, vol. 3, pp. 1178-1183,
2000.

10. Ruf, B; Schmitt, M: “Learning temporally encoded
patterns in networks of spiking neurons,” Neural
Processing Letters, vol. 5, no. 1, pp. 9-18, 1997.

11. Legenstein, R; Naeger, C; Maass, W: “What can a neuron
learn with spike-timing-dependent plasticity?,” Neural
Computation, vol. 17, no. 11, pp. 2337-2382, 2005.

12. Kasinski, A; Ponulak, F: “Experimental demonstration of
learning properties of a new supervised learning method
for the spiking neural networks,” Lecture Notes In
Computer Science, vol. 3696, pp. 145, 2005.

13. Intel, Press Release, Intel Previews Intel Xeon ’Nehalem-
EX’ Processor, 2009.

14. Aisa, B; Mingus, B; O’Reilly, R: “The emergent neural
modeling system,” Neural Networks, vol. 21, pp. 1045–
1212, 2008.

15. Bower J; Beeman, D: The Book of GENESIS: Exploring
Realistic Neural Models with the GEneral NEural
SImulation System, 2nd Ed. Springer-Verlag, New York,
2008.

16. Petron, E: “Stuttgart neural network simulator: Exploring
connectionism and machine learning with snns,” Linux

Journal, 1999. Available:
http://portal.acm.org/citation.cfm?id=327908

17. Delorme, D; Gautrais, J; Rullen, R; Thorpe, S: “Spikenet:
A simulator for modeling large networks of integrate and
fire neurons,” Neurocomputing, vol. 26-27, pp. 998–996,
1999.

18. BNN, Biological Neural Networks Toolbox for
MATLAB: User Guide, Version 1.0, August 2004.
Available:http://www.ymer.org/research/files/bnntoolbox
/ver1.1/BNNtoolbox.pdf

19. NeuroDimension, Neurosolutions Software Simulator
Tool.. Available:
http://www.neurosolutions.com/products/ns/

20. Mathworks, Matlab User Guide. Available:
http://www.mathworks.com/access/helpdesk/help/pdf
doc/matlab/getstart.pdf

21. Hines, M; Carnevale, N: “The neuron simulation
environment,” Neural Computation, vol. 9, no. 6, pp.
1179–1209, 1997.

22. Zirpe, M: “Rain and ncs 5 benchmarks,” Master’s thesis,
University of Nevada, December 2007.

23. Morrison, A; Mehring, C; Geisel, T; Aertsen, A;
Diesmann, M: “Advancing the boundaries of high-
connectivity network simulation with distributed
computing.” Neural Comput, vol. 17, no. 8, pp. 1776–
1801, Aug 2005.

24. Luo, Z; Liu, H; Yang, Z; Wu, X: “Artificial neural
network computation on graphic process unit,” in Proc.
IEEE International Joint Conference on Neural Networks
IJCNN ’05, vol. 1, 2005, pp. 622–626 vol. 1.

25. Lahabar, S; Agarwal, P; Narayanan, P: “High
performance pattern recognition on gpu,” in Proceedings
of National Conference on Computer Vision, Pattern
Recognition, Image Processing and Graphics, 2008.

26. Jang, H; Park, A; Jung, K: “Neural network
implementation using cuda and openmp,” in Proc.
DICTA ’08.Digital Image Computing: Techniques and
Applications, 1–3 Dec. 2008, pp. 155–161.

27. Bernhard, F: “Spiking neurons on gpus,” Int Conference
on Computational Science (4), 2006, pp. 236–243.

28. Markram, H: “The blue brain project,” Nat Rev Neurosci,
vol. 7, no. 2, pp. 153–160, Feb 2006.

29. Furber, S; Temple, S; Brown, A: “High-performance
computing for systems of spiking neurons,” in
Proceedings of the AISB’06 workshop on GC5:
Architecture of Brain and Mind, vol. 2, Bristol, UK,
April 2006, pp. 29–36.

30. Djurfeldt, M; Lundqvist, M; Johansson, C; Rehn, M;
Ekeberg, O; Lansner, A: “Brain-scale simulation of the
neocortex on the IBM blue gene/l supercomputer,” IBM
Journal of Research and Development, vol. 52, no. 1, pp.
31–41, 2008.

