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Abstract 

The last fifty years has witnessed considerable activity in research that develops computational approaches inspired 
by nature. There are a number of umbrella terms used by researchers to classify their contributions. This can cause 
problems in disseminating and sharing results and potentially restricts research due to a lack of knowledge of the 
varied contributions. This paper reviews research in spiking neural networks and attempts to determine if the term 
Soft Computing can be used to classify contributions in this area. 
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1. Introduction 

For thousands of years man has taken inspiration from 
his environment to solve everyday problems.  Initial 
examples include the ability to use and craft objects for 
hunting, to ignite and then control fire, to use natural 
materials for clothing and shelter, and to innovate and 
create technical solutions such as the wheel. Initial 
developments were undoubtedly prompted by survival 
instincts, but progressive advancements have resulted in 
the human race becoming so sophisticated that man is 
attempting to mimic the natural world so that we can 
imbue artificial objects with human characteristics. 
Although such an objective is associated with 
considerable ethical and technical challenges it is clear 
that there has been significant acceleration towards this 
goal over the last fifty years due to the complementary 
developments in computing power.  The current 
availability of massively parallel, high speed processors 
offer not only a readymade prototyping test bed but also 
enable us to estimate the potential that we could achieve 
in the future.  

These developments have also introduced a range of 
scientific disciplines that support and introduce further 
innovation.  However, the inherent knowledge 
accumulated in these disparate disciplines has 
necessitated the specialization of researchers 
(particularly during the last 100 years) to enable them to 
operate and contribute to the advancement in their 
respective domains.  Unfortunately this specialization 
restricts the ability of researchers to work in other 
domains and has created academic silos with one 
community often ignorant of the developments in the 
other. It is generally accepted that much of the new 
innovation will be spawned from the collaboration of 
experts across the boundaries of specialist areas.  
However, this is often restricted by the different 
language/terminology, methodologies and reference 
material drawn on by each discipline and which is not 
readily accessible or indeed easily shared across the 
boundary.  As a result many researchers from different 
backgrounds have identified the need to establish large 
collaborative groupings across these boundaries.  
Fortunately this has also been recognized by national 
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and international funding bodies who are encouraging 
such collaboration. 

However, one of the major stumbling blocks 
towards improved collaboration and cooperation is the 
different terminology that has emerged.  The area of 
research that attempts to draw on inspiration from 
biology or nature is not immune to this characteristic.  
Many young and idealistic PhD students despair at the 
variety of terminology defining similar areas and 
contributions within the area.  This paper attempts to 
explore these different classifications in the context of 
the author’s research.  Section 2 introduces the main 
terms used to describe and represent the area whereas 
section 3 introduces the author’s current research and 
reviews the current contributions in that domain. 
Section 4 attempts to classify that research and the 
paper concludes with a discussion of these issues.  

2. Nomenclature 

Recent developments have introduced spiking neurons 
which closely resemble the current understanding of 
neural mechanisms within the human brain.  Such 
models range from computationally efficient yet 
biologically implausible models to more biologically 
accurate approaches that are associated with huge 
computational overheads.  This trade-off can be 
overcome by drawing on advances from neuroscience 
research to determine those biological features that 
improve computational capability and yet enable 
effective description of the inherent neuron dynamics. 
Current research has presented network architectures, 
hardware/software implementations and introduced 
learning strategies for this new generation of spiking 
neural networks.  However, the longer term challenge is 
to provide a computational approach that implements 
learning and reasoning in a human fashion that can be 
used by engineers to solve real world problems.  This 
area of research has been represented by a number of 
widely used terms that are summarized here for 
convenience:  

Computational Intelligence describes the area of 
research that emulates nature for problem solving.  The 
techniques include neural networks, fuzzy systems, and 
evolutionary computing which have been inspired by 
learning, reasoning and adaptive processes within the 
natural world.  Computational Intelligence research has 
been characterised by a progressively greater emphasis 

on providing biological plausibility and encouraging the 
integration of different techniques.   

Soft Computing is defined as that area of research 
which is tolerant of imprecision, uncertainty, partial 
truth, and approximation as inspired by the human 
mind. The main constituents of Soft Computing are 
fuzzy logic, neural computing, evolutionary 
computation, machine learning and probabilistic 
reasoning. The techniques listed as constituents of Soft 
Computing are complementary rather than competitive.  

Artificial Intelligence is the area of computer 
science focusing on creating machines that can engage 
on behaviors that humans consider intelligent. The field 
of Artificial Intelligence has split into two basic 
approaches; bottom-up and top-down. Bottom-up 
theorists believe the best way to achieve artificial 
intelligence is to build electronic replicas of the human 
brain's complex network of neurons ie neural networks 
and parallel computation whereas the top-down 
approach attempts to mimic the brain's behavior with 
approaches such as expert systems. 

