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Abstract

Problems concerning estimation of parameters and determination the statistic, when it is known a priori that

some of these parameters are subject to certain order restrictions, are of considerable interest. In the present

paper, we consider the estimators of the monotonic mean vectors for two dimensional normal distributions and

compare those with the unrestricted maximum likelihood estimators under two different cases. One case is that

covariance matrices are known, the other one is that covariance matrices are completely unknown and unequal.

We show that when the covariance matrices are known, under the squared error loss function which is similar

to the mahalanobis distance, the obtained multivariate isotonic regression estimators, motivated by estimators

given in Robertson et al. (1988), which are the estimators given by Sasabuchi et al. (1983) and Sasabuchi et

al. (1992), have the smaller risk than the unrestricted maximum likelihood estimators uniformly, but when

the covariance matrices are unknown and unequal, the estimators have the smaller risk than the unrestricted

maximum likelihood estimators only over some special sets which are defined on the covariance matrices. To

illustrate the results two numerical examples are presented.

Keywords: Maximum likelihood estimator, Multivariate normal distribution, Monotonic mean vectors, Squared

error loss function.
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1. Introduction

Suppose that Xi1,Xi2, . . . ,Xini
are random vectors from a p-dimensional normal distribution with

unknown mean vector µ i and known nonsingular covariance matrix Σi, i = 1,2, . . . ,k. Consider the

monotonic mean vectors µ1 ≤ µ2 ≤ ·· · ≤ µk where µv ≤ µ i means that all the elements of µ i −µv

are nonnegative. In fact the vector set µ1,µ2, · · · ,µk is said to be isotonic with respect to ≤ if v ≤ i,

then µv ≤ µ i. This kind of order restriction on the mean vectors representation is common, for

instance, in selection and ranking problem for finding the largest element of several normal means

(see Shimodaira, 2000). Also in the problems with testing hypothesis, Silvapulle and Sen (2005)

discuss other examples from different areas, especially in medicine.
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Table 1. Serum enzyme level in rats

Dosage Enzyme 1 2 3 4 5 6 7 8 9 10

0 SDH 18 27 16 21 26 22 17 27 26 27

SGPOT 101 103 90 98 101 92 123 105 92 88

SGPT 65 67 52 58 64 60 66 63 68 56

1500 SDH 25 21 24 19 21 22 20 25 24 27

SGPOT 113 99 102 144 109 135 100 95 89 98

SGPT 65 63 70 73 67 66 58 53 58 65

5000 SDH 22 21 22 30 25 21 29 22 24 21

SGPOT 88 95 104 92 103 96 100 122 102 107

SGPT 54 56 71 59 61 57 61 59 63 61

15000 SDH 31 26 28 24 33 23 27 24 28 29

SGPOT 104 123 105 98 167 111 130 93 99 99

SGPT 57 61 54 56 45 49 57 51 51 48

As an application of order restrictions on the mean vectors for several populations, the problem we

are considering comes from Dietz (1989).

Example 1 (Dietz, 1989). Vinylidene fluoride is suspected of causing liver damage. An experiment

was carried out to evaluate its effects. Four groups of 10 male Fischer-344 rats received, by inhala-

tion exposure, one of several dosages of vinylidene fluoride. Among the response variables mea-

sured on the rats were three serum enzymes: SDH, SGPOT, and SGPT. Increased levels of these

serum levels are often associated with liver damage. It is of interest to test whether or not these

enzyme levels are affected by vinylidene fluoride. The data are given in Table 1. (Serum enzyme

levels are in international units/liter; dosage of vinylidene in parts/million.)

Let X i j = (Xi j1,Xi j2,Xi j3)
′ denote the observations on the three enzymes for jth subject j =

1,2, . . . ,10 in treatment i (i = 1,2,3,4). Let µik denote the mean response for ith treatment (i.e.,

dose) and kth variable and let µ i = (µi1,µi2,µi3)
′ for i = 1,2,3,4. The researcher, especially if four

populations reflect increasing levels of a treatment, may be interested in the alternative hypothe-

sis µ1 ≤ µ2 ≤ µ3 ≤ µ4, with at least one strict inequality. Now, one formulation of the null and

alternative hypothesis is

H0 : µ1 = µ2 = µ3 = µ4 and H1 : µ1 ≤ µ2 ≤ µ3 ≤ µ4,

(with at least one strict inequality in H1.)

The basic works on the ordered means started by Bartholomew (1959), who considered prob-

lem of testing the homogeneity of k univariate normal means against an order restricted alternative

hypothesis. The most well known and extensively studied approach to obtain the test statistic is the

likelihood ratio method. He used the well-known method, Pool Adjacent Violators Algorithm to

estimate the unknown ordered means. Much of the developments and theories on this subject are

assembled in Barlow et al. (1972), Robertson et al. (1988) and in Silvapulle and Sen (2005).

Sasabuchi et al. (1983) extended Bartholomew’s (1959) problem to multivariate normal mean vec-

tors with known covariance matrices. They derived the likelihood ratio test and proposed an iterative

algorithm for computing the bivariate isotonic regression. Sasabuchi et al. (1992) generalized the

iterative algorithm to multivariate isotonic regression. Fernando and Kulatunga (2007) proposed a
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FORTRAN program for the computation of multivariate isotonic regression and studied the conver-

gence of the algorithm when the dimension is greater than or equal to five through Monte Carlo sim-

ulation. Hansohm and Hu (2012) gave a more general framework for multivariate isotonic regression

and an algorithm based on Dykstras method is used to compute the multivariate isotonic regression.

