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Abstract 

In a scientific domain, learning comprises studying a finite set of principles of the domain and applying them to 
solve a wide variety of problems. Therefore an intelligent tutoring system in a scientific domain is required to 
possess an adequate methodology to deal with this principle. We suggest a tutoring architecture for geometry where 
the domain principles are automatically converted to inference operators for use by the domain-independent, 
inferential portion of the tutoring system. An important part of this architecture is an intelligent drawing interface 
that facilitates automatic conversion of the figures in geometry into an internal form that is suitable for problem-
solving tutoring. During student problem solving, the system monitors the student’s steps, tracks a step that has 
multiple inferences, and gives hints and explanations. We discuss the advantages of our approach in enhancing the 
performance and interactivity of the tutoring system. 

Keywords: geometry tutoring, problem solving, inference operators, knowledge compilation, multiple inference, 
intelligent drawing interface. 

1. Introduction 

The task of building an intelligent tutoring system has 
been considered hard, since it requires years of human 
efforts to codify diverse knowledge involved in an 
educational domain, e.g., basic concepts, principles, and 
problem-solving strategies for a wide range of selected 
training problems. This is especially true in scientific 
domains. Learning in science is a process made up of 
studying a finite set of general principles and then 
developing the skills to apply them in an infinite variety 
of situations. A computer tutor in science should, 
therefore, possess an adequate strategy to represent and 
to use the principles in tutoring.1, 2 Although such a 
strategy is expected to be commonly applicable to 
various scientific domains, a technique developed for 

tutoring in a domain cannot always be applied directly 
to other domains because each scientific domain is 
taught and learned in a context radically different from 
any other. For example, learning in mechanics involves 
reasoning about physical objects, motions, forces, etc., 
while the main contexts of plane geometry are figures, 
angles, etc. 

We have set as our long-term research goal the 
development of a modular science tutoring architecture, 
in which the common, sharable strategies of science 
tutoring are built in and modifiable independently of the 
domain-specific knowledge supplied by  the domain 
authors. We believe that authoring of domain-specific 
knowledge must be facilitated in a human-friendly 
interface that is designed to minimize the burden on the 
human author who supplies the knowledge (e.g., 
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concepts and principles) of the domain. More 
importantly, the requirement for the tutoring 
architecture suggests that the system should provide a 
mechanism for compiling the knowledge of the domain 
into a format suitable for tutoring during the reasoning 
part of the teaching process.3, 4 

We have designed one such compilation mechanism 
and built on it a tutoring system for geometry problem 
solving called CyberTutor. Although geometry has been 
a popular domain for numerous intelligent tutoring 
systems research,5, 6, 7 few of the system have yet 
reached the level of building a modular architecture like 
the one we are developing. A major obstacle to such 
modularization seems to be that, in geometry the 
domain knowledge is taught and learned in a unique 
context, i.e., the figure, an application that is uncommon 
in other domains. This paper reports on the design and 
the implementation of the tutoring system with a focus 
on the knowledge compilation scheme with regard to 
figures for obtaining the inference operators and the 
benefits of using them in tutoring problem solving. 

In the following sections, we will show how the 
geometry principles exemplified by figures can be 
represented in the computational framework, and 
compiled into a set of inference operators to use in the 
inferential part of the tutoring system. Next, we will 
present the working mechanism of the inferential 
components of the tutoring system. That aspect will be 
followed by a brief demonstration of a sample tutoring 
session by CyberTutor. Finally, conclusions will be 
presented with discussions on potential areas of 
extensions. 

2. The Geometry Models 

Unlike other domains, geometry principles are usually 
presented with figures to graphically describe the 
contexts of the principles. A geometry principle is 
usually stated as a logical proposition about a figure 
representing the context in which the principle is 
applicable. Such a figure contains a set of 
geometrically-meaningful information, which may be 
divided into its components, quantities and relations. 
The components are the objects, such as points, lines, 
and figures like triangles and circles. The quantities are 
the quantitative attributes associated with the 
components, such as lengths, angles, perimeters, and 

areas. The relations are the configurations among the 
components, such as ‘Point A is on Circle C’ and 
‘Direction of Line AB is shifted to the right from that of 
line BC’. The collection of the components, the 
quantities and the relations may be referred to as 
contexts, since they serve as the contextual backgrounds 
for the higher-level propositions of the domain. 

