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Abstract

Probabilistic Logic Networks (PLN), a comprehensive
framework for uncertain inference currently in use in
the OpenCog and Novamente Cognition Engine AGI
software architectures, has previously been described in
terms of the “experiential semantics” of an intelligent
agent embodied in a world. However, several aspects
of PLN are more easily interpreted and formulated in
terms of “possible worlds semantics”; here we use a
formal model of intelligent agents to show how a form
of possible worlds semantics can be derived from expe-
riential semantics, and use this to provide new inter-
pretations of several aspects of PLN (including uncer-
tain quantifiers, intensional inheritance, and indefinite
probabilities.) These new interpretations have practi-
cal as well as conceptual benefits, as they give a unified
way of specifying parameters that in the previous in-
terpretations of PLN were viewed as unrelated.

Introduction

The mind of an intelligent agent accumulates knowl-
edge based on experience, yet also creates hypothetical
knowledge about “the world as it might be,” which is
useful for guiding future actions. This dichotomy – be-
tween experience and hypothesis – occurs in regard to
many types of knowledge; and in the context of declar-
ative knowledge, it is related to the distinction between
experiential and possible-worlds semantics. Here we
discuss how these two forms of semantics may be re-
lated to each other in the context of a generally intelli-
gent agent that interprets its experience (at least par-
tially) using probabilistic logic. Our treatment pertains
specifically to the Probabilistic Logic Networks (PLN)
inference framework, which is currently in use in the
OpenCog and Novamente Cognition Engine AGI soft-
ware architectures and has been used for applications
including natural language based reasoning (Gea06)
and virtual agent reinforcement learning (Goe08); how-
ever, many of the points raised could be extended more
generally to any probabilistic inference framework.

In much of our prior work on PLN, we have utilized
“experiential semantics”, according to which the mean-
ing of each logical statement in an agent’s memory is
defined in terms of the agent’s experiences. However

we have also found that certain aspects of PLN are best
interpreted in terms of “possible worlds semantics”, in
which the meaning of a statement is defined by refer-
ence to an ensemble of possible worlds including the one
the agent interpreting the statement has experienced.
The relation between these two semantic approaches in
the PLN context has previously been left informal; the
core goal of this paper is to specify it, via providing an
experiential grounding of possible worlds semantics.

We study an agent whose experience constitutes one
“actual world” drawn from an ensemble of possible
worlds. We use the idea of bootstrapping from statis-
tics to generate a set of “simulated possible worlds”
from the actual world, and prove theorems regarding
conditions under which, for a probabilistic predicate F ,
the truth value of F evaluated over these simulated pos-
sible worlds gives a good estimate of the truth value of
F evaluated over the ensemble of possible worlds from
which the agent’s actual world is drawn.

The reader with a logic background should note that
we are construing the notion of possible worlds seman-
tics broadly here, in the philosophical sense (Lew86),
rather than narrowly in the sense of Kripke semantics
(Gol03) and its relatives. In fact there are interesting
mathematical connections between the present formu-
lation and Kripke semantics and epistemic logic, but we
will leave these for sequel papers.

Then, we show how this apparatus of simulated pos-
sible worlds simplifies the interpretation of several as-
pects of PLN, providing a common foundation for set-
ting various PLN system parameters that were pre-
viously viewed as distinct. We begin with indefinite
probabilities (Iea07; Gea08), noting that the second-
order distribution involved therein may be interpreted
using possible worlds semantics. Then we turn to un-
certain quantifiers, showing that the third-order distri-
bution used to interpret these in (IG08) may be con-
sidered as a distribution over possible worlds. Finally,
we consider intensional inference, suggesting that the
complexity measure involved in the definition of PLN
intension (Gea08) may be derived from a probability
measure over possible worlds. By considering the space
of possible worlds implicit in an agent’s experience, one
arrives at a simpler unified view of various aspects of the
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agent’s uncertain reasoning, than if one grounds these
aspects in the agent’s experience directly. This is not
an abandonment of experiential semantics but rather
an acknowledgement that a simple variety of possible
worlds semantics is derivable from experiential seman-
tics, and usefully deployable in the development of un-
certain inference systems for general intelligence.

We will not review the PLN inference framework here
but will assume the reader has a basic familiarity with
PLN terms and notation, as would be found by reading
(Gea08) or (Iea07).