For more review and details on this kind of problems of testing specially in multivariate normal

distributions one may refer to Bazyari (2012), Bazyari and Chinipardaz (2012), Bazyari and Chini-

pardaz (2013) and Bazyari and Pesarin (2013).

Suppose that X i j be the jth p× 1 observation vector of the ith population and mutually indepen-

dently distributed as Np(µ i,Σi), i = 1,2, . . . ,k, j = 1,2, . . . ,ni, where the following monotonic order

restriction on the unknown parameters µ i, i = 1,2, . . . ,k, j = 1,2, . . . ,ni, is defined as

µ1 ≤ µ2 ≤ ·· · ≤ µk, (1.1)

(with at least one strict inequality), where µv ≤ µ i means that all the elements of the vector µ i = µv

are nonnegative.

For the i th population, let Xi =
1
ni

∑
ni

j=1Xi j and Si =
1

ni−1∑
ni

j=1(Xi j − X̄i)(Xi j − X̄i)
′ be the sample

mean vector and sample covariance matrix. We note that (ni −1)Si is distributed as Wishart distri-

bution Wp(ni −1,Σi).

The rest of this paper is organized as follows. In Section 2, the obtained results by some authors are

provided and the squared error loss function of the estimators of mean vectors is given. The closed

forms of the multivariate isotonic regression estimators for two dimensional normal distributions

and also the main theorems are given in Section 3. In Section 4, the proofs of the theorems of Sec-

tion 3 are derived. In Section 5, the application of the results is presented. Concluding remarks are

given in Section 6. The complete source programs are written in SPLUS software.

2. Literature review

In the mentioned problem if p = 1, then it is clear that we have univariate case and replace σ 2
i

instead of Σi. In this case, for k > 2, when the variances are known and µ1 = µ2 = · · · = µk = µ ,

then the unbiased estimator of µ is given by

µ̂ =
∑k

i=1(
ni

σ2
i

)X̄i

∑k
i=1(

ni

σ2
i

)
, (2.1)

where X̄i =
∑

ni
j=1 Xi j

ni
, i = 1,2, . . . ,k, is the mean sample of i th population. But if we suppose that

variances are unknown, so a suitable estimator is Graybill and Deal (1959) estimator as follows

µ̂GD =
∑k

i=1(
ni

σ̂2
i

)X̄i

∑k
i=1(

ni

σ̂2
i

)
. (2.2)

They found out conditions under which µ̂GD (which is also unbiased for µ) has smaller variance than

X̄ j. Now, suppose that the order restriction µ1 ≤ µ2 ≤ ·· · ≤ µk is imposed among several univari-

ate normal mean vectors. Robertson et al. (1988), showed that the restricted maximum likelihood
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estimator of µi is

min
s≥i+1

max
r≤i

∑s−1
j=r(

n j

σ2
j

)X̄ j

∑s−1
j=r(

n j

σ2
j

)
. (2.3)

Lee (1981), studied the estimator given in (2.3) and showed that this estimator uniformly improves

upon X̄ j. Kelly (1989), considered Lee’s results and showed that (2.3) universally dominates X̄ j. Shi

and Jiang (1998), supposed that the data draw from j univariate normal populations with unknown

variances and discussed some properties of the maximum likelihood estimates of means under the

restriction and proposed an algorithm for obtaining the estimates.

The above results are obtained in univariate normal distribution. In this case, the common mean

problem has received considerable attention in the other statistical literatures, for instant, Krish-

namoorthy and Lu (2003), Lin and Lee (2005) and the references therein. In multivariate case i.e.

p≥ 2, Chiou and Cohen (1985), showed that under µ1 = µ2 = µ , the estimators X̄1 and X̄2 dominate

the estimator

µ̂CC =

(

2

∑
i=1

niS
−1
i

)−1
2

∑
i=1

niS
−1
i X̄i, (2.4)

although Grabill and Deal (1959) got the opposite result in univariate two sample case. Loh (1991)

derived the unbiased estimator for the common mean of two multivariate normal distributions with

unknown covariance matrices with respect to the natural quadratic loss function. Also they presented

a Monte Carlo swindle to evaluate its risk. Zhou and Mathew (1994) proposed several combined

tests for testing the common mean vector, but the problem of multiple comparisons had not been

discussed when the null hypothesis was rejected. For multivariate distributions, when the covari-

ance matrices are unknown, Jordan and Krishnamoorthy (1995), provided a confidence region of µ

centered at a weighted Graybill and Deal estimator

µ̂JK =

(

2

∑
i=1

diniS
−1
i

)−1
2

∑
i=1

diniS
−1
i X̄i, (2.5)

to find the confidence intervals for the common mean of several normal populations, where di’s are

some positive constants defined by

di =
(Var(Ti)

2)−1

∑k
i=1(Var(Ti)2)−1

,

where T 2
i = ∑k

i=1(X̄i −µ i)
′S−1

i (X̄i −µ i) and Var(T 2
i ) =

2p(ni−1)2(ni−2)
(ni−p−2)2(ni−p−4)

.

Thus Graybill and Deals method can be treated as a special case of Jordan and Krishnamoorthy

(1995)’s method with d1 = d2 = · · ·= dk. Lin et al. (2007), considered the confidence region for the

common mean vector of several multivariate normal populations when the covariance matrices are

unknown and unequal. A generalized confidence region is derived using the concepts of generalized

method based on the generalized p-value.
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We consider the following squared error loss function of the estimators of µ i

L(µ i, µ̂ i,M) = (µ̂ i −µ i)
′M(µ̂ i −µ i), (2.6)

where M is a positive definite matrix. Then the risk is given by

R(µ i, µ̂ i,M) = E[L(µ i, µ̂ i,M)].