We have employed a computational framework 
called model, as a natural way to represent a geometry 
principle. Fig. 1a shows an example principle, followed 
by the corresponding model in Fig. 1b. Our notion of 
models corresponds to the notion of the models in the 
ACT-R theory5, in that a model is a declarative data 
structure with slots to hold the contexts as well as the 
proposition. 

A 

B C D
●

○ 

○● 

“Exterior angle of a triangle is equal to the sum of 
opposite inner angles” 

(MODEL M27 
(PRINCIPLE “Exterior angle of a triangle is equal to the 
 sum of opposite inner angles”) 

 (COMPONENTS 
  (POINTS (A) (B) (C) (D)) 
  (LINES (AB (ENDS A B)) (BC (ENDS B C)) 
   (AC (ENDS A C)) (CD (ENDS C D)) 
   (BD (ENDS B D)))) 
 (QUANTITIES 
  (ANGLES (ABC (SIDES AB BC)) 
   (BAC (SIDES AB AC)) (ACB (SIDES AC BC)) 
   (ACD (SIDES AC CD)))) 
 (RELATIONS 
   (ON (POINT C) BD) 
  (SHIFT (DIRECTION AB AC) 
   (DIRECTION BC AB) (DIRECTION AC BC) 
   (DIRECTION CD AC))) 
 (PROPOSITION (ACD = BAC + ABC)) 
) 

Fig. 1a.  A geometry principle. 

Fig. 1b.  A model corresponding to the principle in Fig. 1a.
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3. The Drawing Interface 

It is important that an authoring system facilitate an 
automated environment for generating models, since 
encoding a large number of these models manually 
would be too tedious and time-consuming. The drawing 
interface we are building enables an author to supply 
geometry principles by drawing figures and entering 
propositions in a user-friendly way; i.e., the contexts of 
the models are specified automatically, as the author 
draws the figures using a series of mouse actions. 

The drawing interface provides the usual facility for 
entering figures; i.e., a drawing palette and mouse-
selectable icons of basic components (e.g., line, circle, 
triangle, etc.). When the user of the drawing interface 
enters the components, implicit information about the 
figure is also derived, and all of these are transformed 
into an internal data structure, namely the specifications 
of the figure. The derivation of implicit information is 
performed by a search procedure that attempts to 
specify underlying components, quantities and relations 
formed by the components drawn explicitly. Among 
them, implicit components are such objects as line 
segments, arcs, chords, sectors or polygons that are 
inferred either by decomposing a composite component 
(e.g., a line intersecting a circle produces a chord, arcs, 
and segments of the line and the circle), or by grouping 
simple objects into a larger object (e.g., three 
intersecting line segments produces a triangle). Implicit 
relations are information about point inclusions and line 
shifts, while implicit quantities are those quantities 
associated with the components (e.g., length, angle, 
perimeter, circumference, area). 

An example is given in Fig. 2. Suppose line segment 
AD (shown thick) is entered into the existing figure. 
Then, from this particular configuration, the search 

mechanism derives a set of new components, i.e., 
triangle ABD, and sectors ABD, ACD and ADE. Also 
derived are new relations formed between line segment 
AD and existing line segments AB, BD, AE and AC; they 
are ‘AB shifts from AD’ and ‘AD shifts from BD’ among 
others. A number of associated quantities are also 
specified; they are the angles between the line segment 
just entered and the existing line segments, and the areas 
and the perimeters of the derived components. All these 
derived information are added to the internal 
specifications of the figure. Main benefit from this 
design of the drawing interface is the automatic 
specification of all implicit, but contextually legitimate 
information, without intervening an author’s drawing 
activity. As a result of such automatic specification, this 
information is made accessible (or addressable) in 
tutoring. 