A Formal Model of Intelligent Agents
We very briefly review a simple formal model of intelli-
gent agents: Simple Realistic Agent Model (SRAM).
Following Legg and Hutter’s framework (LH07), we
consider a class of active agents which observe and ex-
plore their environment and take actions in it. The
agent sends information to the environment by send-
ing symbols from some finite alphabet called the action
space Σ; and the environment sends signals to the agent
with symbols from an alphabet called the perception
space, denoted P. Agents can also experience rewards,
which lie in the reward space, denotedR, which for each
agent is a subset of the rational unit interval.

To Legg and Hutter’s framework, we add a set M
of memory actions, allowing agents to maintain memo-
ries (of finite size), and at each time step to carry out
internal actions on their memories as well as external
actions in the environment. Further extending the Legg
and Hutter framework, we also introduce the notions of
goals associated with symbols, drawn from the alphabet
G, and goal-seeking agents; and we consider the environ-
ment as sending goal-symbols to the agent along with
regular observation-symbols. We also introduce a con-
ditional distribution γ(g, µ) that gives the weight of a
goal g in the context of a particular environment µ.

In this extended framework, an interaction sequence
looks like

m1a1o1g1r1m2a2o2g2r2...

where the mi’s represent memory actions, the ai’s rep-
resent external actions, the oi’s represent observations,
the gi’s represent agent goals, and the ri’s represent re-
wards. The reward ri provided to an agent at time i is
determined by the goal function gi. Introducing w as
a single symbol denoting the combination of a memory
action and an external action, and y as a single symbol
denoting the combination of an observation, a goal and
a reward, we can simplify this interaction sequence as

w1y1w2y2...

Each goal function maps each finite interaction se-
quence Ig,s,t = wys:t into a value rg(Ig,s,t) ∈ [0, 1] indi-
cating the value or “raw reward” of achieving the goal
during that interaction sequence. The total reward rt
obtained by the agent is the sum of the raw rewards
obtained at time t from all goals whose symbols occur
in the agent’s history before t.

The agent is represented as a function π which takes
the current history as input, and produces an action
as output. Agents need not be deterministic and may
induce a probability distribution over the space of pos-
sible actions, conditioned on the current history. In
this case we may characterize the agent by a proba-
bility distribution π(wt|wy<t). Similarly, the environ-
ment may be characterized by a probability distribution
µ(yk|wy<k). The distributions π and µ define a proba-
bility measure over the space of interaction sequences.

Following Legg and Hutter, we will consider the class
of environments that are reward-summable, meaning
that the total amount of reward they return to any
agent is bounded by 1. We will also use the term “con-
text” to denote the combination of an environment, a
goal function and a reward function. If the agent is act-
ing in environment µ, and is provided with gt = g for
the time-interval T = t ∈ {t1, ..., t2}, then the expected
goal-achievement of the agent during the interval is

V πµ,g,T ≡
t2∑
t1

ri

where E is the space of computable, reward-summable
environments.

Next, we introduce a second-order probability distri-
bution ν over the space of environments µ. One such
distribution is the Solomonoff-Levin universal distribu-
tion in which one sets ν = 2−K(µ); but this is not the
only distribution of interest. A great deal of real-world
general intelligence consists of the adaptation of intel-
ligent systems to other particular distributions ν over
environment-space (Goe10; Goe09).

Inducing a Distribution over Predicates
and Concepts
Given a distribution over environments as defined
above, and a collection of predicates evaluated on sub-
sets of environments, we will find it useful to define
distributions (induced by the distribution over environ-
ments) defining the probabilities of these predicates.

Suppose we have a pair (F, T ) where F is a function
mapping sequences of perceptions into fuzzy truth val-
ues, and T is an integer connoting a length of time. We
can define the prior probability of (F, T ) as the average
degree to which F is true, over a random interval of
perceptions of length T drawn from a random environ-
ment drawn from the distribution over environments.
More generally, if one has a pair (F, f), where f is a
distribution over the integers, one can define the prior
probability of (F, f) as the weighted average of the prior
probability of (F, T ) where T is drawn from f .