In fact, the given loss function in (2.6) is similar to the mahalanobis distance which the positive

definite matrix M is replaced instead of S−1.

3. The main theorems

As we expressed, in this paper we consider two multivariate normal populations such that the mono-

tonic order restriction given in (1.1) is imposed. Suppose that the covariance matrices are known.

Then motivated by univariate restricted maximum likelihood estimators given by Robertson et al.

(1988), we obtain the following isotonic estimators of µ1 and µ2 in the multivariate case

µ̂∗
1 = X̄1(1− IX̄1>X̄2

)+ µ̂∗IX̄1>X̄2
, (3.1)

and

µ̂∗
2 = X̄2(1− IX̄1>X̄2

)+ µ̂∗IX̄1>X̄2
, (3.2)

where Id denotes the indicator function of set satisfying the condition d and

µ̂∗ =

(

(
Σ1

n1

)−1 +(
Σ2

n2

)−1

)−1(

(
Σ1

n1

)−1X̄1 +(
Σ2

n2

)−1X̄2

)

. (3.3)

Now, suppose that the covariance matrices are unknown and unequal, then motivated by the idea

of Graybill and Deal (1959) and also Robertson et al. (1988) in univariate case, we estimate the

unknown covariance matrices, Σi by Si, i = 1,2. Therefore, we have

µ̂1 = X̄1(1− IGX̄1>GX̄2
)+ µ̂IGX̄1>GX̄2

, (3.4)

and

µ̂2 = X̄2(1− IGX̄1>GX̄2
)+ µ̂IGX̄1>GX̄2

, (3.5)

where

µ̂ =

(

(
S1

n1

)−1 +(
S2

n2

)−1

)−1(

(
S1

n1

)−1X̄1 +(
S2

n2

)−1X̄2

)

, (3.6)

where G =
(

S1

n1
+ S2

n2

)−1

.

We present the following theorems for the obtained estimators

Theorem 1. Under the squared error loss function given in (2.6), the isotonic regression estimator

µ̂∗
1 uniformly has the smaller risk than the unrestricted maximum likelihood estimator, X̄1.

Theorem 2. Under the squared error loss function given in (2.6), the isotonic regression estima-

tor µ̂∗
2 uniformly has the smaller risk than the unrestricted maximum likelihood estimator, X̄2.
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These results establish for the estimators µ̂1 and µ̂2 but under the following special sets which are

defined on the covariance matrices.

Theorem 3. Under the squared error loss function given in (2.6), the isotonic regression estima-

tor µ̂1 uniformly has the smaller risk than the unrestricted maximum likelihood estimator X̄1 over

the set A1 = {Σ : n2Σ1 ≥ n1Σ2}.

Theorem 4. Under the squared error loss function given in (2.6), the isotonic regression estima-

tor µ̂2 uniformly has the smaller risk than the unrestricted maximum likelihood estimator X̄2 over

the set A2 = {Σ : n2Σ1 ≤ n1Σ2}.

Note that, for p× p matrices A and B, A ≥ B, means that A−B is a non-negative definite matrix.

4. The proofs of the given theorems

Proof of theorem 1.

Put U =
(

(Σ1

n1
)−1 +(Σ2

n2
)−1
)−1

(Σ1

n1
)−1 = Σ2

n2

(

Σ1

n1
+ Σ2

n2

)−1

and define the positive definite matrix

M = (
Σ1

n1

)−1

(

Σ1

n1

+
Σ2

n2

)2

(
Σ1

n1

)−1
.

To proof the theorem 1, we must show that the following inequality is true

R(µ1,X̄1,M)−R(µ1, µ̂
∗
1,M)> 0, (4.1)

the left hand side of the inequality denotes the risk difference of X̄1 and µ̂∗
1.

Then the estimator X̄1 and µ̂∗
1 given in (3.1) can be express as

µ̂∗
1 = X̄1(1− IX̄1>X̄2

)+ (UX̄1+(I−U)X̄2)IX̄1>X̄2
. (4.2)

Therefore, the risk difference of X̄1 and µ̂∗
1 is as

R(µ1,X̄1,M)−R(µ1, µ̂
∗
1,M) = E[(X̄1 −µ1)

′M(X̄1 −µ1) (4.3)

− (µ̂∗
1 −µ1)

′M(µ̂∗
1 −µ1)]IX̄1>X̄2

− E[(X̄1 −µ1)
′M(X̄1 −µ1)

− (UX̄1 +(I−U)X̄2−µ1)
′M(UX̄1 +(I−U)X̄2 −µ1)]IX̄1>X̄2

.

Now, define the transformations

Z1 = X̄1 −µ1 and Z2 = X̄2 −µ1. (4.4)

Then it is clearly that the vectors Z1 and Z2 are mutually independently distributed as Np

(

0, Σ1

n1

)

and Np

(

µ2 −µ1,
Σ2

n2

)

respectively, and

Z1 =

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1(
Σ1

n1

(
Σ2

n2

)−1Y1 +Y2

)

,

and

Z2 =

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

(Y2 −Y1),
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where Y1 = Z1 −Z2 and Y2 = Z1 +
Σ1

n1
(Σ2

n2
)−1Z2, then Y1 and Y1 are mutually independent and we

have

Y1 ∼ Np

(

µ1 −µ2,
Σ1

n1

+
Σ2

n2

)

,

and

Y2 ∼ Np

(

Σ1

n1

(
Σ2

n2

)−1(µ2 −µ1),
Σ1

n1

+
Σ1

n1

(
Σ2

n2

)−1 Σ1

n1

)

.