Intelligent Systems is that area of research that 
includes areas like artificial intelligence, models and 
computational theories of human cognition, perception 
and motivation; brain models, artificial neural nets and 
neural computing. It covers contributions from the 
social, human and computer sciences to the analysis and 
application of information technology. The field also 
covers critical analysis of intelligent systems, and 
addresses philosophical questions that arise. 

Biologically-inspired (or bio-inspired) systems is the 
area of research into the use of computers to model 
nature, and simultaneously the study of nature to 
improve the usage of computers.  The area relies heavily 
on the fields of biology, computer science and 
mathematics and the inherent computational techniques 
include evolutionary computation, swarm intelligence, 
neural networks, fuzzy systems, rough sets, and 
quantum computing.  

The similarity and indeed huge overlap of these five 
terms is immediately obvious as each area claims 
common technologies; for example neural networks are 
a component technology in all five terms!  These five 
generic names are widely used in the literature and are 
often interchanged by authors within their papers.  
Table 1 summarises searches performed using IEEE 
Xplore in an attempt to present a representative usage of 
these classifications by the research community.  The 
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ordering of Table 1 highlights (not surprisingly) that 
Artificial Intelligence is the most commonly used 
generic classification term which may be largely 
explained by its longevity. There is some anecdotal 
evidence to suggest that many researchers deliberately 
turned away from using this term in the 1980s and 
1990s as they believed the area to be discredited due to 
the failure to deliver on the ambitious claims made by 
the initial contributors to such research.  This may 
explain why in the last 10 years there appears to be 
more frequent reference to newer terms such as soft 
computing and bio-inspired systems as evidenced by the 
last column in Table 1.  However, the use of the term 
artificial intelligence continues to dominate as the most 
prevalent term.   

Table 1: Summary of searches using IEEE Xplore  

 
Term Term in 

Article 
Title 

Term in 
all fields 

Term in all 
fields with 
search 
restricted to 
post 2000 (% of 
total) 

Artificial 
Intelligence 

692 39858 27100  (68%) 

Computational 
Intelligence 

512 10777 7818  (73%) 

Intelligent 
Systems 

616 10445 7069  (68%) 

Soft Computing 312 1142 857  (75%) 
Bio-inspired 
systems 

11 828 761 (92%) 

 
Unfortunately, this classification is also associated 

with a small number of dedicated researchers who 
appear to be resolute in their defense and protection of 
their area to the exclusion of others working in related 
areas.  While this contradicts the spirit of openness and 
enquiry of researchers it also highlights the difficulties 
for researchers working in those areas that naturally 
transcend such boundaries.  Neural network research is 
representative of one such area and the following 
section reviews the recent contributions relating to 
spiking neurons. 

3. Spiking Neural Network Research 

Experimental studies in neurobiology have attempted to 
define the dynamics of the neuron and in particular, the 
synapse, in greater detail than ever before. A neuron is 
classified as either excitatory, and thus responsible for 
routing information through the network, or it is 
inhibitory and its function is to regulate the activity of 
excitatory neurons. Unsurprisingly, there are typically 
more excitatory than inhibitory neurons1 although the 
role and configuration of inhibitory to excitatory 
neurons in any given biological network is unclear 
beyond these basic insights. Additionally it is known 
that synaptic transmission is unreliable.2,3 In vivo 
experiments have shown that repeated stimulus of a 
neuron can lead to varying responses in the resulting 
transmission of spikes at a synapse.4 Synapses have 
limited resources that they consume and replenish by 
varying rates. Typically, two types of behaviour of the 
synapse are distinguished, that of facilitating and 
depressing.5 Facilitating synapses relay information 
through biological networks whereas depressing 
synapses are coincidence detectors. Facilitating 
synapses consume their resources gradually and have 
abundantly more resources than depressing synapses. In 
contrast, depressing synapses consume all their 
resources in the first few spikes they transmit, taking 
significant time to replace them. Similarly, the 
disposition of these types of synapses in a network is 
unclear. 

With regard to learning in a SNN, it is known that 
synaptic efficacy is altered by coincidental firing 
between neurons. This is the basis of the well known 
Hebbian-type learning and explains the algorithm’s 
historical endurance.6 It is also clear that learning occurs 
strictly in a local sense. Hebbian learning of course, is 
typically an unsupervised learning algorithm in ANN 
research. However, it has also been adopted for 
supervised learning algorithms in SNN research due to 
its biological plausibility. SNNs exploit time as a 
resource so Hebbian learning algorithms needs to be 
temporal. STDP is an example of a temporal 
interpretation of Hebbian learning.7,8,9  However, STDP 
is an unsupervised learning algorithm, and as such is not 
suited to tasks requiring a specific goal definition. 
Additionally, whereas a supervised learning algorithm 
will meet these requirements, it must also be locally-
based.  
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Perhaps the only reasonable biological interpretation 
of supervised learning is supervision of a neuron by 
another neuron. In this instance, the supervisory neuron 
causes the supervised neuron to spike at desired times 
by transmitting spikes into the supervised neuron.10, 11  
In practice this supervised Hebbian learning (SHL) 
scheme has some drawbacks, chiefly among them that 
the weights of the network continue to be adjusted even 
after the desired output has been reached. A variation of 
the SHL learning algorithm can be made where the 
supervisory spike trains are not actually delivered to the 
network but are used ‘remotely’ to modify the weights. 
Employing a combination of STDP and anti-STDP, the 
Remote Supervision Method (ReSuMe)12 is capable of 
‘propping up’ inactive synaptic weights. ReSuMe is 
characterised by a capability to produce precise spike 
timing in an accurate and stable manner. 

