It is well-known that rough set analysis of vague
concepts (Refs. 1, 2), begins with the idea of satu-
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Abstract

Knowledge granulation as proposed by Zadeh consists in making objects under discussion into classes
called granules; objects within a granule are similar one to another to a satisfactory degree relative to a chosen
similarity measure. Rough mereology as developed by Polkowski in a series of works is especially suited
to tasks of granulation as it does propose a systematic way to construct similarity measures in data sets and
offers as well theoretic tools for granule formation in the form of an adaptation of the idea of mereological
classes defined by Lesniewski in his mereology theory.

In this article, which extends our contributions to the Special Session on Rough Mereology organized
by Polkowski and Artiemjew as a part of the Conference on Rough Sets and Knowledge Technology RSKT
2008, we give a fairly detailed account of basic ideas of rough mereology, a description of basic similarity
measures called rough inclusions along with the idea of granulated data sets (granular reflections of data
sets); then we follow with the idea on how to construct classifiers from granular data, and finally we present
some results of granular classification on real data sets. In what follows, we restrict ourselves to a closed
world of a given decision system, leaving aside metaphysical questions of relations between this system and
the overwhelming universe of all feasible objects.

Keywords: rough sets, knowledge granulation, rough mereology, rough inclusions, classification of data
into categories, granular data sets and classifiers

Rough set analysis of vagueness ration by classes of indiscernibility: given an infor-
mation function Inf : U — V defined on objects in a
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finite set U with values in a set V which induces an
indiscernibility relation /nd on the set U x U by re-
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quiring that Ind(u,v) if and only if Inf(u) = Inf(v),
concepts X C U are divided into two categories: the
category of Inf-definable concepts which are rep-
resentable as unions of classes [u]jg = {v € U :
Ind(u,v)} of the relation Ind, and the category of
Inf-non—definable (or, Inf-rough) concepts which
do not possess the above definability property.

Let us observe that definable concepts are those
concepts which can be described with certainty: for
each object u € U, and a definable concept X, ei-
ther u belongs in X or u does not belong in X; it
suffices to pick a v € X, when X is non—empty, and
for any given u to check whether Inf(u) = Inf(v);
whereas, for a non—definable concept Y, there exist
objects u,v such that Ind(u,v) and u belongs in Y
but v belongs in U \ Y.

Rough set theory solves the problem of how to
specify a non—definable concept with the idea of an
approximation, cf. (Ref. 2): given a concept Y, there
exist by completeness of the containment relation C,
two definable concepts Y (the lower approximation)
to Y, and Y (the upper approximation) to Y, such
that Y CY C Y, Y is the largest definable subset of
Y, and Y is the smallest definable superset of Y.

The following points deserve attention in the
above presented scheme, cf. (Refs. 3, 4).

Remark 1.1. Definable concepts are unions of
atomic concepts, viz., indiscernibility classes.
Remark 1.2. Non-definable concepts are ap-
proached with definable ones by means of set con-
tainment.

Both operations involved in Remarks 1.1, 1.2,
above, are particular cases of general constructs of
mereology: the union of sets is a particular class op-
erator and containment is a particular ingredient re-
lation. It follows that regarding basics of rough set
theory from mereology point of view, one obtains a
more general and formally adequate means of anal-
ysis. This idea, pursued by Polkowski in a series of
works (Refs. 3,4, 5, 6,7, 8,9, 10, 11), is presented
below in sect.4.

1.1. Data sets: Information/Decision Systems

Most often, indiscernibility relations are induced
from the attribute—value description of objects in
data by means of information systems (Refs. 1, 2);

an information system is a a triple / = (U,A, f)
where U is a set of objects, A is a set of attributes,
and f is a value assignment which for each attribute
a and each object u assigns the value f(a,u) € V de-
noted shortly a(u), where V denotes the value set
in which attributes are evaluated. In this setting,
the indiscernibility relation /nd is defined by means
of information sets Inf(u) = {(a,a(u)) :a € A} as:
Ind(u,v) if and only if Inf(u) = Inf(v), i.e., when
a(u) = a(v) for each a € A.