Thus from (4.3), we have

R(µ1,X̄1,M)−R(µ1, µ̂
∗
1,M) = E[Z′

1MZ1 − (UZ1 +(I−U)Z2)
′

× M(UZ1 +(I−U)Z2)]IZ1>Z2

= E[Z′
1U′M(I−U)(Z1 −Z2)

+ (Z1 −Z2)
′(I −U)′MUZ1]IZ1>Z2

+ E[Z′
1(I−U)′M(I −U)Z1

− Z′
2(I −U)′M(I−U)Z2]IZ1>Z2

,

Now, since

E
[

Z′
1U′M(I −U)(Z1 −Z2)+ (Z1 −Z2)

′(I −U)′MUZ1

]

IZ1>Z2

= E[

(

Y2
Σ1

n1

(
Σ2

n2

)−1Y1

)′(

I +(
Σ2

n2

)−1 Σ1

n1

)−1

U′M(I −U)Y1

+ Y1(I −U)′MU

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1(

Y2 +
Σ1

n1

(
Σ2

n2

)−1Y1

)

]IY1>0.

and

E[Z′
1(I −U)′M(I−U)Z1 −Z′

2(I −U)′M(I−U)Z2]IZ1>Z2

= E[

(

Y2 +
Σ1

n1

(
Σ2

n2

)−1Y1

)′(

I +(
Σ2

n2

)−1 Σ1

n1

)−1

(I −U)′M(I −U)

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1

×

(

Y2 +
Σ1

n1

(
Σ2

n2

)−1Y1

)′

− (Y2 −Y1)
′

(

I+(
Σ2

n2

)−1 Σ1

n1

)−1

(I −U)′M(I −U)

×

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1

(Y2 −Y1)]IY1>0.
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Then

R(µ1,X̄1,M)−R(µ1, µ̂
∗
1,M) = E

[

Y1(
Σ1

n1

)−1 Σ2

n2

Y1 +Y′
1

Σ2

n2

(
Σ1

n1

)−1Y2

]

IY1>0

+ E[Y
′

1

(

Σ1

n1

+
Σ2

n2

)−1
Σ2

n2

Y1 +Y1

Σ2

n2

(

Σ1

n1

+
Σ2

n2

)−1

Y1

+ Y′
1

(

Σ1

n1

+
Σ2

n2

)−1

(
Σ1

n1

)2

(

Σ1

n1

+
Σ2

n2

)−1

Y1

− Y′
1

(

Σ1

n1

+
Σ2

n2

)−1

(
Σ2

n2

)2

(

Σ1

n1

+
Σ2

n2

)−1

Y1]IY1>0

= E

[

Y′
2(

Σ1

n1

)−1 Σ2

n2

Y1 +Y′
1

Σ2

n2

(
Σ1

n1

)−1Y2

]

+E[Y′
1Y1]IY1>0.

Since the vectors Y1 and Y2 are mutually independent, and with paying attention to the increasing

order restriction defined on the unknown parameters µ1, µ2 and µ2 −µ1 > 0, we have

E

[

Y
′

2(
Σ1

n1

)−1 Σ2

n2

Y1 +Y
′

1(
Σ2

n2

)(
Σ1

n1

)−1Y2

]

IY1>0 = E
[

(µ2 −µ1)
′Y1 +Y

′

1(µ2 −µ1)
]

IY1>0 > 0.

Therefore

R(µ1,X̄1,M)−R(µ1, µ̂
∗
1,M)> 0.

Proof of theorem 2.

The proof of this theorem is similar to the proof of theorem 1. The difference point is that in this

theorem we define M = (Σ2

n2
)−1
(

Σ1

n1
+ Σ2

n2

)2

(Σ2

n2
)−1. Then it is clear that the estimator µ̂∗

2 given in

(3.2) can be express as

µ̂∗
2 = X̄2(1− IX̄1>X̄2

)+ (UX̄1+(I−U)X̄2)IX̄1>X̄2
.

The risk difference of X̄2 and µ̂∗
2 is as

R(µ2,X̄2,M)−R[(µ2, µ̂
∗
2,M) = E[(X̄2 −µ2)

′M(X̄2 −µ2) (4.5)

− (µ̂∗
2 −µ2)

′M(µ̂∗
2 −µ2)]IX̄1>X̄2

= E[(X̄2 −µ2)
′M(X̄2 −µ2)

− (UX̄2 +(I−U)X̄2 −µ2)
′M(UX̄1 +(I−U)X̄2 −µ2)]IX̄1>X̄2

.

Again consider the following transformations

Z1 = X̄1 −µ2 and Z2 = X̄2 −µ2.

Then it is clearly that the vectors Z1 and Z2 are mutually independently distributed as

Np

(

µ1 −µ2,
Σ1

n1

)

and Np

(

0, Σ2

n2

)

respectively, and also define the vectors

Z1 =

(

I +
Σ2

n2

(
Σ1

n1

)−1

)−1

(Y1 +Y2),
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and

Z2 =

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1(
Σ1

n1

(
Σ2

n2

)−1Y2 −Y1

)

,

where Y1 = Z1 −Z2 and Y2 = Z2 +
Σ2

n2
(Σ1

n1
)−1Z1, then Y1 and Y1 are mutually independent and we

have

Y2 ∼ Np

(

Σ2

n2

(
Σ1

n1

)−1(µ2 −µ1),
Σ2

n2

+
Σ2

n2

(
Σ1

n1

)−1 Σ2

n2

)

.