31. Upegui, A; Pea-Reyes, C; Sanchez, E: “A methodology
for evolving spiking neural-network topologies on line
using partial dynamic reconfiguration,” in Proceedings of
International Conference on Computational Intelligence
(ICIC’03), Medellin, Colombia, 2003.

Published by Atlantis Press
 Copyright: the authors
 186

32. Jahnke, A; Roth, U; Klar, H: “A simd/dataflow
architecture for a neurocomputer for spike-processing
neural networks (nespinn),” in Proc 6th Int Conf on
Microelectronics for Neural Networks (Feb 1996, pp.
232–237.

33. Schoenauer, T; Mehrtash, N; Jahnke, A; Klar, H
“Maspinn: Novel concepts for a neuro-accelerator for
spiking neural networks,” Proceedings of SPIE
Workshop on Virtual Intelligence/Dynamic Neural
Networks, vol. 3728, pp. 87–96, 1998.

34. Schoenauer, T; Atasoy, S; Mehrtash, N; Klar, H:
“Simulation of a digital neuro-chip for spiking neural
networks,” in Proc. IEEE Int Joint Conf on Neural
Networks IJCNN 2000, vol. 4, 2000, pp. 490–495 vol.4.

35. Chicca, E; Badoni, D; Dante, V; D’Andreagiovanni, M;
Salina, G; Carota, L; Fusi, S; Del Giudice, P; “A vlsi
recurrent network of integrate-and-fire neurons connected
by plastic synapses with long-term memory,” IEEE Trans
on Neural Networks, vol. 14, no. 5, pp. 1297–1307, 2003.

36. Mead, C: “Neuromorphic electronic systems,” Proc of the
IEEE, vol. 78, no. 10, pp. 1629–1636, 1990.

37. Indiveri, G; Chicca, E; Douglas, R: “A VLSI array of
low-power spiking neurons and bistable synapses with
spike-timing dependent plasticity,” IEEE Trans on Neural
Networks, vol. 17, no. 1, pp. 211–221, 2006.

38. Vogelstein, R; Mallik, U; Vogelstein, J; Cauwenberghs,
G: “Dynamically reconfigurable silicon array of spiking
neurons with conductance-based synapses,” IEEE Trans
on Neural Networks, vol. 18, no. 1, pp. 253–265, 2007.

39. Vogelstein, R; Mallik, U; Cauwenberghs, G; Culurciello,
E; Etienne-Cummings, R: “Saliency-driven image acuity
modulation on a reconfigurable silicon array of spiking
neurons,” Advances in Neural Information Processing
Systems, vol. 17, p. 14571464, 2005.

40. Mallik, U; Vogelstein, R; Culurciello, E; Etienne-
Cummings, R; Cauwenberghs, G: “A real-time spike-
domain sensory information processing system [image
processing applications],” in Proc. IEEE International
Symposium on Circuits and Systems ISCAS 2005,
2005,pp. 1919–1922 Vol. 3.

41. Schemmel, J; Meier, K; Mueller, E: “A new vlsi model of
neural microcircuits including spike time dependent
plasticity,” in Proc. IEEE Int Joint Conf on Neural
Networks, vol. 3, 2004, pp. 1711–1716 vol.3.

42. Schemmel, J; Bruderle, D; Meier, K; Ostendorf, B:
“Modeling synaptic plasticity within networks of highly
accelerated i&f neurons,” in IEEE International
Symposium on Circuits and Systems 2007, pp. 3367–
3370.

43. Renaud-Le Masson, S; Le Masson, G; Alvado, L; Saghi,
S; Tomas, J: “A neural simulation system based on
biologically realistic electronic neurons,” Information
Sciences, vol. 161, no. 1-2, pp. 57–69, April 2004.

44. Zou, Q; Bornat, Y; Tomas, J; Renaud, S; Destexhe, A;
“Real-time simulations of networks of hodgkin-huxley
neurons using analog circuits,” Neurocomputing, vol. 69,
no. 10-12, pp. 1137 – 1140, 2006.

45. Wolf, W: FPGA Based System Design. Prentice Hall,
2004.

46. Gokhale M; Graham, P: Reconfigurable Computing:
Accelerating Computation with Field-Programmable
Gate Arrays. Springer, 2005.

47. Maguire, LP; McGinnity, TM; Glackin, B; Ghani, A.
Belatreche, A; Harkin, J: “Challenges for large-scale
implementations of spiking neural networks on fpgas,”
Neurocomput., vol. 71, no. 1-3, pp. 13–29, 2007.

