

Geometry Tutoring Supported by an Intelligent Drawing Interface and Automatic Problem
Solving

Hyung Joon Kook
Department of Computer Engineering, Sejong University

Seoul, Korea
E-mail: kook@sejong.ac.kr

Abstract

In a scientific domain, learning comprises studying a finite set of principles of the domain and applying them to
solve a wide variety of problems. Therefore an intelligent tutoring system in a scientific domain is required to
possess an adequate methodology to deal with this principle. We suggest a tutoring architecture for geometry where
the domain principles are automatically converted to inference operators for use by the domain-independent,
inferential portion of the tutoring system. An important part of this architecture is an intelligent drawing interface
that facilitates automatic conversion of the figures in geometry into an internal form that is suitable for problem-
solving tutoring. During student problem solving, the system monitors the student’s steps, tracks a step that has
multiple inferences, and gives hints and explanations. We discuss the advantages of our approach in enhancing the
performance and interactivity of the tutoring system.

Keywords: geometry tutoring, problem solving, inference operators, knowledge compilation, multiple inference,
intelligent drawing interface.

1. Introduction

The task of building an intelligent tutoring system has
been considered hard, since it requires years of human
efforts to codify diverse knowledge involved in an
educational domain, e.g., basic concepts, principles, and
problem-solving strategies for a wide range of selected
training problems. This is especially true in scientific
domains. Learning in science is a process made up of
studying a finite set of general principles and then
developing the skills to apply them in an infinite variety
of situations. A computer tutor in science should,
therefore, possess an adequate strategy to represent and
to use the principles in tutoring.1, 2 Although such a
strategy is expected to be commonly applicable to
various scientific domains, a technique developed for

tutoring in a domain cannot always be applied directly
to other domains because each scientific domain is
taught and learned in a context radically different from
any other. For example, learning in mechanics involves
reasoning about physical objects, motions, forces, etc.,
while the main contexts of plane geometry are figures,
angles, etc.

We have set as our long-term research goal the
development of a modular science tutoring architecture,
in which the common, sharable strategies of science
tutoring are built in and modifiable independently of the
domain-specific knowledge supplied by the domain
authors. We believe that authoring of domain-specific
knowledge must be facilitated in a human-friendly
interface that is designed to minimize the burden on the
human author who supplies the knowledge (e.g.,

International Journal of Computational Intelligence Systems, Vol.3, No. 1 (April, 2010), 21-27

Published by Atlantis Press
 Copyright: the authors
 21

zegerkarssen
Texte tapé à la machine
Received: 15-05-2009
Accepted: 01-12-2009

H. J. Kook

concepts and principles) of the domain. More
importantly, the requirement for the tutoring
architecture suggests that the system should provide a
mechanism for compiling the knowledge of the domain
into a format suitable for tutoring during the reasoning
part of the teaching process.3, 4

We have designed one such compilation mechanism
and built on it a tutoring system for geometry problem
solving called CyberTutor. Although geometry has been
a popular domain for numerous intelligent tutoring
systems research,5, 6, 7 few of the system have yet
reached the level of building a modular architecture like
the one we are developing. A major obstacle to such
modularization seems to be that, in geometry the
domain knowledge is taught and learned in a unique
context, i.e., the figure, an application that is uncommon
in other domains. This paper reports on the design and
the implementation of the tutoring system with a focus
on the knowledge compilation scheme with regard to
figures for obtaining the inference operators and the
benefits of using them in tutoring problem solving.

In the following sections, we will show how the
geometry principles exemplified by figures can be
represented in the computational framework, and
compiled into a set of inference operators to use in the
inferential part of the tutoring system. Next, we will
present the working mechanism of the inferential
components of the tutoring system. That aspect will be
followed by a brief demonstration of a sample tutoring
session by CyberTutor. Finally, conclusions will be
presented with discussions on potential areas of
extensions.

2. The Geometry Models

Unlike other domains, geometry principles are usually
presented with figures to graphically describe the
contexts of the principles. A geometry principle is
usually stated as a logical proposition about a figure
representing the context in which the principle is
applicable. Such a figure contains a set of
geometrically-meaningful information, which may be
divided into its components, quantities and relations.
The components are the objects, such as points, lines,
and figures like triangles and circles. The quantities are
the quantitative attributes associated with the
components, such as lengths, angles, perimeters, and

areas. The relations are the configurations among the
components, such as ‘Point A is on Circle C’ and
‘Direction of Line AB is shifted to the right from that of
line BC’. The collection of the components, the
quantities and the relations may be referred to as
contexts, since they serve as the contextual backgrounds
for the higher-level propositions of the domain.