Modelling biologically plausible SNNs presents a 
significant challenge given the vast scale of real 
networks. An indication of the complexity required to 
model such architectures is readily demonstrated by 
considering the relationship between a biological neuron 
and the basic building block of the Integrated Circuit 
(IC), the transistor. The human brain is estimated to 
contain in the region of 1011 neurons, whereas the most 
advanced processor devices currently contain 
approximately 2x109 individual transistors.13 However, 
the comparison is further complicated by the 
recognition that. the inherent dynamics of the 
underlying neuron behaviour is significantly more 
complex than the basic switching principle of the 
transistor. Nonetheless, a number of strategies to 
address this significant challenge have been reported in 
the literature.  

Given the high level of flexibility afforded, it is 
unsurprising that software based approaches have been 
heavily investigated. Examples of this include 
specialised simulation tools such as Neuron21, 
Genesis14, Emergent15, SNNS16, SpikeNET17 and third 
party toolboxes such as BNN18 and Neurosolutions19 
which are integrated within commercial general purpose 
simulation tools such as Matlab.20 Whilst such tools 
provide powerful simulation environments for studying 
relatively small populations of neurons, the sequential 
Von Neumann serial processing architecture is simply 
not scalable towards simulating networks on the 
biological scale without incurring significant 
computation times. With the growing advent of multi-

core and many-core processing, in recent years an 
increasing emphasis has been placed on the 
development of parallel simulators for multi-processor 
systems or computer clusters. For example, the 
developers of Neuron have released a parallel version of 
their software, for Genesis the PGenesis version is 
available whilst simulators such as neocortical 
simulation (NCS)22 and neural simulation toolbox 
(NEST)23 also offer support for parallel simulations. 
Whilst primarily developed to accelerate graphics 
rendering, the highly parallel structure of Graphics 
Processing Units (GPUs) has more recently attracted 
increasing interest amongst researchers aiming to model 
NN structures. 24-27 On a much larger scale, approaches 
such as the Blue Brain Project28 and SpiNNaker29 
propose the use of a multitude of processing cores for 
the purpose of modeling very large scale SNNs. For 
example, the Blue Brain Project has performed 
simulations of the neocortex comprising up to 22 
million neurons and 11 billion synapses utilising up to 
8,192 processors operating simultaneously on the IBM 
Blue Gene/L supercomputer platform.30  SpiNNaker has 
proposed a target architecture containing over 1 million 
ARM968 processor cores capable of simulating up to 1 
billion neurons in real time. Whilst such approaches 
have significant potential, the reality is that access to 
such supercomputing power is not readily available. 

As an alternative approach, extensive research has 
been conducted into custom hardware based NN 
implementations under the premise that when 
implemented in hardware, NNs can take full advantage 
of their inherent parallelism in a manner which is 
difficult to achieve with software.31 Digital based 
approaches32-34 are attractive in that they tend to offer 
high computational precision, high reliability, and high 
programmability. The primary disadvantages of these 
approaches however include the large amount of silicon 
area and power that is required for computation circuits 
such as multiplication and the relative slowness of 
computation. Analogue Application Specific Integrated 
Circuits (ASICs) on the other hand, offer interesting 
opportunities for NN implementations.35 Calculations 
which, when modelled using digital techniques can be 
computationally intensive, can be reduced to simpler 
physical processes such as summing of currents or 
charges. Such devices, where analogue circuitry is used 
to model neuro-biological architectures, are often 
referred to as neuromorphic hardware.36  Disadvantages 

Published by Atlantis Press 
    Copyright: the authors 
                  179



  
 

of analogue technology meanwhile include the 
susceptibility to noise, heat and process-parameter 
variations that limit computational precision and the 
difficulty in managing weight storage. Hence, a large 
number of groups have targeted the development of 
mixed signal ASIC devices for neural processing, 
combining the strengths of both digital and analogue 
techniques.37-44  In reality, although an attractive option 
in some regards, developing custom ASIC devices for 
NNs is both time consuming and expensive and as such, 
their use tends to be concentrated in areas where very 
either high performance is required or where large 
quantities will be deployed such as consumer products. 
An important aspect of biological networks is their 
inherent plasticity, something not easily integrated in 
ASIC design. While ASICs are very flexible in the 
design stage as they can implement any desired 
function, once manufactured they can no longer be 
modified without a re-spin and a modification of the 
basic neuron model would require a new development 
cycle to be undertaken. As a platform for neuroscientists 
and engineers to explore neuron models, parameters and 
network topologies, such a constraint is an important 
factor to be considered. 