Data sets are organized most often into decision
systems, i.e., information systems in which an ad-
ditional attribute, the decision d is added to condi-
tional attributes in the set A: a decision system is
then a quadruple D = (U,A,d, f). The decision d is
imposed by the real world (an expert) and attributes
from A are meant to collectively yield as close to
d approximation as possible. This is the subject of
classification into categories: classes of Ind(d).

To relate classes of Ind(A) to classes of Ind(d)
in a classifier, the language of descriptors is in
use (Refs. 2, 12). A descriptor is an elementary for-
mula (a =v), where v € a(U) CV is a value of a,
which is interpreted in the set U as [a =v] = {u €
U:a(u)=v}.

Descriptors are combined into formulas of de-
scriptor logic by means of sentential connectives V
(the disjunction), A (the conjunction), — (the nega-
tion), = (the implication), interpreted in the set U

by means of recursive relations: [oV B] =[] U[B],
la A B] =[] N [B], [ = U\ [o]; [a = B] =
U\ [a])U[B].

A decision rule 1s a formula,

r(B.d, {va},v): \(a=vs) = (d=v),

acB

where B C A is a partial set of attributes.

Forming a decision rule means a search in the
pool of available semantically non—vacuous descrip-
tors for their combination that describes as closely as
possible a chosen decision class.

Fulfilling this task, researchers on rough sets in-
troduced some notions allowing for generation of
rules with specific properties.
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2. Classification

First, the idea of knowledge reduction has come,
see (Ref. 2) for a discussion: a reduct B of the set A
of attributes is a minimal subset of A with the prop-
erty that Ind(B) = Ind(A). An algorithm for finding
reducts using methods of Boolean Reasoning was
proposed by Skowron and Rauszer (Ref. 13); given
input (U,A, f) with U = {uy,...,u,} it starts with the
discernibility matrix,

Mya = [cij={a€A:a(w)# a(uj)ti<ij<n, ()

and builds the Boolean function,

A Va

¢ j7#0,i<jacci

3)

8UA =

where @ is the Boolean variable assigned to the at-
tribute a € A.
The function gy 4 is converted to its DNF form:

ng,A : \/ /\ ajk-

jelkekK;

“4)

Then: sets of the form R; = {a;, : k € K;} for j € J,
corresponding to prime implicants of g , are all
reducts of A. Choosing a reduct R, and forming the
reduced information system (U,R) one is assured
that no information encoded in (U,A) has been lost.
Decision rules r are divided into certain (or, ex-
act), when [r] = U, and possible, in the contrary case
and when [r] # 0; to induce the certain rule set, the
notion of a d—reduct was proposed by Skowron and
Rauszer (Ref. 13); it is called a relative reduct in
Bazan et al. (Ref. 14). To define d—reducts, first the
generalized decision 0p is defined: foru € U,

Sp(u)={veVy;:d')=vA(u,u') €ind(B)N u' €U}.

%)
A subset B of A is a §—reduct to d when it is a min-
imal subset od A with respect to the property that
O0p = 04.

J0-reducts can be obtained from the modified
Skowron and Rauszer algorithm (Ref. 13): it suf-
fices to modify the entries c;; to the discernibility
matrix, by letting,

cﬁ{j:{aeAU{d}:a(u,-)?éa(uj)}, (6)

Knowledge Granulation and Classifiers

and then setting,

&= { cgj\{d} in case d(u;) # d(u;)

0 in case d(u;) = d(uj).
The algorithm described above input with entries
c; ; forming the matrix M,‘} 4 outputs all d—reducts
to d encoded as prime implicants of the associated
Boolean function gg 4

We write down a decision rule in the form
¢/B,u = (d =v) where ¢/B is a descriptor for-
mula A,cg(a = a(u)) over B. A method for induc-
ing decision rules in a systematic way of Pawlak and
Skowron (Ref. 15) and Skowron (Ref. 16) consists
in finding the set of all 6—reducts R={Ri,...,R,},
and defining for each reduct R; € R and each object
uecU,therule ¢ /R;,u= (d =d(u). Rules obtained
by this method are not minimal usually in the sense
of the number of descriptors in the premise ¢.