We have employed a computational framework
called model, as a natural way to represent a geometry
principle. Fig. 1a shows an example principle, followed
by the corresponding model in Fig. 1b. Our notion of
models corresponds to the notion of the models in the
ACT-R theory5, in that a model is a declarative data
structure with slots to hold the contexts as well as the
proposition.

A

B C D
●

○

○●

“Exterior angle of a triangle is equal to the sum of
opposite inner angles”

(MODEL M27
(PRINCIPLE “Exterior angle of a triangle is equal to the
 sum of opposite inner angles”)

 (COMPONENTS
 (POINTS (A) (B) (C) (D))
 (LINES (AB (ENDS A B)) (BC (ENDS B C))
 (AC (ENDS A C)) (CD (ENDS C D))
 (BD (ENDS B D))))
 (QUANTITIES
 (ANGLES (ABC (SIDES AB BC))
 (BAC (SIDES AB AC)) (ACB (SIDES AC BC))
 (ACD (SIDES AC CD))))
 (RELATIONS
 (ON (POINT C) BD)
 (SHIFT (DIRECTION AB AC)
 (DIRECTION BC AB) (DIRECTION AC BC)
 (DIRECTION CD AC)))
 (PROPOSITION (ACD = BAC + ABC))
)

Fig. 1a. A geometry principle.

Fig. 1b. A model corresponding to the principle in Fig. 1a.

Published by Atlantis Press
 Copyright: the authors
 22

 Geometry Tutoring Supported by an Intelligent Drawing I/F and Automatic P.S.

3. The Drawing Interface

It is important that an authoring system facilitate an
automated environment for generating models, since
encoding a large number of these models manually
would be too tedious and time-consuming. The drawing
interface we are building enables an author to supply
geometry principles by drawing figures and entering
propositions in a user-friendly way; i.e., the contexts of
the models are specified automatically, as the author
draws the figures using a series of mouse actions.

The drawing interface provides the usual facility for
entering figures; i.e., a drawing palette and mouse-
selectable icons of basic components (e.g., line, circle,
triangle, etc.). When the user of the drawing interface
enters the components, implicit information about the
figure is also derived, and all of these are transformed
into an internal data structure, namely the specifications
of the figure. The derivation of implicit information is
performed by a search procedure that attempts to
specify underlying components, quantities and relations
formed by the components drawn explicitly. Among
them, implicit components are such objects as line
segments, arcs, chords, sectors or polygons that are
inferred either by decomposing a composite component
(e.g., a line intersecting a circle produces a chord, arcs,
and segments of the line and the circle), or by grouping
simple objects into a larger object (e.g., three
intersecting line segments produces a triangle). Implicit
relations are information about point inclusions and line
shifts, while implicit quantities are those quantities
associated with the components (e.g., length, angle,
perimeter, circumference, area).

An example is given in Fig. 2. Suppose line segment
AD (shown thick) is entered into the existing figure.
Then, from this particular configuration, the search

mechanism derives a set of new components, i.e.,
triangle ABD, and sectors ABD, ACD and ADE. Also
derived are new relations formed between line segment
AD and existing line segments AB, BD, AE and AC; they
are ‘AB shifts from AD’ and ‘AD shifts from BD’ among
others. A number of associated quantities are also
specified; they are the angles between the line segment
just entered and the existing line segments, and the areas
and the perimeters of the derived components. All these
derived information are added to the internal
specifications of the figure. Main benefit from this
design of the drawing interface is the automatic
specification of all implicit, but contextually legitimate
information, without intervening an author’s drawing
activity. As a result of such automatic specification, this
information is made accessible (or addressable) in
tutoring.

To exploit the benefit further, we have implemented
a graphic facility to enable cyclic selection of individual
components among an overlapped cluster of
components with a series of mouse toggles. Fig. 3

ClosedFig BCD

B A

D

C

E

Triangle ABD

B A

D

C

E

Sector ABD

B A

D

C

E

ClosedFig ABDE

B A

D

C

E

HalfCircle

B A

D

C

E

B A

D

C

E

Sector ABE

Fig. 3. Mouse toggles around the closed figures surrounding
the mouse point.

Fig. 2. An example figure.