Significant advancements in the domain of 
reconfigurable computing has resulted in FPGAs 
becoming increasingly popular for implementing 
complex computational systems.45  FPGAs permit the 
implementation of digital systems, providing an array of 
logic components that can be configured in a desired 
way by a configuration bitstream.31 These devices, 
which can be quickly and easily programmed and 
reprogrammed to perform a large variety of functions, 46 
are particularly appealing when attempting to recreate to 
some degree the natural plasticity and self-adaptation of 
biological systems in electronic hardware.  Early 
approaches that reported on the use of FPGAs for 
modelling SNNs sought to maximise the network 
population density by using highly simplified neuron 
models that were highly abstracted from the biological 
principles of neuronal signalling in the brain.47-53  
Whilst such approaches have reported on the successful 
implementation of networks ranging from 3 to 100 
neurons, they are simply not scalable towards 
simulating large scale network sizes, irrespective of how 
much the neuron model can be optimised. Also, there 
will always be a demand for platforms that will provide 
more biological plausibility. An implementation of a 

highly complex model such as that by Mak et al54 
illustrates that while this is achievable, the logic 
demands were such that only a single neuron could be 
accommodated on the target FPGA device. Such 
approaches however, utilizing fully parallel 
implementation approaches, reported huge performance 
increases in terms of the computation time. A number of 
researchers therefore explored the possibility of 
balancing this speed/area trade off, employing the use of 
resource sharing or TDM to increase the network 
density achievable whilst still offering performance 
improvements over software based implementations. 
One such approach that reports on the use of time 
multiplexing has been presented by Graas et al.55 As 
opposed to the more simplified models, this approach is 
built upon highly detailed neuron models closely 
aligned with biological principles. For example, two 
neuron models were implemented in FPGA hardware, 
the Hodgkin Huxley (HH) model56 and the Booth and 
Rinzel two-compartment model of a motoneuron.57  The 
target platform incorporated a Xilinx Virtex series 
XCV1000 FPGA device and the Xilinx System 
Generator (XSG) tool was used as the design 
environment. Extensive use of pipelining was used in 
conjunction with a simple TDM control mechanism to 
support the simulation of up to 170 independent neurons 
whereby a speed-up factor of 16 was achieved over a 
software simulation on a 1.3GHz AMD processor.  

A key limitation of this implementation however 
was the lack of support for modelling networks at the 
population level although a subsequent revision of the 
system addressed this issue.58 The updated approach 
was validated with a 40-neuron population model 
consisting of HH style conductances and fully 
interconnected synapses59 implemented on a Xilinx 
Virtex 4 series XC4VSX35 device. While the authors 
state that the approach caters for neural populations in 
the 10’s-100’s range they identify that further 
refinements are required to enable networks containing 
thousands of neurons. Whilst this work comprises a 
significant contribution to the research field, alternative 
strategies are required to enable the simulation of large 
scale networks. Using the less complex Leaky Integrate 
and Fire (LIF) neuron model, Schrauwen et al60 reported 
on the implementation of networks containing 200 
neurons. Using serial processing to sum the synaptic 
inputs to the neuron and parallel arithmetic for the 
neuron computation, the authors found that performance 
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of up to 347 times faster than real time could be 
achieved using 60% of the available FPGA logic 
resources on a Xilinx Virtex 4 XC4VSX35 device. 
Alternatively, using serial processing to sum the 
synaptic inputs and serial arithmetic for the neuron 
computation the authors found that real time 
performance could be maintained whilst using 
considerably less hardware resources, i.e. 4% of the 
available FPGA logic on the XC4VSX35. Whilst this 
work demonstrated that real time performance could be 
guaranteed for relatively modest networks containing up 
to 200 neurons, an approach offering similar real time 
performance for larger networks has been reported by 
Pearson.61,62 Using biologically plausible mammalian 
neuron topologies such as sections of the basal ganglia 
and the trigeminal sensory complex of the rodent brain 
stem, networks incorporating up to 1,100 LIF neurons 
have been successfully implemented on a XC2V1000 
Xilinx Virtex 2 series FPGA device. A limitation of this 
approach however, is the relatively small ratio of 
synapses per neuron (16:1) that can be accommodated. 
As acknowledged by the authors, this is insufficient for 
many networks. A related approach by Ros et al, 
employing the Spike Response Model (SRM) as the 
basic underlying neuron model, suggests a more 
scalable architecture whilst also targeting guaranteed 
real time performance.63 A hardware software 
partitioning strategy is adopted whereby the hardware 
component consists of a Peripheral Component 
Interface (PCI) based FPGA development board acting 
as a reconfigurable neuroprocessor while the software 
component running on the host PC is responsible for 
maintaining the network connectivity, for routing spikes 
between neurons and for implementing learning 
algorithms. The authors make extensive use of 
pipelining in their neuron computation circuitry 
implemented on the FPGA hardware and also employ 
several Processing Units (PUs), operating in parallel to 
maximise system performance. Using the RC1000 
prototyping platform, which incorporates a Xilinx 
Virtex-2000E device, the authors have implemented and 
tested the system with 1,024 neurons with up to four 
PUs operating in parallel. Unlike many of the other 
approaches, this architecture also offers support for on 
chip training. A limitation of the approach however is 
that the learning algorithms are computed in the 
software component of the system with significant 