While expressed in terms of predicates, the above for-
mulation can also be useful for dealing with concepts,
e.g. by interpreting the concept cat in terms of the pred-
icate isCat. So we can use this formulation in inferences
where one needs a concept probability like P (cat) or a
relationship probability like P (eat(cat,mouse)).
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Grounding Possible Worlds Semantics
in Experiential Semantics

Now we explain how to ground a form of possible worlds
semantics in experiential semantics. We explain how an
agent, experiencing a single stream of perceptions, may
use this to construct an ensemble of “simulated” pos-
sible worlds, which may then be used in various sorts
of inferences. This idea is closely related to a common-
place idea in the field of statistics: “subsampling,” a
form of “bootstrapping.”

In subsampling, if one has a single dataset D which
one wishes to interpret as coming from a larger popu-
lation of possible datasets, and one wishes to approxi-
mately understand the distribution of this larger pop-
ulation, then one generates a set of additional datasets
via removing various portions of D. By removing a por-
tion of D, one obtains another dataset. One can then
look at the distribution of these auxiliary datasets, con-
sidering it as a model of the population D.

This notion ties in closely with SRAM, which consid-
ers a probability distribution over a space of environ-
ments which are themselves probability distributions.
A real agent has a single series of remembered obser-
vations. It can induce an approximation of this distri-
bution over environments by subsampling its memory
and asking: what would it imply about the world if the
items in this subsample were the only things I’d seen?

It may be conceptually useful to observe that a re-
lated notion to subsampling is found in the literary
methodology of science fiction. Many SF authors have
followed the methodology of changing one significant as-
pect of our everyday world, and depicting the world as
they think it might exist if this one aspect were changed
(or, a similar methodology may be followed via chang-
ing a small number of aspects). This is a way of gener-
ating a large variety of alternate possible worlds from
the raw material of our own world.

The subsampling and SF analogies suggest two meth-
ods of creating a possible world within SRAM (and by
repetition, an ensemble of possible worlds) from the
agents experience. An agent’s interaction sequence with
its environment forms a sample from which it wishes to
infer its environment. To better assess this environ-
ment, the agent may, for example,

1. create a possible world by removing a randomly se-
lected collection of interactions from the agents mem-
ory. In this case, the agent’s interaction sequence
would be of the form Ig, s, t,(nt) = wy(nt) where (nt)
is some subsequence of 1 : t− 1.

2. create a possible world via assuming a counterfactual
hypothesis (i.e. assigning a statement a truth value
that contradicts the agents experience), and using
inference to construct a set of observations that is
as similar to its memory as possible, subject to the
constraint of being consistent with the hypothesis.

3. create a possible world by reorganizing portions of
the interaction sequence.

4. create a possible world by some combination of the
above.
Here we will focus on the first option, leaving the

others for future work. We denote an alteration of an
iteration sequence Iag,s,t for an agent a by Ĩag,s,t, and the
set of all such altered interaction sequences for agent a
by Ia.

An agent’s interaction sequence will presumably be
some reasonably likely sequence. We would therefore be
most interested in those cases for which dI(Iag,s,t, Ĩ

a
g,s,t)

is small, where dI(·, ·) is some measure of sequence simi-
larity. The probability distribution ν over environments
µ will then tend to give larger probabilities to nearby
sequences, than to ones that are far away. An agent
would typically be interested in considering only mi-
nor hypothetical changes to its interaction sequences,
and would have little basis for understanding the con-
sequences of drastic alterations.

Any of the above methods for altering interaction
sequences would alter an agent’s perception sequence
causing changes to the fuzzy truth values mapped by
the function F . This in turn would yield new probabil-
ity distributions over the space of possible worlds, and
thereby yielding altered average probability values for
the pair (F, T ). This change, constructed from the per-
spective of the agent based on its experience, could then
cause the agent to reassess its action w. This is what
we mean by “experiential possible worlds” or EPW.

The creation of altered interaction sequences may,
under appropriate assumptions, provide a basis for cre-
ating better estimates for the predicate F than we
would otherwise have from a single real-world data
point. More specifically we have the following results,
which discuss the estimates of F made by either a single
agent or a population of agents, based on each agent in
the population subsampling their experience.
Theorem 1. Let En represent an arbitrary ensemble of
n agents chosen from A. Suppose that, on average over
the set of agents a ∈ En, the set of values F (I) for mu-
tated interaction sequences I is normal and unbiased,
so that,

E[F ] =
1
n

∑
a∈En

∑
Iag,s,t∈Ia

F (Iag,s,t)P (Iag,s,t).