To exploit the benefit further, we have implemented 
a graphic facility to enable cyclic selection of individual 
components among an overlapped cluster of 
components with a series of mouse toggles. Fig. 3 

ClosedFig BCD 

B A

D
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E

Triangle ABD 

B A 

D
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E

Sector ABD 
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D
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ClosedFig ABDE 
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HalfCircle 
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D

C

E

B A 
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E

Sector ABE 

Fig. 3.  Mouse toggles around the closed figures surrounding
the mouse point. 

Fig. 2.  An example figure. 
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shows an example of such a cyclic selection in which, 
with the selection mode set to closedfigure (other 
possible modes are line, arc, angle and area), each 
mouse toggle selects and highlights each different 
closed figure surrounding the mouse point. The 
capability to access a specific part of a figure 
individually is very useful in tutoring. When the tutor 
wants to designate a component or a quantity, the tutor 
may highlight it to draw the student’s attention. Such a 
feature is especially useful when a component having an 
irregular shape (thus, hard to name) has to be 
designated; e.g. the third-toggled closed figure in Fig. 3 
which is surrounded by line segments AB, AE and BD, 
and arc DE. 

4. The Inference Operators 

For the finite set of general models to deal effectively 
with an infinite variety of problems, we employ the 
notion of knowledge compilation8. The models 
generated using the drawing interface are compiled 
upon the specific contexts of a problem to produce a set 
of inference operators. These operators are context-
specific since they are obtained by converting the 
general contexts used in the model into the particular 
contexts of a problem (e.g., labels used in the figure). 
The compilation process applies only to those models 
whose contexts match the problem contexts. As a 
consequence, the range of the principles covered by the 
resultant operators is confined to only those principles 
that are contextually relevant to that specific problem. 

The contexts having been matched already, these 
operators need not carry contextual information and 
thus can consist only of the propositions in the forms 
instantiated for the problem at hand. Fig. 4b shows 

some of the inference operators produced for the sample 
problem shown in Fig. 4a. We can see that the operators 
shown here solely consist of compilations from relevant 
models. They correspond to such principles as “(P1) 
Alternate interior angles between parallel lines are 
equal”, “(P2) If two sides of a triangle are equal, then 
the base angles are equal”, “(P3) The sum of the angles 
in a triangle is 180”, “(P4) Lengths of two radii of a 
circle are equal”, “(P5) The sum of two supplementary 
angles is 180”, “(P6) Exterior angle of a triangle is 
equal to the sum of opposite inner angles” etc. Note that, 
some operators included in this operator set are 
apparently unusable ones (e.g., OPR2,4,5), since their 
left-hand side propositions do not hold. Still these 
operators are legitimate as far as the contexts are 
concerned and in fact are useful for capturing 
misconceptions in the inference steps that students 
might take. 

5. The Inference Engine 

For tutoring of a problem, stored principles in geometry 
are combined with the specific problem to automatically 
produce a homogeneous set of logical consequences, the 
inference operators. These operators are subsequently 
used by the domain-independent, inferential part of the 
system for tutoring on that specific problem. 

CyberTutor employs three types of inference 
strategies: propositional, algebraic, and quantitative. 
The propositional inference is the common backward 
inference about the propositions in the working 
memory: i.e., the inference operators and the set of 
propositions given in the problem. When a student 
enters a problem-solving step in the form of an assertion, 

Fig. 4b.  Some of the inference operators produced for the
sample problem in Fig. 4a. 

Given BD//AE and ∠ABD = 40, find ∠DAE. 

B A 

D 

C 

E 

40 
? 