performance degradation being observed if training is 
employed for more than 5% of the network synapses. 

While significant progress has already been made in 
understanding neurons dynamics, considerably less has 
been achieved in developing efficient spiking neural 
learning mechanisms.  To date, a number of supervised 
and unsupervised learning methods have been 
developed, most of which do not scale up and would 
require retraining in a continuously changing 
environment.  

SpikeProp is an adaptation of the classical 
backpropagation algorithm that can perform complex 
non-linear classification in fast temporal coding just as 
well as rate-coded networks.64 Moore65 attempted to 
replicate the findings of Bohte and the weights were 
initialized with the values that led the network to 
successful training in a similar number of iterations, but 
with large learning rates.  Xin and Embrechts66 
proposed a modification of the learning algorithm by 
including the momentum term in the weight update 
equation.  It has been demonstrated that this 
modification significantly speeded up the convergence 
of SpikeProp.  Additional learning rules were 
introduced to make it possible to learn not only the 
weights, but also the synaptic delays, time constants and 
the neurons’ thresholds.  This resulted in smaller 
network topologies and with faster algorithm 
convergence.  Inspired by learning rules for locally 
recurrent analog neural networks, Schrauwen and 
Campenhout67 also presented a new learning rule for 
spiking neurons that used the general population-
temporal coding model.  As a result the learning rule 
was able to operate on a broad class of output codings 
smoothly and quickly.  Tiňo and Mills68 extended 
SpikeProp to recurrent network topologies, to account 
for the temporal dependencies in the input stream.  Wu 
et al69 applied weight limitation constraints to the 
SpikeProp algorithm and presented a novel solution to 
the problem raised by non-firing neurons which makes 
the learning algorithm converge reliably and efficiently.  
Silva made corrections and improvements to the 
standard SpikeProp training based on the Levenberg-
Marquardt method by introducing a new encoding 
scheme with fast convergence.70  Finally McKennoch et 
al71 developed and analyzed SNN versions of Resilient 
Propagation (RProp) and QuickProp, both training 
methods used to speed up training in ANNs by making 
certain assumptions about the data and the error surface.  
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Modifications were made to both algorithms to adapt 
them to SNNs.  Results generated on standard XOR and 
IRIS dataset were shown an average of 80% faster than 
using SpikeProp on its own. 

Neither the original SpikeProp method nor any of 
the proposed modifications enable learning of patterns 
composed of more than one spike per neuron.  But the 
fact that temporal events can happen more than once, 
make temporal patterns actually different from static 
patterns. So in order to process such patterns with an 
SNN, the neurons have to be able to spike more than 
once.  Xie and Seung72 presented a synaptic update rule 
for learning in networks of spiking neurons.  It was 
shown that irregular spiking similar to that observed in 
biological neurons could be used as the basis for a 
learning rule. The learning rule was derived based on a 
special class of model networks in which neurons fire 
spike trains.  The learning rule was on average 
performing gradient ascent on an expected reward 
function.  Booij and Hieu73 presented a supervised 
learning rule for SNN that can cope with neurons that 
spike multiple times.  The rule was developed by 
extending the existing SpikeProp algorithm, and was 
successfully tested on a classification task of Poissonian 
spike trains.  These gradient based algorithms are 
computationally powerful, are often regarded non-
biologically plausible because these algorithms required 
nonlocal spread of error signals from one synapse to 
another.  