From (4.5), we have

R(µ2,X̄2,M)−R(µ2, µ̂
∗
2,M) = E[Z′

2(I −U)MU(Z2 −Z1)

+ (Z2 −Z1)
′U

′
M(I −U)Z2]IZ1>Z2

= E[−Y
′

2(
Σ2

n2

)−1 Σ1

n1

Y1 −Y
′

1

Σ1

n1

(
Σ2

n2

)−1Y2

+ Y′
1

Σ1

n1

(

Σ1

n1

+
Σ2

n2

)−1

Y′
1 +Y′

1

(

Σ1

n1

+
Σ2

n2

)−1 Σ1

n1

Y1

− Y′
1

(

Σ1

n1

+
Σ2

n2

)−1

(
Σ2

n2

)2

(

Σ1

n1

+
Σ2

n2

)−1

Y1

+ Y′
1

(

Σ1

n1

+
Σ2

n2

)−1

(
Σ1

n1

)−1

(

Σ1

n1

+
Σ2

n2

)−1

Y1]IY1>0

= E

[

−Y′
2(

Σ2

n2

)−1 Σ1

n1

Y1 −Y′
1

Σ1

n1

(
Σ2

n2

)−1Y2

]

IY1>0 +E[Y′
1Y1]IY1>0.

Since the vectors Y1 and Y2 are mutually independent and µ2 − µ1 > 0, with paying attention to

the distribution of Y2, we have

E

[

−Y
′

2(
Σ2

n2

)−1 Σ1

n1

Y1 −Y
′

1(
Σ1

n1

)(
Σ2

n2

)−1Y2

]

IY1>0 = 2(µ2 −µ1)
′E[Y1IY1>0]> 0.

Therefore

R(µ2,X̄2,M)−R(µ2, µ̂
∗
2,M)> 0.

Remark. For two dimensional normal distributions the estimators given in (3.1) and (3.2) are the

obtained estimators by the well-known method, Pool Adjacent Violators Algorithm proposed by

Sasabuchi et al. (1983) and also Sasabuchi et al. (1992) for more than two dimensional normal

distributions.

Proof of theorem 3.

Put U =
(

(S1

n1
)−1 +(S2

n2
)−1
)−1

(S1

n1
)−1 and M = (Σ1

n1
)−1
(

Σ1

n1
+ Σ2

n2

)2

(Σ1

n1
)−1.Then the estimator µ̂1
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given in (3.4) can be express as

µ̂1 = X̄1(1− IGX̄1>GX̄2
)+ (UX̄1+(I−U)X̄2)IGX̄1>GX̄2

.

The risk difference of X̄1 and µ̂1 is as

R(µ1,X̄1,M)−R(µ1, µ̂1,M) = E[(X̄1 −µ1)
′M(X̄1 −µ1) (4.6)

− (µ̂1 −µ1)
′M(µ̂1 −µ1)]IGX̄1>GX̄2

= E[(X̄1 −µ1)
′M(X̄1 −µ1)

− (UX̄1 +(I−U)X̄2 −µ1)
′M(UX̄1 +(I−U)X̄2−µ1)]IGX̄1>GX̄2

.

Define the transformations Z1 = X̄1−µ1 and Z2 = X̄2−µ1. It is clearly that the vectors Z1 and Z2

are mutually independently distributed as Np

(

0, Σ1

n1

)

and Np

(

µ2 −µ1,
Σ2

n2

)

respectively, and

Z1 =

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1(
Σ1

n1

(
Σ2

n2

)−1G−1Y1 +Y2

)

,

and

Z2 =

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1
(

Y2 −G−1Y1

)

,

where Y1 = G(Z1−Z2) and Y2 = Z1 +
Σ1

n1
(Σ2

n2
)−1Z2, then Y1 and Y1 are mutually independent and

we have

Y1 ∼ Np

(

µ1 −µ2,
Σ1

n1

+
Σ2

n2

)

,

and

Y2 ∼ Np

(

Σ1

n1

(
Σ2

n2

)−1(µ2 −µ1),
Σ1

n1

+
Σ1

n1

(
Σ2

n2

)−1 Σ1

n1

)

.

Thus from (4.6), we have

R(µ1,X̄1,M)−R(µ1, µ̂
∗
1,M)

= E
[

Z′
1MZ1 − (UZ1 +(I−U)Z2)

′M(UZ1 +(I−U)Z2)
]

IGZ1>GZ2

= E[Z′
1U′M(I −U)(Z1 −Z2)+ (Z1 −Z2)

′(I −U)′MUZ1]IGZ1>GZ2

+ E[Z′
1(I −U)′M(I −U)(Z1 +Z′

2(I −U)′M(I−U)Z2]IGZ1>GZ2.

Now, since

E[Z′
1U′M(I−U)(Z1 −Z2)+ (Z1 −Z2)

′(I−U)′MUZ1]IGZ1>GZ2

= E[

(

Y2 +
Σ1

n1

(
Σ2

n2

)−1G−1Y1

)′(

I +(
Σ2

n2

)−1 Σ1

n1

)−1

U′M(I−U)G−1Y1

+ Y1G−1(I −U)′MU

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1(

Y2 +
Σ1

n1

(
Σ2

n2

)−1G−1Y1

)

]IY1>0,
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and

E[Z′
1(I −U)′M(I−U)(Z1 +Z′

2(I −U)′M(I −U)Z2]IGZ1>GZ2

= E[

(

Y2 +
Σ1

n1

(
Σ2

n2

)−1G−1Y1

)′(

I+(
Σ2

n2

)−1 Σ1

n1

)−1

(I −U′M(I −U)

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

×

(

Y2 +
Σ1

n1

(
Σ2

n2

)−1G−1Y1

)′

− (Y2 −G−1Y1)
′

(

I+(
Σ2

n2

)−1 Σ1

n1

)−1

(I −U)′M(I−U)

×

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1

(Y2 −G−1Y1)]IY1>0.