 (OPR1)  BD//AE → ∠ADB = ∠DAE   (P1) 
 (OPR2)  BD//AC → ∠ADB = ∠CAD   (P1) 
 (OPR3)  AB = AD → ∠ABD = ∠ADB  (P2) 
 (OPR4)  BD = AD → ∠ABD = ∠BAD  (P2) 
 (OPR5)  AB = BD → ∠BAD = ∠ADB  (P2) 
 (OPR6)  ∠ABD + ∠ADB + ∠BAD = 180  (P3) 
 (OPR7)  AB = AD      (P4) 
 (OPR8)  AD = AE      (P4) 
 (OPR9)  AC = AD      (P4) 
 (OPR10)  ∠BAD + ∠CAD = 180   (P5) 
 (OPR11)  ∠CAD = ∠ADB + ∠ABD   (P6) 

Fig. 4a.  A sample problem. 
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that student’s step is taken as a hypothesis and set as the 
goal to be proved by the system. In the goal-driven 
search, the propositions in the working memory are then 
searched for matches. For those inference operators 
whose RHS’s match the goal, the system tries to match 
their LHS propositions, possibly by sub-goaling them 
until the initial goal is proved or unproved. If proved, 
the student’s step is taken as valid; otherwise, it is 
considered to be invalid. 

The algebraic inference module handles the 
inference involving an algebraic manipulation. Real 
problem solving in geometry often involves algebra. 
Students may enter a step in the form of an algebraic 
expression which is not derivable from a direct 
application of the propositional inference described 
above. For instance, a student’s step, “x = 50” is taken 
as a goal hypothesis by the algebraic inference module, 
and proved if the propositions in the working memory 
include, e.g., “x + y = 180” and “y = 130”. The algebraic 
inference takes more time than the propositional 
inference does, since it involves solving simultaneous 
equations. In order to minimize performance degrade, 
this inference is used only as a complement to the 
propositional inference. 

Finally, the quantitative inference module handles 
the situation when the goal hypothesis consists of an 
algebraic expression involving quantities and if both the 
propositional and the algebraic inferences fail to 
validate the goal hypothesis. In this case, the module 
extracts the quantities from the expression and sets each 
quantity as the sub-goal of the subsequent inference, 
and keeps working backwards until desired quantities 
are solved for. Previous research on geometry tutoring 
has concentrated mainly on purely-proving types of 
problems, while ignoring the algebraic aspects involved 
in problem solving. In fact, many geometry problems 
often demand algebraic manipulations in the course of 
the problem solving, and some problems ask directly to 
solve for the value of an unknown quantity. Using a 
separate built-in algebraic manipulation module would 
not suffice, since such a “black box” module would not 
allow the tutor to access the information about the 
algebraic inference performed within it. Kerber et al.9 
have advocated an integration of computer algebra into 
mechanized reasoning systems, in which the uniform 
framework allows to solve a large class of problems that 
are not automatically solvable by separate systems. 

Such a notion of integration is shared by us and even 
extended further in the design of the inference engine. 
One of the achievements of our research is the 
generalization of the tutoring scope to cover problems 
involving the algebraic and the quantitative inferences 
in a way that is transparent, and therefore, accessible for 
tutoring. 

6. CyberTutor 

A problem-solving tutoring session in CyberTutor 
(shown in Fig. 5) comprises a series of stepwise 
interactions between the student and the tutor. Student 
problem solving is monitored so that each step entered 
by the student is checked for validity. This validity 
check is performed by using the backward inference 
mechanism on the propositions in the working memory, 
and if necessary, the algebraic and quantitative 
inference mechanisms as well. 

Initially, a problem selected by the student is loaded 
into the system. At load-time, the problem is compiled 
upon the system’s library of geometry models to 
produce a set of inference operators. It is worth 
mentioning here that we are in the process of upgrading 
our drawing interface to facilitate the student entering a 
problem outside the library of problems, i.e., one 
supplied by the student himself. The strength of the 
proposed tutoring framework is that it is applicable not 
only to the selection of stored problem, but also to a 
wider range of problems, since the solution procedures 
for the problems are not stored along with the problems 

Fig. 5.  The CyberTutor interface. 
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in the library, but generated dynamically during the 
problem solving. This is important since students 
sometimes want to work with their own problems that 
are outside the system’s library. Accommodation of this 
demands on the tutoring system’s supports for an 
intelligent interface for students’ authoring problems 
and automatic problem-solving, which we believe are 
naturally supported in our proposed tutoring framework. 