Synfire Chains based on a Hebbian learning rule 
describe neural maps organised in a feedforward 
manner with random connections between maps 
showing synchronous activity.74 It was assumed that the 
time of postsynaptic neuron firing depends mostly on 
the signal propagation delay in the presynaptic neurons.  
The ‘time-weight’ dependence is neglected and the 
topology of the network is modified to obtain the 
desired delay between input and output.  Ruf and 
Schmitt presented a supervised-Hebbian learning 
methods, one of the first spike-based methods for 
classification task.10 In Ref 75, a supervised-Hebbian 
learning method was realised by the extra input currents 
injected to the learning neuron, the learning neuron was 
forced to fire at the target points in time and prevented it 
from firing at other times. The learning algorithm was 
able to approximate the given target transformations 
quite well although parameters continued to be changed 
even if the neuron fired already exactly at the desired 

times.  The presented method proved high ability to 
implement the precise spike timing coding scheme.  
ReSuMe12 integrated the concept of learning-windows 
with the novel concept of remote supervision.  The 
experiment confirmed that ReSuMe can efficiently learn 
the desired temporal sequences of spikes and that the 
learning process converges quickly.  This method 
enables the network to learn multiple patterns of spikes.  
Since the synaptic weights are updated in an 
incremental manner and the method is suitable for 
online processing.  In other work that also used the 
STDP rule, a supervised training algorithm was 
developed that affected weights both locally and at 
network level.76 

In Ref 77, learning was achieved by synaptic 
changes that depended on the firing of pre- and 
postsynaptic neurons, and that were modulated with a 
global reinforcement signal.  The efficacy of the 
algorithm was verified in a biologically-inspired 
experiment.  In Ref 78, the modulation of the STDP by 
a global reward signal led to reinforcement learning.  
However, it was only applied to the XOR problem and 
still need to be demonstrated on large datasets.  Seung79 
provided the explanations for different dynamics of the 
synaptic plasticity related to the reward signal.  Based 
on direct reinforcement learning algorithm, overall 
qualitative performance was comparable to the classic 
algorithms based on temporal difference and value 
function approximation, but with a higher 
computational cost.80 Based on a use dependent synaptic 
potentiation and depotentiation, a self-organisation 
algorithm81 was developed and successfully performed 
in autonomous robot application. The time needed for 
the training using self-organization method was much 
less than with genetic evolution. Amin82 presented a 
new learning algorithm that can perform learning in one 
step and utilises only synaptic weights for learning.  The 
proposed algorithm was simpler than past approaches 
and more practical to implement in hardware.  It was 
demonstrated on sound classification and function 
approximation.  A new learning algorithm for SNNs 
that uses the inter-spike times within a spike train was 
introduced.83  The learning algorithm utilised the spatio-
temporal pattern produced by the spike train input 
mapping unit and adjusts synaptic weights during 
learning and the approach was demonstrated on 
classification problems. 

Published by Atlantis Press 
    Copyright: the authors 
                  182



Belatreche et al. proposed a derivative-free 
supervised learning algorithm and used an evolutionary 
strategy to minimise the error between the output firing 
times and the corresponding desired firing times.84  Also 
in Ref 85, based on evolutionary computation 
techniques, the ability of the robots to distinguish 
sounds composed of parts of real canary songs and to 
navigate to the recognised signal was evaluated. 
Palvidis et al86 developed a Parallel Differential 
Evolution algorithm which was successfully tested on 
well-known and widely used classification problems.  
Johnston et al87 developed a hybrid learning algorithm 
fusing STDP with genetic algorithms based explicit 
delay learning.  As the training is an evolutionary 
strategy-based iterative process, the training procedure 
was extremely time consuming and is not suitable for 
online learning. Barber88 proposed a statistical learning 
criterion to derive a supervised spike-based learning 
algorithm.  The method considered supervised learning 
for neurons operating on the discrete time scale.  Pfister 
et al. extended this study to the continuous case.89  

Unsupervised spike-based learning methods, such as 
Long-term Potentiation (LTP), Long-term Depression 
(LTD), Spike-Timing Dependent Plasticity (STDP) and 
Hebbian learning have already been widely investigated 
and described in the literature.90-92  In Ref 91, several 
mathematical formulations of correlation-based Hebbian 
learning were reviewed.  The state of the presynaptic 
neuron was described either by a firing rate or by 
presynaptic spike arrival.  The state of the postsynaptic 
neuron can be described by its firing rate, its membrane 
potential or the timing of backpropagating action 
potentials. Due to its intrinsic normalization properties, 
Hebbian synaptic plasticity stabilised postsynaptic firing 
rates and led to subtractive weight normalisation. 
Kistler92 presented a phenomenological model of STDP 
that was based on a Volterra series-like expansion.  
Integral kernels were used to describe synaptic weight 
changes as a function of the relative timing of pre- and 
postsynaptic spikes. 