48. Cassidy, A; Denham, S; Kanold, P; Andreou, A: “Fpga
based silicon spiking neural array,” in Proc. IEEE
Biomedical Circuits and Systems Conference BIOCAS
2007, 2007, pp. 75–78.

49. Rossmann, M; Hesse, B; Goser, K; Buhlmeier, A;
Manteuffel, G; “Implementation of a biologically
inspired neuron-model in fpga,” in Proceedings of the 5th
International Conference on Microelectronics for Neural
Networks and Fuzzy Systems, Feb 1996, pp. 322–329.

50. Maya, S; Reynoso, R; Torres, C; Arias-Estrada, M:
“Compact spiking neural network implementation in
fpga,” in Procs of 10th Field-Programmable Logic and
Applications (FPL). London, 2000, pp. 270–276.

51. Upegui, A; Pea-Reyes, CA; Sanchez, E: “An fpga
platform for on-line topology exploration of spiking
neural networks,” Microprocessors and Microsystems,
vol. 29, no. 5, pp. 211 – 223, 2005.

52. Roggen, D; Hofmann, S; Thoma, Y; Floreano, D:
“Hardware spiking neural network with run-time
reconfigurable connectivity in an autonomous robot,” in
Proc. NASA/DoD Conference on Evolvable Hardware,
2003, pp. 189–198.

53. Guerrero-Rivera, R; Morrison, A; Diesmann, M; Pearce,
T; “Programmable logic construction kits for hyper-real-
time neuronal modeling.” Neural Comput, vol. 18, no.
11, pp. 2651–2679, Nov 2006.

54. Mak, T; Rachmuth, G; Lam, KP; Poon, C-S: “Field
programmable gate array implementation of neuronal ion
channel dynamics,” in Proc. 2nd Int IEEE EMBS
Conference on Neural Engineering, 2005, pp. 144–148.

55. Graas, E; Brown, E; Lee, R: “An fpga-based approach to
high-speed simulation of conductance-based neuron
models.” Neuroinformatics, vol. 2, no. 4, pp. 417–436,
2004.

56. Hodgkin A; Huxley, A: “A quantitative description of
membrane current and its application to conduction and
excitation in nerve.” J Physiol, vol. 117, no. 4, pp. 500–
544, Aug 1952.

57. Booth V; Rinzel, J: “A minimal, compartmental model
for a dendritic origin of bistability of motoneuron firing
patterns.” J Comput Neurosci, vol. 2, no. 4, pp. 299–312,
Dec 1995.

58. Weinstein, R; Reid, M; Lee, R: “Methodology and design
flow for assisted neural-model implementations in
fpgas,” IEEE Trans on Neural Systems and
Rehabilitation Engineering, vol. 15, no. 1, pp. 83–93,
2007.

Published by Atlantis Press
 Copyright: the authors
 187

59. Butera, RJ; Rinzel, J; Smith, JC: “Models of respiratory
rhythm generation in the pre-btzinger complex. i.
bursting pacemaker neurons.” J Neurophysiol, vol. 82,
no. 1, pp. 382–397, Jul 1999.

60. Schrauwen, B; D’Haene, M; Verstraeten, D;
Campenhout, J: “Compact hardware liquid state
machines on fpga for real-time speech recognition.”
Neural Networks, vol. 21, no. 2-3, pp. 511–523, 2008.
[Online].

61. Pearson, M; Gilhespy, I; Gurney, K; Melhuish, C;
Mitchinson, B; Nibouche, M; Pipe “A real-time, fpga
based, biologically plausible neural network processor,”
in Procs ICANN’05, Warsaw, September 2005.

62. Pearson, M; Gilhespy, I; Gurney, K; Melhuish, C;
Mitchinson, B; Nibouche, M; Pipe, A: “Implementing
spiking neural networks for real-time signal-processing
and control applications: A model-validated fpga
approach,” IEEE Transactions on Neural Networks, vol.
18, no. 5, pp. 1472–1487, 2007

63. Ros, E; Ortigosa, E; Agis, R; Carrillo, R; Arnold, M:
“Real-time computing platform for spiking neurons (rt-
spike),” IEEE Transactions on Neural Networks, vol. 17,
no. 4, pp. 1050–1063, 2006

64. Bohte, S.M., Kok, J.N. & Poutre, H.L. 2002, “Error-
backprogation in Temporally Encoded Networks of
spiking neurons”, Neurocomputing, vol. 48, pp. 17-37.