Besides tracking student steps comprising single or 
multiple inferences, CyberTutor is also capable of 
providing hints and explanations at points where 
students cannot proceed further, as illustrated in Fig. 5. 
Highlighted hints are generated by using the system’s 
current ability to solve the problem, i.e., the system is 
made to generate partial steps of problem solving. If the 
student asks for an explanation of the tutor’s step, the 
system responds by back-chaining on the inference 
made for generating the step. 

7. Conclusions 

We have presented the design methodology of a tutoring 
system for problem solving in geometry. The main 
design issues involved were the knowledge compilation 
schemes through an intelligent drawing interface, the 
inferential mechanisms based on inference operators, 
and the pedagogical strategies on differing skill levels of 
students. To tutor a problem, the problem is first 
compiled with the domain principles stored in models to 
produce a set of inference operators. Then, these 
operators are passed to the inference part of the system, 
which consists of a set of domain-independent problem-
solving strategies, namely propositional, algebraic, and 
quantitative inference strategies. They work together to 
assist the system’s tutoring activities in a way accessible 
for pedagogy. 

As for the problems-solutions database, a stored 
solution approach would be both unwise and useless. It 
is unwise because the human author has the burden of 
specifying all problem-solving steps for each problem, 
and remains useless because the system is still not 
prepared to deal adequately with the off-the-track steps 
students can take. There are also a line of automated 
geometry proof generating and problem solving 
systems10, 11 that are capable of generating proofs and 
solutions to a large class of geometry theorems and 
problems. Although such a system may well be used as 

a legitimate supplementary to geometry learning or 
geometry-based systems, e.g., CAD,12 it falls short of an 
interactive tutor for the same reason mentioned above. 
In the proposed design, the solution steps are not pre-
stored in the library, but rather generated automatically 
at tutoring time in the form of the inference operators. 
The inference operators resemble the production rules,5 
as both are derived from declarative knowledge of the 
domain. But the operators are tactically more useful in 
several respects. First of all, the search space is greatly 
reduced since the models (i.e., the principles) that are 
irrelevant to the sample problem have been pruned out 
during compilation. In fact, a typical problem in a 
scientific domain, including geometry, can usually be 
solved using only a few principles. Additionally, the 
time-taking process of context matching is completed 
with compilation; hence the interactive performance of 
the system is enhanced still further. 

In the present implementation of CyberTutor, a less-
skilled student’s step is usually tracked by a single or 
two inference steps of the system. On the other hand, a 
step involving a longer chain of inferences made by a 
more skilled student can also be tracked by applying 
multiple inference steps. Such a capability to track 
student steps, including a step made of multiple 
inferences, is important for building individual models 
of students. Most of the previous systems in this area of 
skills tutoring have confined the steps to a primitive 
length of inference, and by doing so, they failed to 
model the variety of individual skill levels. In this 
respect, we believe the proposed design has a solid 
potential for providing a personalized learning 
environment, if combined with an appropriate feedback 
facility.13, 14, 15 

At the present, the drawing interface is specialized 
only for geometry. Learning in many other scientific 
domains also involves reasoning about figures. 
Mechanics, electric circuitry, and chemical reactions are 
several examples of such domains. We plan to 
investigate on the generalization of our approach to 
these domains. This generalization can be achieved by 
isolating the domain-independent features of the 
drawing interface from the geometry-specific features, 
then applying them to the specific features of other 
domains. 

Overall, the proposed design principle is expected to 
be applicable to various scientific domains other than 
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just geometry, where the nature of problem solving is a 
stepwise inference that also uses domain principles as 
the search operators. 
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