In Ref 93 it was showed how a SNN based on spike-
time coding and Hebbian learning performed 
unsupervised clustering successfully from realistic data. 
In SNNs, delay learning is achieved through delay 
selection and delay shift. Adibi et al90 introduced a new 
delay shift approach for learning in RBF-like SNNs.  
There were single delayed connections between the 
input and the RBF neurons and the delays were adapted 

in an unsupervised learning process.  It was shown the 
clustering precision of the proposed network was 
considerably higher than that of the similar neural 
networks.  Wade et al94 presented an unsupervised 
training algorithm for SNNs that merged the 
Bienenstock-Cooper-Munro (BCM) learning rule with 
STDP, stimulated using spike trains. The BCM rule 
combined with STDP modulated the height of the 
plasticity window. The network was applied to the IRIS 
dataset and the results showed convergence accuracy 
comparable to other SNN training algorithms. 

Wysoski et al95 presented a simple online procedure 
to perform learning for a four layers of hierarchical 
neural network of two-dimensional integrate-and-fire 
neuronal maps. The training was done through synaptic 
plasticity and adaptive network structure.  Event driven 
approach was used to optimize computation speed in 
order to simulate networks with large number of 
neurons.  The training procedure was applied to a 
publicly available face recognition dataset, and the 
obtained performance was comparable to the optimised 
off-line method.  In Ref 96, a simple artificial gustatory 
model was used in SNNs for taste recognition.  An 
evolving learning algorithm was developed based on 
simple integrate-and-fire neurons with rank order coded 
inputs.  How the information encoding in a population 
of neurons influenced the performance of the networks 
was also explored.  However, these approaches still 
need to address a number of issues such as fine tuning 
of learning parameters, automatic update of learning 
parameters in continuously changing environments (as 
these were set manually), improving learning speed for 
large size datasets, and the effect of handling 
imbalanced datasets on the training performance.  
Alnajjar et al97 developed a novel self-adaptation system 
to train a real mobile robot for optimal navigation in 
dynamic environments by training SNNs having the 
STDP property.  All the trained SNNs were stored in a 
tree-type memory structure that were used as 
experiences for the robot to enhance its navigation 
ability in new and previously trained environments. The 
memory was designed to have a simple searching 
mechanism. Forgetting and on-line dynamic clustering 
techniques were used in order to control the memory 
size.  Experimental results showed that a robot provided 
with learning and memorizing capabilities was able to 
survive in complex and dynamic environments.   
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There has been considerable research focus on 
developing offline approaches for SNNs, but very little 
has been achieved in developing online learning 
approaches for SNNs. Developing efficient online 
learning approaches for SNNs is thus very important for 
increasing the applicability of SNNs as an intelligent 
system capable of handling continuous streams of 
information, scaling up and adapting to continuously 
changing environments.  Similarly there are ongoing 
challenges of scale such that we can realize more 
realistic networks that can solve real world problems.  
This will involve hardware implementations to ensure 
real time operation.  Thus further research contributions 
will involve input from biologists, engineers, 
mathematicians, physicists, psychologists, computer 
scientists etc and will thus demand a common 
terminology to ensure ease of communication across 
these diverse disciplines. 

4. Commentary 

The previous section presented a review of the recent 
research contributions in the area of spiking neural 
networks which has highlighted the various engineering 
contributions that attempt to address the challenges 
facing this embryonic research area, many of which are 
common to the more traditional neural networks.  It is 
thus very clear that spiking neural networks are just 
another variant of classical neural networks and indeed 
have already been identified as the third such generation 
of neural networks.98 However, the question now 
remains on how to classify this research area within the 
more generic terms.  Initially this appears as quite a 
trivial challenge as neural networks are already 
associated with each area but surely a more careful 
consideration is required if not simply to offer a term 
that provides an onomatopoeia-like reference for other 
researchers. Furthermore, such a definition should also 
consider that such research often draw heavily on other 
areas and indeed are characterized by developments in 
hybrid technologies.  For example, a recent 
development in spiking neural networks has witnessed 
the introduction of fuzzy reasoning that has introduced a 
new computational paradigm.99 

Before attempting to consider the suitability of each 
term it is more appropriate to first define the motivation 
for research into spiking neural networks and thus map 
its rationale onto such a generic term.  Neural networks 
are essentially connectionist models of biological 

neurons that attempt to harness the massively parallel, 
distributed computation of biological brains. Neural 
network research is characterised by a progressively 
greater emphasis paid to biological plausibility.  Spiking 
neurons are based on the realisation that the precise 
mechanism by which biological neurons encode and 
process information is still poorly understood. In 
particular, biological neurons communicate using action 
potentials also known as spikes or pulses. The spatio-
temporal distribution of spikes in biological neurons is 
believed to ’hold the key’ to understanding the brain’s 
neural code.  Spiking neurons model this form of input 
stimulus and in this way exploit time as a resource in 
the neural code. There exists a multitude of spiking 
neuron models that can be employed in SNNs. The 
models range from the computationally efficient on the 
one hand to the biologically accurate on the other100; the 
former are typically of the integrate-and-fire variety and 
the latter are of the Hodgkin-Huxley type. All the 
models in this range exploit time as a resource in their 
computations but vary significantly in the number and 
kinds of neuro-computational attributes.   