B A

D

C

E

Published by Atlantis Press
 Copyright: the authors
 23

H. J. Kook

shows an example of such a cyclic selection in which,
with the selection mode set to closedfigure (other
possible modes are line, arc, angle and area), each
mouse toggle selects and highlights each different
closed figure surrounding the mouse point. The
capability to access a specific part of a figure
individually is very useful in tutoring. When the tutor
wants to designate a component or a quantity, the tutor
may highlight it to draw the student’s attention. Such a
feature is especially useful when a component having an
irregular shape (thus, hard to name) has to be
designated; e.g. the third-toggled closed figure in Fig. 3
which is surrounded by line segments AB, AE and BD,
and arc DE.

4. The Inference Operators

For the finite set of general models to deal effectively
with an infinite variety of problems, we employ the
notion of knowledge compilation8. The models
generated using the drawing interface are compiled
upon the specific contexts of a problem to produce a set
of inference operators. These operators are context-
specific since they are obtained by converting the
general contexts used in the model into the particular
contexts of a problem (e.g., labels used in the figure).
The compilation process applies only to those models
whose contexts match the problem contexts. As a
consequence, the range of the principles covered by the
resultant operators is confined to only those principles
that are contextually relevant to that specific problem.

The contexts having been matched already, these
operators need not carry contextual information and
thus can consist only of the propositions in the forms
instantiated for the problem at hand. Fig. 4b shows

some of the inference operators produced for the sample
problem shown in Fig. 4a. We can see that the operators
shown here solely consist of compilations from relevant
models. They correspond to such principles as “(P1)
Alternate interior angles between parallel lines are
equal”, “(P2) If two sides of a triangle are equal, then
the base angles are equal”, “(P3) The sum of the angles
in a triangle is 180”, “(P4) Lengths of two radii of a
circle are equal”, “(P5) The sum of two supplementary
angles is 180”, “(P6) Exterior angle of a triangle is
equal to the sum of opposite inner angles” etc. Note that,
some operators included in this operator set are
apparently unusable ones (e.g., OPR2,4,5), since their
left-hand side propositions do not hold. Still these
operators are legitimate as far as the contexts are
concerned and in fact are useful for capturing
misconceptions in the inference steps that students
might take.

5. The Inference Engine

For tutoring of a problem, stored principles in geometry
are combined with the specific problem to automatically
produce a homogeneous set of logical consequences, the
inference operators. These operators are subsequently
used by the domain-independent, inferential part of the
system for tutoring on that specific problem.

CyberTutor employs three types of inference
strategies: propositional, algebraic, and quantitative.
The propositional inference is the common backward
inference about the propositions in the working
memory: i.e., the inference operators and the set of
propositions given in the problem. When a student
enters a problem-solving step in the form of an assertion,

Fig. 4b. Some of the inference operators produced for the
sample problem in Fig. 4a.

Given BD//AE and ∠ABD = 40, find ∠DAE.

B A

D

C

E

40
?

 (OPR1) BD//AE → ∠ADB = ∠DAE (P1)
 (OPR2) BD//AC → ∠ADB = ∠CAD (P1)
 (OPR3) AB = AD → ∠ABD = ∠ADB (P2)
 (OPR4) BD = AD → ∠ABD = ∠BAD (P2)
 (OPR5) AB = BD → ∠BAD = ∠ADB (P2)
 (OPR6) ∠ABD + ∠ADB + ∠BAD = 180 (P3)
 (OPR7) AB = AD (P4)
 (OPR8) AD = AE (P4)
 (OPR9) AC = AD (P4)
 (OPR10) ∠BAD + ∠CAD = 180 (P5)
 (OPR11) ∠CAD = ∠ADB + ∠ABD (P6)

Fig. 4a. A sample problem.

Published by Atlantis Press
 Copyright: the authors
 24

 Geometry Tutoring Supported by an Intelligent Drawing I/F and Automatic P.S.

that student’s step is taken as a hypothesis and set as the
goal to be proved by the system. In the goal-driven
search, the propositions in the working memory are then
searched for matches. For those inference operators
whose RHS’s match the goal, the system tries to match
their LHS propositions, possibly by sub-goaling them
until the initial goal is proved or unproved. If proved,
the student’s step is taken as valid; otherwise, it is
considered to be invalid.

The algebraic inference module handles the
inference involving an algebraic manipulation. Real
problem solving in geometry often involves algebra.
Students may enter a step in the form of an algebraic
expression which is not derivable from a direct
application of the propositional inference described
above. For instance, a student’s step, “x = 50” is taken
as a goal hypothesis by the algebraic inference module,
and proved if the propositions in the working memory
include, e.g., “x + y = 180” and “y = 130”. The algebraic
inference takes more time than the propositional
inference does, since it involves solving simultaneous
equations. In order to minimize performance degrade,
this inference is used only as a complement to the
propositional inference.