Suppose further that these agents explore their environ-
ments by creating hypothetical worlds via altered inter-
action sequences. Then an unbiased estimate for E[F ]
is given by

F̂ =
1
n

∑
a∈En

∑
Ĩag,s,t∈Ia

F (Ĩag,s,t)P (Ĩag,s,t)

=
1
n

∑
a∈En

∑
Ĩag,s,t∈Ia

F (Ĩag,s,t)
∑
e∈E

[P (e|Iag,s,t)P (Ĩag,s,t|e)].

Proof. That F̂ is an unbiased estimate for E[F ] follows
as a direct application of standard statistical bootstrap-
ping theorems. See, for example, (DE96).
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Theorem 2. Suppose that in addition to the above as-
sumptions, we assume that the predicate F is Lipschitz
continuous as a function of the interaction sequences
Iag,s,t. That is,

dF

(
F (Ĩag,s,t), F (Iag,s,t)

)
≤ KdI(Ĩag,s,t, Iag,s,t),

for some bound K and dF (·, ·) is a distance measure in
predicate space. Then, setting both the bias correction
and acceleration parameters to zero, the bootstrap BCα
confidence interval for the mean of F satisfies

F̂BCα [α] ⊂ [F̂ −Kz(α)σ̂I , F̂ +Kz(α)σ̂I ]

where σ̂I is the standard deviation for the altered in-
teraction sequences and, letting Φ denote the standard
normal c.d.f., z(α) = Φ−1(α).

Proof. Note that the Lipschitz condition gives

σ̂2
F =

1
n|Ia| − 1

×∑
a∈En

∑
Ĩag,s,t∈Ia

d2
F

(
F (Ĩag,s,t), F (Iag,s,t)

)
P (Ĩag,s,t)

≤ K2

n|Ia| − 1

∑
a∈En

∑
Ĩag,s,t∈Ia

d2
I(Ĩ

a
g,s,t, I

a
g,s,t)P (Ĩag,s,t)

= K2σ̂2
I .

Since the population is normal and the bias correction
and acceleration parameters are both zero, the BCα
bootstrap confidence interval reduces to the standard
confidence interval, and the result then follows (DE96).

These two theorems together imply that, on average,
through subsampling via altered interaction sequences,
agents can obtain unbiased approximations to F ; and,
by keeping the deviations from their experienced inter-
action sequence small, the deviations of their approxi-
mations will also be small.

While the two theorems above demonstrate the abil-
ity of the subsampling approach to generate probabilis-
tic possible-worlds semantics from experiential seman-
tics, they fall short of being relevant to practical AI
inference systems, because the Lipschitz condition in
Theorem 2 is an overly strong assumption. With this
in mind we offer the following modification, that is more
realistic and also in keeping with the flavor of PLN’s in-
definite probabilities approach. The following theorem
basically says that: If one or more agents evaluate the
truth value of a probabilistic predicate F via a series of
subsampled possible worlds that are normally and unbi-
asedly distributed around the agent’s actual experience,
and if the predicate F is mostly smoothly dependent on
changes in the world, then evaluating the truth value of
F using subsampled possible worlds gives roughly the
same results as would be gotten by evaluating the truth
value of F across the overall ensemble of possible worlds
from which the agent’s experience is drawn.

Theorem 3. Define the set

Ia;b =
{
Ĩag,s,t|d2

F

(
F (Ĩag,s,t), F (Iag,s,t

)
= b
}
,

and assume that for every real number b the perceptions
of the predicate F satisfy

1
n

∑
a∈En

P (Ia;b) ≤ M(b)
b2

σ2
I

for some M(b) ∈ R. Further suppose that∫ 1

0

M(b) db = M2 ∈ R.

Then under the same assumptions as in Theorem 1, and
again setting both the bias correction and acceleration
parameters to zero, we have

F̂BCα [α] ⊂ [F̂ −M
√
nz(α)σ̂I , F̂ +M

√
nz(α)σ̂I ]

Proof.