Then

R(µ1,X̄1,M)−R(µ1, µ̂
∗
1,M) = E[Y′

2(I +(
Σ2

n2

)−1 Σ1

n1

)−1M(I −U)G−1Y1

+ Y′
1G−1(I −U)′MY

′
2

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

Y2]IY1>0

+ E[Y′
1G−1

(

Σ1

n1

+
Σ2

n2

)−1
Σ1

n1

U′M(I −U)G−1Y1

+ Y1G−1(I −U)MU
Σ1

n1

(

Σ1

n1

+
Σ2

n2

)−1

G−1Y1

+ Y′
1G−1(

Σ2

n2

)−1 Σ1

n1

(

I +(
Σ2

n2

)−1 Σ1

n1

)−1

× (I −U)′M(I −U)

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1
1

n1

× Σ1(
Σ2

n2

)−1G−1Y1 −Y′
1G−1

(

I +(
Σ2

n2

)−1 Σ1

n1

)−1

× (I −U)′M(I −U)

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

G−1Y1]IY1>0.

It is obvious that

E

[

(I +(
Σ2

n2

)−1 Σ1

n1

)−1M(I −U)G−1

]

= (
Σ1

n1

)−1(
Σ2

n2

)(
Σ1

n1

)−1E

[

S1

n1

]

= (
Σ1

n1

)−1 Σ2

n2

.

So we have

E[Y′
2

(

I+(
Σ2

n2

)−1 Σ1

n1

)−1

M(I −U)G−1Y1

+ Y′
1G−1(I −U)′MY′

2

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

Y2]IY1>0

= 2E

(

Y′
2(

Σ1

n1

)−1 Σ2

n2

)

E(Y1IY1>0) = 2(µ2 −µ1)
′E(Y1IY1>0)> 0.
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Due to n2Σ1 ≥ n1Σ2, we have

[Y′
1G−1(

Σ2

n2

)−1 Σ1

n1

(

I+(
Σ2

n2

)−1 Σ1

n1

)−1

× (I −U)′M(I−U)

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1
1

n1

× Σ1(
Σ2

n2

)−1G−1Y1 −Y′
1G−1

(

I +(
Σ2

n2

)−1 Σ1

n1

)−1

(I−U)′M(I −U)

×

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

G−1Y1]IY1>0 ≥ 0.

Then

E

[

Y′
1G−1

(

Σ1

n1

+
Σ2

n2

)−1 Σ1

n1

U′M(I −U)G−1Y1 +Y1G−1(I −U)MU
Σ1

n1

(

Σ1

n1

+
Σ2

n2

)−1

G−1Y1

]

≥ 0.

From the obtained results, we have

R(µ1,X̄1,M)−R(µ1, µ̂
∗
1,M)> 0.

Proof of theorem 4.

Put M = (Σ2

n2
)−1
(

Σ1

n1
+ Σ2

n2

)−1

(Σ2

n2
)−1, then the estimator µ̂2 given in (3.5) can be express as

µ̂2 = X̄2(1− IGX̄1>GX̄2
)+ (UX̄1+(I−U)X̄2)IGX̄1>GX̄2

.

The risk difference of X̄2 and µ̂2 is as

R(µ2,X̄2,M)−R(µ2, µ̂2,M) = E[(X̄2 −µ2)
′M(X̄2 −µ2) (4.7)

− (µ̂2 −µ2)
′M(µ̂2 −µ2)]IGX̄1>GX̄2

= E[(X̄2 −µ2)
′M(X̄2 −µ2)

− (UX̄2 +(I−U)X̄2 −µ1)
′M(UX̄1 +(I−U)X̄2−µ1)]IGX̄1>GX̄2

.

Consider the transformations Z1 = X̄1 − µ2 and Z2 = X̄2 − µ2. Then it is clearly that the vectors

Z1 and Z2 are mutually independently distributed as Np

(

µ1 −µ2,
Σ1

n1

)

and Np

(

0, Σ2

n2

)

respectively.

Then

Z1 =

(

I +
Σ2

n2

(
Σ1

n1

)−1

)−1

(G−1Y1 +Y2),

and

Z2 =

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1(
Σ1

n1

(
Σ2

n2

)−1Y2 −G−1Y1

)

,

where Y1 = G(Z1−Z2) and Y2 = Z2 +
Σ2

n2
(Σ1

n1
)−1Z1, then Y1 and Y1 are mutually independent and

we have

Y2 ∼ Np

(

Σ2

n2

(
Σ1

n1

)−1(µ1 −µ2),
Σ2

n2

+
Σ2

n2

(
Σ1

n1

)−1 Σ2

n2

)

.
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From (4.7), we have

R(µ2,X̄2,M)−R(µ2, µ̂
∗
2,M) = E[Z′

2(I −U)MU(Z2−Z1)

+ Z2 −Z1)
′U′M(I −U)Z2]IGZ1>GZ2

+ E[−Y′
2(

Σ2

n2

)−1 Σ1

n1

Y1 −Y′
1

Σ1

n1

(
Σ2

n2

)−1Y2]

+ Y1G−1

(

I +(
Σ2

n2

)−1 Σ1

n1

)−1

U′MU

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

G−1Y1

− Y1G−1

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

U′MU

×

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

G−1Y1 +Y1G−1U′M(I −U)

×

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

G−1Y1

+ Y1G−1

(

I +(
Σ2

n2

)−1 Σ1

n1

)−1

(I−U)′MUG−1Y1]IY1>0.