Finally, the quantitative inference module handles
the situation when the goal hypothesis consists of an
algebraic expression involving quantities and if both the
propositional and the algebraic inferences fail to
validate the goal hypothesis. In this case, the module
extracts the quantities from the expression and sets each
quantity as the sub-goal of the subsequent inference,
and keeps working backwards until desired quantities
are solved for. Previous research on geometry tutoring
has concentrated mainly on purely-proving types of
problems, while ignoring the algebraic aspects involved
in problem solving. In fact, many geometry problems
often demand algebraic manipulations in the course of
the problem solving, and some problems ask directly to
solve for the value of an unknown quantity. Using a
separate built-in algebraic manipulation module would
not suffice, since such a “black box” module would not
allow the tutor to access the information about the
algebraic inference performed within it. Kerber et al.9
have advocated an integration of computer algebra into
mechanized reasoning systems, in which the uniform
framework allows to solve a large class of problems that
are not automatically solvable by separate systems.

Such a notion of integration is shared by us and even
extended further in the design of the inference engine.
One of the achievements of our research is the
generalization of the tutoring scope to cover problems
involving the algebraic and the quantitative inferences
in a way that is transparent, and therefore, accessible for
tutoring.

6. CyberTutor

A problem-solving tutoring session in CyberTutor
(shown in Fig. 5) comprises a series of stepwise
interactions between the student and the tutor. Student
problem solving is monitored so that each step entered
by the student is checked for validity. This validity
check is performed by using the backward inference
mechanism on the propositions in the working memory,
and if necessary, the algebraic and quantitative
inference mechanisms as well.

Initially, a problem selected by the student is loaded
into the system. At load-time, the problem is compiled
upon the system’s library of geometry models to
produce a set of inference operators. It is worth
mentioning here that we are in the process of upgrading
our drawing interface to facilitate the student entering a
problem outside the library of problems, i.e., one
supplied by the student himself. The strength of the
proposed tutoring framework is that it is applicable not
only to the selection of stored problem, but also to a
wider range of problems, since the solution procedures
for the problems are not stored along with the problems

Fig. 5. The CyberTutor interface.

Published by Atlantis Press
 Copyright: the authors
 25

H. J. Kook

in the library, but generated dynamically during the
problem solving. This is important since students
sometimes want to work with their own problems that
are outside the system’s library. Accommodation of this
demands on the tutoring system’s supports for an
intelligent interface for students’ authoring problems
and automatic problem-solving, which we believe are
naturally supported in our proposed tutoring framework.

Besides tracking student steps comprising single or
multiple inferences, CyberTutor is also capable of
providing hints and explanations at points where
students cannot proceed further, as illustrated in Fig. 5.
Highlighted hints are generated by using the system’s
current ability to solve the problem, i.e., the system is
made to generate partial steps of problem solving. If the
student asks for an explanation of the tutor’s step, the
system responds by back-chaining on the inference
made for generating the step.

7. Conclusions

We have presented the design methodology of a tutoring
system for problem solving in geometry. The main
design issues involved were the knowledge compilation
schemes through an intelligent drawing interface, the
inferential mechanisms based on inference operators,
and the pedagogical strategies on differing skill levels of
students. To tutor a problem, the problem is first
compiled with the domain principles stored in models to
produce a set of inference operators. Then, these
operators are passed to the inference part of the system,
which consists of a set of domain-independent problem-
solving strategies, namely propositional, algebraic, and
quantitative inference strategies. They work together to
assist the system’s tutoring activities in a way accessible
for pedagogy.

As for the problems-solutions database, a stored
solution approach would be both unwise and useless. It
is unwise because the human author has the burden of
specifying all problem-solving steps for each problem,
and remains useless because the system is still not
prepared to deal adequately with the off-the-track steps
students can take. There are also a line of automated
geometry proof generating and problem solving
systems10, 11 that are capable of generating proofs and
solutions to a large class of geometry theorems and
problems. Although such a system may well be used as

a legitimate supplementary to geometry learning or
geometry-based systems, e.g., CAD,12 it falls short of an
interactive tutor for the same reason mentioned above.
In the proposed design, the solution steps are not pre-
stored in the library, but rather generated automatically
at tutoring time in the form of the inference operators.
The inference operators resemble the production rules,5
as both are derived from declarative knowledge of the
domain. But the operators are tactically more useful in
several respects. First of all, the search space is greatly
reduced since the models (i.e., the principles) that are
irrelevant to the sample problem have been pruned out
during compilation. In fact, a typical problem in a
scientific domain, including geometry, can usually be
solved using only a few principles. Additionally, the
time-taking process of context matching is completed
with compilation; hence the interactive performance of
the system is enhanced still further.