σ̂2
F =

1
n · |Ia| − 1

×∑
a∈En

∑
Ĩag,s,t∈Ia

d2
F

(
F (Ĩag,s,t), F (Iag,s,t)

)
P (Ĩag,s,t)

=
1

n · |Ia| − 1
×

∑
a∈En

∫ 1

0

∑
Ĩag,s,t∈Ia;b

d2
F

(
F (Ĩag,s,t), F (Iag,s,t)

)
P (Ĩag,s,t) db

≤ 1
n · |Ia| − 1

×

∑
a∈En

∫ 1

0

∑
Ĩag,s,t∈Ia;b

d2
F

(
F (Ĩag,s,t), F (Iag,s,t)

)
P (Ĩag,s,t) db

≤ b2nM
2

b2
σ2
I =

(
M
√
n
)2
σ2
I .

In the following sections we show how this new for-
malization of possible worlds semantics can be used to
clarify the conceptual and mathematical foundations of
several aspects of PLN inference.

Reinterpreting Indefinite Probabilities
Indefinite probabilities (Iea07; Gea08) provide a nat-
ural fit with the experiential semantics of the SRAM
model, as well as with the subsampling methodology
articulated above. An indefinite probability truth-value
takes the form of a quadruple ([L, U ], b, k). The mean-
ing of such a truth-value, attached to a statement S is,
roughly: There is a probability b that, after k more ob-
servations, the truth value assigned to the statement S
will lie in the interval [L, U ]. We interpret an interval
[L, U ] by assuming some particular family of distribu-
tions (usually Beta) whose means lie in [L,U ].
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To execute inferences using indefinite probabilities,
we make heuristic distributional assumptions, assuming
a “first order distribution of means, with [L,U ] as a
(100b)% credible interval. Corresponding to each mean
in this “first-order” distribution is a “second order dis-
tribution, providing for an “envelope” of distributions.

The resulting bivariate distribution can be viewed
as an heuristic approximation intended to estimate un-
known probability values existing in hypothetical future
situations. Combined with additional parameters, each
indefinite truth-value object essentially provides a com-
pact representation of a single second-order probability
distribution with a particular, complex structure.

In the EPW context, the second-order distribution
in an indefinite probability is most naturally viewed as
a distribution over possible worlds; whereas, each first-
order distribution represents the distribution of values
of the proposition within a given possible world.

As a specific example, consider the case of two virtual
agents: one agent, with cat-like characteristics, called
“Fluffy” and the second a creature, with dog-like char-
acteristics, named “Muffin.” Upon a meeting of the two
agents, Fluffy might immediately consider three courses
of action: Fluffy might decide to flee as quickly as pos-
sible, might hiss and threaten Muffin, or might decide
to remain still. Fluffy might have a memory store of
perception sequences from prior encounters with agents
with similar characteristics to those of Muffin.

In this scenario, one can view the second-order distri-
bution as a distribution over all three courses of action
that Fluffy might take. Each first-order distribution
would represent the probability distribution of the re-
sult from the corresponding action. By hypothetically
considering all three possible courses of action and the
probability distributions of the resulting action, Fluffy
can make more rational decisions.

Reinterpreting Indefinite Quantifiers
EPW also allows PLN’s universal, existential and fuzzy
quantifiers to be expressed in terms of implications on
fuzzy sets. For example, if we have
ForAll $X

Implication
Evaluation F $X
Evaluation G $X

then this is equivalent to
AverageQuantifier $X

Implication
Evaluation F ∗ $X
Evaluation G∗ $X

where e.g. F ∗ is the fuzzy set of variations on F con-
structed by assuming possible errors in the historical
evaluations of F . This formulation yields equivalent
results to the one given in (Gea08), but also has the
property of reducing quantifiers to FOPLN (over sets
derived from special predicates).

To fully understand the equivalence of the above
two expressions, first recall that in (Gea08), we han-
dle quantifiers by introducing third-order probabilities.
As discussed there, the three levels of distributions are
roughly as follows. The first- and second-order levels
play the role, with some modifications, of standard in-
definite probabilities. The third-order distribution then
plays the role of “perturbing the second-order distribu-
tion. The idea is that the second-order distribution
represents the mean for the statement F (x). The third-
order distribution then gives various values for x, and
the first-order distribution gives the sub-distributions
for each of the second-order distributions. The final
result is then found via an averaging process on all
those second-order distributions that are “almost en-
tirely” contained in some ForAll proxy interval.