It is obvious that

E

[

−Y
′

2(
Σ2

n2

)−1 Σ1

n1

Y1 −Y
′

1

Σ1

n1

(
Σ2

n2

)−1Y2

]

IY1>0 > 0.

Due to n2Σ1 ≤ n1Σ2, we have

E[Y′
1G−1

(

I+(
Σ2

n2

)−1 Σ1

n1

)−1

U′MU

(

I+
Σ1

n1

(
Σ2

n2

)−1

)−1

G−1Y1

− Y′
1G−1

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

U′MU

×

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

G−1Y1]IY1>0 ≥ 0,

and

E[Y1G−1U′M(I−U)

(

I +
Σ1

n1

(
Σ2

n2

)−1

)−1

G−1Y1

+Y1G−1

(

I+(
Σ2

n2

)−1 Σ1

n1

)−1

(I −U)′MUG−1Y1]IY1>0 ≥ 0.

Therefore

R(µ2,X̄2,M)−R(µ2, µ̂2,M)> 0.

This completes the proof.

5. Application of results

In this section, to illustrate the results the following numerical examples are presented.

Example 2. Consider two bivariate normal distributions, i.e. the case k = 2 , when they are sub-

ject to the order restriction µ1 < µ2. Three different cases are considered here. We simulate the
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Table 2. Simulation from two bivariate normal distributions: the values of risks difference µ̂∗
1 and µ̂∗

2

.

Sample sizes N2(µ1r,Σ1r) N2(µ2r,Σ2r) RDX̄1,µ̂
∗
1

RDX̄2,µ̂
∗
2

Case 1 (r = a) n1 = 20 µ1a = (1,2) µ2a = (2,2) 1.043 2.560

n2 = 20 Σ1a =

(

2 0

0 2

)

Σ2a =

(

1 0

0 1

)

Case 2 (r = b) n1 = 20 µ1b = (3,1) µ2b = (5,2) 0.841 1.754

n2 = 15 Σ1b =

(

1 0

0 1

)

Σ2b =

(

1 2

0 3

)

Case 3 (r = c) n1 = 20 µ1c = (2,5) µ2c = (4,5) 0.963 0.802

n1 = 10 Σ1c =

(

1 2

0 3

)

Σ2c =

(

1 2

2 1

)

values of random vectors X11,X12, . . . ,X1n1
, from the bivariate normal distributions N2(µ1r,Σ1r)

with mean vectors µ1r, r = a,b,c, and known nonsingular covariance matrices Σ1r respectively,

as N2

(

µ1a = (1,2),

(

2 0

0 2

))

, N2

(

µ1b = (3,1),

(

1 0

0 1

))

and N2

(

µ1c = (2,5),

(

1 2

0 3

))

. Also the

values of random vectors X21,X22, . . . ,X2n2
, from the bivariate normal distributions N2(µ2r,Σ2r)

with mean vectors µ2r, r = a,b,c, and known nonsingular covariance matrices Σ2r respectively, as

N2

(

µ2a = (2,2),

(

1 0

0 1

))

, N2

(

µ2b = (5,2),

(

1 2

0 3

))

and N2

(

µ2c = (4,5),

(

1 2

2 1

))

.

It is completely clear that µ1a < µ2a, µ1b < µ2b and µ1c < µ2c. In each simulation, the process of

computation is repeated 10000 times to get an estimate of sample mean vectors X̄1 and X̄2, isotonic

estimators of mean vectors, i.e. µ̂∗
1 and µ̂∗

2 by (3.1) and (3.2) respectively, and the risk difference

RDX̄1,µ̂
∗
1
= R(µ1,X̄1,M)−R(µ1, µ̂

∗
1,M) and RDX̄2,µ̂

∗
2
= R(µ2,X̄2,M)−R(µ2, µ̂

∗
2,M), where M =

(Σ1

n1
)−1
(

Σ1

n1
+ Σ2

n2

)2

(Σ1

n1
)−1. For different values of sample sizes and r = a,b,c the results are given in

Table 2. Also in this simulation, the values of µ̂1 and µ̂2 by (3.4) and (3.5) respectively, and the risk

difference RDX̄1,µ̂1
= R(µ1,X̄1,M)−R(µ1, µ̂1,M) and RDX̄2,µ̂2

=R(µ2,X̄2,M)−R(µ2, µ̂2,M) are

computed and the results are given in Table 3. From the table 2, it is clear that the isotonic regression

estimator µ̂∗
1 uniformly has the smaller risk than the unrestricted maximum likelihood estimator, X̄1,

in three cases RDX̄1,µ̂
∗
1
> 0. Also the isotonic regression estimator µ̂2∗ uniformly has the smaller risk

than the unrestricted maximum likelihood estimator, X̄2, in three cases RDX̄2,µ̂
∗
2
> 0. In table 3, case

2, estimator µ̂1 uniformly has not the smaller risk than the unrestricted maximum likelihood esti-

mator X̄1, RDX̄1,µ̂1
=−1.716 since in this case n2Σ1 < n1Σ2. But in this case, µ̂2 uniformly has the

smaller risk than the unrestricted maximum likelihood estimator X̄2, since X̄2, RDX̄2,µ̂2
= 3.915 and

n2Σ1 < n1Σ2. In table 3, case 3, estimator µ̂1 uniformly has not the smaller risk than the unrestricted

maximum likelihood estimator X̄1, but µ̂2 uniformly has the smaller risk than the unrestricted max-

imum likelihood estimator X̄2.

All the results in the previous sections are establish in the univariate case. To show this verity the

following numerical example is presented.