The definition of Soft Computing includes neural 
networks and thus would also include spiking neural 
network research; although its name does not suggest its 
inclusion.  In the author’s opinion the term “soft 
computing” is not descriptive of this area and in many 
ways misleading; the use of the word “soft” may 
suggest easy, rather than a collection of intelligent 
technologies.  This may be controversial within the 
constraints of this special issue but the term Soft 
Computing is more closely associated with the fuzzy 
community, and it is undoubtedly more appropriate in 
that context as it highlights and represents the vagueness 
of decision boundaries. 

Similarly the term Artificial Intelligence in some 
ways suggests that the inherent intelligence is not 
natural but rather contrived as artificial, and thus not 
inspired from the biology.  Many of the initial 
contributions in Artificial Intelligence were indeed 
motivated by this premise as researchers developed 
computing techniques and algorithms that could be 
described as intelligent.  Thus Artificial Intelligence 
does not seem to be an appropriate generic term for 
spiking neural networks as this research domain is 
primarily motivated by biological plausibility. Spiking 
neural network researchers would rarely use the term 
Artificial Intelligence and generally avoid the sub-
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symbolic descriptions of their networks in this domain.  
The field of artificial intelligence is normally concerned 
with a more abstract or high level approach to 
representing intelligence. Artificial Intelligence is now 
confined to the discipline of Computer Science 
encompassing expert systems, high level reasoning, 
database mining, knowledge based systems, and natural 
language processing. 

The term Intelligent Systems provides a more 
generic term for the research community and the name 
provides a clear definition of the area.  However, in 
many ways the term is too generic as it can be used to 
classify any engineering system that demonstrates 
intelligent behaviour. Such systems could be motivated 
from diverse areas such as social or mechanical 
engineering and as a result may have little or no 
computational requirements.  Similarly the term Bio-
Inspired systems is also representative but would also 
suffer from this “too generic” label.  However both 
terms are highly descriptive of the spiking neural 
network research area but should be reserved for higher 
level adjectives describing the wider context of the 
research area. 

The final term to consider is Computational 
Intelligence which in the author’s opinion is the most 
suitable umbrella term for this area.  This term clearly 
identifies a research area that attempts to emulate 
intelligent systems on a computational platform.  The 
area includes a collection of research techniques that 
have been inspired from biology and which includes 
neural networks, fuzzy reasoning and evolutionary 
computing which have been inspired by learning, 
reasoning and adaptive processes within the natural 
world.  Computational Intelligence research has been 
characterised by a progressively greater emphasis on 
providing biological plausibility and encouraging the 
integration of different techniques.  Such biological 
plausibility is an important motivation for spiking 
neural network researchers and the computational 
aspects clearly differentiate the area from related 
developments in the wider neuroscience community.  
The definition of the area is also not restrictive and will 
readily accommodate new computational developments 
in the area. 

5. Conclusion 

This paper has attempted to navigate through the 
various definitions of the research area that claim to 

represent the contributions in spiking neural network 
research.  The review section provided an overview of 
spiking neural network research including its motivation 
and main contributions.  The previous discussion 
presented the author’s opinion on this classification and 
the use of terms to represent the area. It is clear there is 
widespread acceptance of a number of descriptive terms 
and that no single consensus can be reached.  However, 
the discussion concluded that a number of terms are 
more suitable to represent the research area and 
suggested that there is a hierarchy of such terms.   

At the bottom of this hierarchy is the research area 
of spiking neural networks used by the author to 
illustrate this classification.  This area is clearly related 
to the more traditional neural network research and thus 
related to other areas such as fuzzy logic and 
evolutionary computing.  These techniques are all 
characterized by computational approaches to emulate 
the learning, reasoning and adaptive processes within 
the natural world.  Thus the most appropriate term to 
define these areas is Computational Intelligence.  Other 
terms at this next level that could be considered were 
Soft Computing and Artificial Intelligence.  However, 
both were discounted as they did not reflect the 
biological plausibility of the research area or indeed did 
the terms suggest its inclusion.  There is no doubt that 
there is some overlap with the inherent technologies 
associated with the three terms at this level; in many 
ways the boundaries between each are vague or fuzzy!  
This vagueness of decision boundaries is further 
compounded if we consider that at this level the term 
Computational Neuroscience could also be used to 
classify spiking neural networks in the wider research 
domain of Neuroscience.  However, the important term 
in this context is computation as it sets the context that 
the research is to be realised on a computational 
platform.  Finally, the higher level term that should be 
used to represent the areas of Computational 
Intelligence, Soft Computing and Artificial Intelligence 
is Intelligent Systems/Bio-inspired Systems.  The use of 
word “systems” clearly highlights a higher level 
representation of the area and provides an all-
encompassing onomatopoeia-like reference for other 
researchers.  
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