65. Moore, S. 2002, Back-Propagation in Spiking Neural
Networks MSc thesis, University of Bath.

66. Xin, J. & Embrechts, M., J. 2001, “Supervised Learning
with Spiking Neuron Networks”, In Proceedings IEEE
International Joint Conference on Neural Networks,
IJCNN’01Washington D.C., pp. 1772-1777.

67. Schrauwen, B. & Campenhout, J.,Van 2006, "
Backpropagation for Population-Temporal Coded
Spiking Neural Networks". 2006 IEEE International
Joint Conference on Neural Networks, Vancouver, BC,
Canada.

68. Tino, P. & Mills, A., J.S. 2005, "Learning Beyond Finite
Memory in Recurrent Networks of Spiking Neurons" in
Advances in Natural Computation- ICNC 2005, Lecture
Notes in Computer Science, eds. L. Wang, K. Chen &
Y.S. Ong, Springer-Verlag, , pp. 666-675.

69. Wu, QX, McGinnity, TM, Maguire, LP, Glackin, B &
Belatreche, A 2006, "Learning under weight constraints
in networks of temporal encoding spiking neurons",
Neurocomputing, vol. 69, no. 16-18, pp. 1912-1922.

70. Silva, S.M.1. & Ruano, A.E.1. 2007, "Application of the
Levenberg-Marquardt method to the training of spiking
neural networks", 2006 IEEE Int Joint Conf on Neural
Networks, Vancouver, BC, Canada, pp. 3978.

71. McKennoch, S.1., Liu1, D. & Bushnell, L.G.1. 2007,
"Fast modifications of the SpikeProp algorithm", 2006
IEEE International Joint Conference on Neural Networks
, Vancouver, BC, Canada, pp. 3970.

72. Xie, X. & Seung, H.S. 2004, "Learning in neural
networks by reinforcement of irregular spiking", Physical
Review E, vol. 69, no. 4, pp. 041909-1.

73. Booij, O.1. & Hieu tat Nguyen1 2005, "A gradient
descent rule for spiking neurons emitting multiple
spikes", Information Processing Letters, vol. 95, no. 6,
pp. 552-8.

74. Sougne, J., P. 2001, "A learning algorithm for synfire
chains" in Connectionist Models of Learning,
Development and evolution, eds. R. M. French & J. P.
Sougne, Springer Verlag, London, pp. 23-32.

75. Legenstein, R., Naeger, C. & Maass, W. 2005, "What can
a Neuron Learn with Spike-Timing-Dependent
Plasticity?", Neural Computation, vol. 17, pp. 2337-2382.

76. Strain, T.J., McDaid, L.J., Maguire, L.P. & McGinnity,
T.M. 2006, "A supervised STDP based training algorithm
with dynamic threshold neurons", International Joint
Conference on Neural Networks 2006, IJCNN '06,
Piscataway, NJ 08855-1331, United States, Vancouver,
BC, Canada, pp. 3409.

77. Florian, R., V. 2005, "A reinforcement learning algorithm
for spiking neural networks", Proceedings of the Seventh
International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing.

78. Florian, R., V. 2007, "Reinforcement Learning Through
Modulation of Spike-Timing-Dependent Synaptic
Plasticity ", Neural Comp., vol. 19, pp. 1468-1502.

79. Seung, H.S. 2003, "Learning in Spiking Neural Networks
by Reinforcement of Stochastic Synaptic Transmission",
Neuron, vol. 40, no. 6, pp. 1063-1073.

80. De Queiroz, M.S., de Berrêdo, R.C. & de Pádua Braga,
A. 2006, "Reinforcement learning of a simple control
task using the spike response model", Neurocomputing,
vol. 70, no. 1-3, pp. 14-20.

81. Alnajjar, F. & Murase, K. 2006, "Use-dependent synaptic
connection modification in SNN generating autonomous
behavior in a Khepera mobile robot", 2006 IEEE
Conference on Robotics, Automation and Mechatronic,
pp. 4018757.

82. Amin, H.H. & Fujii, R.H. 2005, "Sound classification
and function approximation using spiking neural
networks", Int Conf on Intelligent Computing, ICIC 2005
pp. 621.