Example 3. We consider the estimation of linear functions c1µ1+c2µ2, where c1 and c2 are arbitrary

constants. We show that the plug-in estimator c1µ̂1+c2µ̂2 uniformly improves upon the unrestricted
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Table 3. Simulation from two bivariate normal distributions: the values of risks difference µ̂1 and µ̂2

.

Sample sizes N2(µ1r,Σ1r) N2(µ2r,Σ2r) RDX̄1,µ̂1
RDX̄2,µ̂2

Case 1 (r = a) n1 = 20 µ1a = (1,2) µ2a = (2,2) 3.162 2.560

n2 = 20 Σ1a =

(

2 0

0 2

)

Σ2a =

(

1 0

0 1

)

Case 2 (r = b) n1 = 20 µ1b = (3,1) µ2b = (5,2) -1.716 3.915

n2 = 15 Σ1b =

(

1 0

0 1

)

Σ2b =

(

1 2

0 3

)

Case 3 (r = c) n1 = 20 µ1c = (2,5) µ2c = (4,5) -2.550 3.244

n1 = 10 Σ1c =

(

1 2

0 3

)

Σ2c =

(

1 2

2 1

)

maximum likelihood estimator c1X̄1 + c1X̄2 if and only if for all σ 2
i ’s the risk difference

R(c1µ1 + c2µ2,c1X̄1 + c2X̄2)−R(c1µ1 + c2µ2,c1µ̂1 + c2µ̂2),

is nonnegative when µ1 = µ2, which is the most critical case for uniform improvement. In this

case, the risk difference is nonnegative if and only if the risk of (c1 + c1)µ̂GD is not larger than that

of c1X̄1 + c1X̄2 to estimate (c1 + c1)µ1. From this, we also show that when c1c1 > 0, c1µ̂1 + c2µ̂2

does not uniformly improve upon c1X̄1 + c2X̄2 and give some su6cient conditions on c1, c2, n1 and

n2 for c1µ̂1 + c2µ̂2 to improve upon c1X̄1 + c2X̄2 uniformly for the case when c1c1 < 0. However,

we show that if σ 2
i ’s are known, the restricted maximum likelihood estimator c1µ̂∗

1 + c2µ̂∗
2 always

uniformly improves upon c1X̄1 + c2X̄2. These results again make a clear contrast between the two

cases: variances known or unknown. In Fig. 1 we show the risk difference R(µ1, X̄1)−R(µ1, µ̂1) as

a function of µ = µ1 − µ2 with σ 2
i ’s fixed for the case when n1 = n2 = 11 (Fig. 1 (a)-(c)), which

implies µ̂1 uniformly improves upon X̄1 by Theorem 1, and also for the case when n1 = n2 = 10

(Fig. 1 (d)-(h)), which implies µ̂1 does not uniformly improve upon X̄1 by Theorem 1. If
σ2

1

σ2
2

is small

(Fig. 1 (a), (b), (d) and (e)), the risk difference is monotone decreasing in µ , and if
σ2

1

σ2
2

is large

(Fig. 1 (c) and (f)(h)), the risk difference is decreasing in µ after increasing monotonically. When

n1 = n2 = 10,
σ2

1

σ2
2

is sufficiently large (Fig. 1 (h)), the risk diRerence is negative for µ = 0, since the

most critical case for the GraybillDeal estimator µ̂GD to have smaller risk than X̄1 is the case when
σ2

1

σ2
2

→ ∞ by Graybill and Deal (1959).

Fig (a)=n1 = n2 = 11,σ 2
1 = 1,σ 2

2 = 0.12. Fig (b)=n1 = n2 = 11,σ 2
1 = 1,σ 2

2 = 1. Fig(c)=n1 = n2 =

11,σ 2
1 = 1,σ 2

2 = 102. Fig (d)=n1 = n2 = 10,σ 2
1 = 1,σ 2

2 = 0.12. Fig (e)=n1 = n2 = 10,σ 2
1 = 1,σ 2

2 = 1.

Fig (f)=n1 = n2 = 10,σ 2
1 = 1,σ 2

2 = 22. Fig (g)=n1 = n2 = 10,σ 2
1 = 1,σ 2

2 = 52. Fig (h)=n1 = n2 =

10,σ 2
1 = 1,σ 2

2 = 102.
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Fig. 1. The risk difference RD=R(µ1 − X̄1)−R(µ1 − µ̂1)

6. Concluding remarks

In this study, a comparison between the estimators of the monotonic mean vectors and unrestricted

maximum likelihood estimators in two dimensional normal distributions was done under two differ-

ent cases for covariance matrices with unequal sample sizes. Under the squared error loss function

of the estimators of mean vectors when the covariance matrices were known, the obtained esti-

mators of ordered mean vectors had the smaller risk than the estimators of unrestricted maximum

likelihood uniformly, but when the covariance matrices were unknown and unequal, the estimators

had the smaller risk than the estimators of unrestricted maximum likelihood only over some spe-

cial sets which are defined on the covariance matrices. Also, two numerical examples presented to

illustrate the results. In example 2, the data simulated from different bivariate normal distributions.

We showed that the isotonic regression estimators uniformly have the smaller risk than the unre-

stricted maximum likelihood estimator since the risk differences are positive. In this example, also

the isotonic regression estimators uniformly have the smaller risk than the unrestricted maximum

likelihood estimator over the sets A1 and A2. In example 3, the plug-in estimator c1µ̂1 + c2µ̂2 uni-

formly improved upon the unrestricted maximum likelihood estimator c1X̄1 + c2X̄2 if and only if

for all σ 2
i ’s the risk difference is nonnegative when µ1 = µ2, which was the most critical case for

uniform improvement.
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