Next, AverageQuantifier F ($X) is a weighted aver-
age of F ($X) over all relevant inputs $X; and we define
the fuzzy set F ∗ as the set of perturbations of a second-
order distribution of hypotheses, and G∗ as the corre-
sponding set of perturbed implication results. With
these definitions, not only does the above equivalence
follow naturally, so do the “possible/perturbed worlds”
semantics for the ForAll quantifier. Other quantifiers,
including fuzzy quantifiers, can be similarly recast.

Specifying Complexity for Intensional
Inference

A classical dichotomy in logic involves the distinction
between extensional inference (involving sets with mem-
bers) and intensional inference (involving entities with
properties). In PLN this is handled by taking exten-
sion as the foundation (where, in accordance with ex-
periential semantics, sets ultimately boil down to sets
of elementary observations), and defining intension in
terms of certain fuzzy sets involving observation-sets.
This means that in PLN intension, like higher-order
inference, ultimately emerges as a subcase of FOPLN
(though a subcase with special mathematical properties
and special interest for cognitive science and AI). The
prior formulation of PLN intension contains a “free pa-
rameter” (a complexity measure) which is conceptually
inelegant; EPW remedies this via providing this param-
eter with a foundation in possible worlds semantics.

To illustrate how, in PLN, higher-order in-
tensional inference reduces to first-order infer-
ences, consider the case of intensional inheritance.
IntensionalInheritance A B measures the extensional
inheritance between the set of properties or patterns
associated with A and the corresponding set associated
with B. This concept is made precise via formally
defining the concept of “pattern,” founded on the
concept of “association.” We formally define the
association operator ASSOC through:

ExtensionalEquivalence
Member $E (ExOut ASSOC $C)
ExOut

Func
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List
lnheritance $E $C
Inheritance

NOT $E
$C

where Func(x, y) = [x− y]+ and + denotes the positive
part.

We next define a pattern in an entity A as some-
thing that is associated with, but simpler than, A. Note
that this definition presumes some measure c() of com-
plexity. One can then define the fuzzy-set membership
function called the “pattern-intensity,” via

IN(F,G) = [c(G)− c(F )]+[P (F |G)− P (F | 6 G)]+.

The complexity measure c has been left unspecified in
prior explications of PLN, but in the present context we
may take it as the measure over concepts implied by the
measure over possible worlds derived via subsampling
as described above (or perhaps by counterfactuals).

Reinterpreting Implication between
Inheritance Relationships

Finally, one more place where possible worlds semantics
plays a role in PLN is with implications such as
Implication

Inheritance Ben American
Inheritance Ben obnoxious

We can interpret these by introducing predicates over
possible worlds, so that e.g.

ZInheritance Ben American(W ) < t >

denotes that t is the truth value of
Inheritance Ben American in world W . A pre-
requisite for this is that Ben and American be defined
in a way that spans the space of possible worlds in
question. When defining possible worlds by differing
subsets of the same observation-set, this is straight-
forward; in the case of possible worlds defined via
counterfactuals it is subtler and we omit details here.

The above implication may then be interpreted as
AverageQuantifier $W

Implication
Evaluation ZInheritance Ben obnoxious $W
Evaluation ZInheritance Ben American $W

The weighting over possible worlds $W may be taken
as the one obtained by the system through the subsam-
pling or counterfactual methods as indicated above.

Conclusion
We began with the simple observation that the mind of
an intelligent agent accumulates knowledge based on ex-
perience, yet also creates hypothetical knowledge about
“the world as it might be,” which is useful for guiding

future actions. PLN handles this dichotomy via a foun-
dation in experiential semantics, and it is possible to
formulate all PLN inference rules and truth value for-
mulas in this way. Some PLN truth value formulas are
simplified by interpreting them using possible world se-
mantics. With this in mind we used subsampling to de-
fine a form of experientially-grounded possible-worlds
semantics, and showed its use for handling indefinite
truth values, probabilistic quantifiers and intensional
inference. These particular technical ideas illustrate the
more general thesis that a combination of experiential
and possible-worlds notions may be the best approach
to comprehending the semantics of declarative knowl-
edge in generally intelligent agents.
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