83. Amin, H.H. & Fujii, R.H. 2005, "Learning algorithm for
spiking neural networks", Proceedings, Part I Springer-
Verlag, Changsha, China, pp. 456.

84. A Belatreche, LP Maguire, TM McGinnity, “Advances in
Design and Application of Spiking Neural Networks”
Springer Journal of Soft Computing - A Fusion of
Foundations, Methodologies and Applications, pp. 239-
248, Vol 11, No. 3, February 2007.

85. González-Nalda, P. & Cases, B. 2008, "Topos: Spiking
neural networks for temporal pattern recognition in
complex real sounds", Neurocomputing, vol. 71, no. 4-6,
pp. 721-732.

86. Pavlidis, N.G.1., Tasoulis, O.K.1., Plagianakos, V.P.1.,
Nikiforidis, G. & Vrahatis, M.N. 2005, "Spiking neural
network training using evolutionary algorithms", Proc
IEEE Int Joint Conference on Neural Networks Montreal,
Que., Canada, pp. 2190.

Published by Atlantis Press
 Copyright: the authors
 188

87. Johnston, S; Prasad, G., Maguire, LP & McGinnity, TM
2006, "A hybrid learning algorithm fusing STDP with
GA based explicit delay learning for spiking neurons",
3rd Int IEEE Conference on Intelligent Systems, London,
UK, pp. 621.

88. Barber, D. 2003, " Learning in spiking neural assemblies"
in Advances in Neural Information Processing Systems
15 , eds. S. Thrun S. Becker & K. Obermayer, MIT press
edn, Cambrige MA, , pp. 149-156.

89. Pfister, J., Barber, D. & Gerstner, W. 2003, "Optimal
Hebbian Learning: A Probabilistic Point of View" in In
ICANN/ICONIP 2003, volume 2714 of Lecture Notes in
Computer Science, pp. 92-98.

90. Adibi, PL., Meybodi, MR. & Safabakhsh, R. 2005,
"Unsupervised learning of synaptic delays based on
learning automata in an RBF-like network of spiking
neurons for data clustering", Neurocomputing, vol. 64,
pp. 335-57.

91. Gerstner, W. & Kistler, W. 2002, "Mathematical
formulations of Hebbian learning", Biological
Cybernetics, vol. 87, pp. 404-415.

92. Kistler, W. 2002, "Spike-timing dependent synaptic
plasticity: a phenomenological framework", Biological
Cybernetics, vol. 87, pp. 416-427.

93. Bohte, S.M., Poutré, H.L. & Kok, J.N. 2002,
"Unsupervised Clustering With Spiking Neurons By
Sparse Temporal Coding and Multilayer RBF Networks",
IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 426-435.

94. Wade, J.J., McDaid, L.J., Santos, J.A., Sayers, H.M.
2008, “SWAT: An unsupervised SNN training algorithm
for classification problems”, IEEE IJCNN 2008, pp.2648
- 2655

95. Wysoski, S., Gomes, Benuskova, L. & Kasabov, N. 2006,
"On-line Learning with Structural Adaptation in a
Network of Spiking Neurons for Visual Pattern
Recognition", Artificial Neural Networks - ICANN 2006,
16th International Conference, pp. 61-70.

96. Soltic, S., Wysoski, S.G. & Kasabov, N.K. 2008
“Evolving spiking neural networks for taste recognition”,
IEEE World Congress on Computational Intelligence,
IJCNN 2008, pp.2091 – 2097.

97. Alnajjar, F., Bin Mohd Zin, I., Murase, K. 2008, “A
Spiking Neural Network with dynamic memory for a real
autonomous mobile robot in dynamic environment”,
IEEE World Congress on Computational Intelligence,
pp.2207 – 2213.

98. Maass, W. (1997). Networks of spiking neurons: The
third generation of neural network models. Neural
Networks, Elsevier, 10, 1659-1671.

99. Glackin, C; McDaid, L; Maguire, LP; Sayers, H:
“Implementing Fuzzy Reasoning on a Spiking Neural
Network,” Artificial Neural Networks: 18th International
Conference, Prague, Czech Republic, Part II, 2008.

100. Izhikevich, E., 2004. Which model to use for cortical
spiking neurons? IEEE Transactions on Neural Networks
15 (5), 1063–1070.

Published by Atlantis Press
 Copyright: the authors
 189