In the present implementation of CyberTutor, a less-
skilled student’s step is usually tracked by a single or
two inference steps of the system. On the other hand, a
step involving a longer chain of inferences made by a
more skilled student can also be tracked by applying
multiple inference steps. Such a capability to track
student steps, including a step made of multiple
inferences, is important for building individual models
of students. Most of the previous systems in this area of
skills tutoring have confined the steps to a primitive
length of inference, and by doing so, they failed to
model the variety of individual skill levels. In this
respect, we believe the proposed design has a solid
potential for providing a personalized learning
environment, if combined with an appropriate feedback
facility.13, 14, 15

At the present, the drawing interface is specialized
only for geometry. Learning in many other scientific
domains also involves reasoning about figures.
Mechanics, electric circuitry, and chemical reactions are
several examples of such domains. We plan to
investigate on the generalization of our approach to
these domains. This generalization can be achieved by
isolating the domain-independent features of the
drawing interface from the geometry-specific features,
then applying them to the specific features of other
domains.

Overall, the proposed design principle is expected to
be applicable to various scientific domains other than

Published by Atlantis Press
 Copyright: the authors
 26

 Geometry Tutoring Supported by an Intelligent Drawing I/F and Automatic P.S.

just geometry, where the nature of problem solving is a
stepwise inference that also uses domain principles as
the search operators.

Acknowledgements

This work was supported by the faculty research fund of
Sejong University in 2008.

References
1. A. Kohlhase and M. Kohlhase, Semantic Knowledge

Management for Education, Proc. IEEE, 96(6) (2008) pp.
970-989.

2. M. T. Mitchell, An Architecture of an Intelligent
Tutoring System to Support Distance Learning,
Computing and Informatics 26 (2007) 564-576.

3. I. Hatzilygeroudis and J. Prentzas, Knowledge
Representation Requirements for Intelligent Tutoring
Systems, in Proc. Intelligent Tutoring Systems (Lecture
Notes in Computer Science 3220), (2004), pp. 87-97.

4. M. P. Jarvis, G. Nuzzo-Jones and N. T. Heffernan,
Applying Machine Learning Techniques to Rule
Generation in Intelligent Tutoring Systems, in Proc.
Intelligent Tutoring Systems (Lecture Notes in Computer
Science 3220), (2004), pp. 541-543.

5. J. R. Anderson, F. Boyle, A. Corbett and M. Lewis,
Cognitive Modeling and Intelligent Tutoring, Artificial
Intelligence 42 (1990) 7-49.

6. T. McDougal and K. Hammond, Representing and Using
Procedural Knowledge to Build Geometry Proofs, in
Proc. AAAI, (1993), pp. 60-65.

7. A. Mitrovic, K. R. Koedinger and B. Martin, A
Comparative Analysis of Cognitive Tutoring and
Constraint-Based Modeling, in Proc. User Modeling,
(2003), pp. 313-322.

8. M. Cadoli and F. M. Donini, A Survey on Knowledge
Compilation, AI Communications 10(3-4) (1997) 137-
150.

9. M. Kerber, M. Kohlhase and V. Sorge, Integrating
Computer Algebra into Proof Planning, J. Automated
Reasoning 21(3) (1998) 327-355.

10. S. C. Chou, X. S. Gao and J. Z. Zhang, Machine Proofs
in Geometry: Automated Production of Readable Proofs
for Geometry Theorems (World Scientific, 1994).

11. F. Botana and T. Recio (eds.), Automated Deduction in
Geometry (Springer, 2008).

12. S. Bhansali and T. J. Hoar, Automated Software
Synthesis: An Application in Mechanical CAD, IEEE
Trans. on Software Engineering 24(10) (1998) 848-862.

13. A. Anolona, Advances in Intelligent Tutoring Systems:
Problem-Solving Modes and Model of Hints, Int. J. of
Computers, Communications & Control 2 (2007) 48-55.

14. K. R. Koedinger and J. R. Anderson, Reifying Implicit
Planning in Geometry: Guidelines for Model-Based

Intelligent Tutoring System Design, in Computers as
Cognitive Tools (Erlbaum, 1993), pp. 15-45.

15. N. Matsuda and K. VanLehn, Modeling Hinting
Strategies for Geometry Theorem Proving, in Proc. User
Modeling (2003), pp. 373-377.

Published by Atlantis Press
 Copyright: the authors
 27