A method for obtaining decision rules with min-
imal number of descriptors (Ref. 16) consists in re-
ducing a given rule r: ¢ /B,u = (d = v) by find-
ing a set R, C B consisting of irreducible attributes
in B only, in the sense that removing any a € R,
causes inequality [¢/R,,u = (d = v)] # [§/R,\
{a},u = (d =v)] to hold. In case B = A, reduced
rules ¢ /R,,u = (d = v) are called optimal basic
rules (with minimal number of descriptors). The
method for finding of all irreducible subsets of the
set A (Ref. 16) consists in considering another mod-
ification of discernibility matrix: for each object
u, € U, the entry ca ; into the matrix Mg 4 for 6—
reducts is modified into,

& c;jincased(u;) #d(uj) andi=kV j=k
/71 0 otherwise.

(N

l?.l

®)
Matrices Mé‘L 4 of entries cﬁ ; and associated Boolean
functions g’l‘L 4 for all u; € U allow for finding all
irreducible subsets of the set A and in consequence
all basic optimal rules (with minimal number of de-
scriptors).

Decision rules are induced from a part of the
decision system called the training set and they
are judged by their quality in classifying new un-
seen as yet objects, i.e., by their performance on
the remaining part of the decision system — the fest
set (Ref. 17). Quality evaluation is done on the basis
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of some measures: for arule r: ¢ = (d =v), and
an object u € U, one says that u matches r in case
u € [@]. match(r) is the number of objects matching
r. Support supp(r) of r is the number of objects in

[¢] N [(d = v)]; the fraction cons(r):nsq‘;fgl((rr)) is the

consistency degree of r: cons(r) = 1 means that the
rule is certain.

Strength, strength(r), of the rule r is defined,
see Michalski et al. (Ref. 18), Bazan (Ref. 19),
Grzymala—Busse and Ming Hu (Ref. 20), as the
number of objects correctly classified by the rule in
the training phase; relative strength is defined as the
fraction rel — strength(r)= |S[Zt5 ' 5;])‘ . Specificity of
the rule r, spec(r), is the number of descriptors in
the premise ¢ of the rule r (Ref. 19).

In the testing phase, rules vie among themselves
for object classification when they point to distinct
decision classes; in such case, negotiations among
rules or their sets are necessary. In these negotia-
tions rules with better characteristics are privileged.

For a given decision class ¢ : [d = V],
and an object u in the test set, the set
Rule(c,u) of all rules matched by u and point-
ing to the decision v, is characterized globally
by  Support(Rule(c,u))=Y  cruie(c,u) Strength(r) -
spec(r). The class ¢ for which Support(Rule(c,u))
is the largest wins the competition and the object u
is classified into the class ¢ : d = v, see (Ref. 20).

It may happen that no rule in the available set
of rules is matched by the test object u and par-
tial matching is necessary, i.e., for a rule r, the
matching factor match — fact(r,u) is defined as
the fraction of descriptors in the premise ¢ of r
matched by u to the number spec(r) of descrip-
tors in ¢. The rule for which the partial support
Part — Support(Rule(c,u))=Y cRute(c.uymatch —
fact(r,u) - strength(r) - spec(r) is the largest wins
the competition and it does assign the value of
decision to u, see Grzymala—Busse and Ming
Hu (Ref. 20).

In a similar way, notions based on relative
strength can be defined for sets of rules and applied
in negotiations among them (as discussed in Bazan
et al. (Ref. 14).

As distinguished in Stefanowski (Ref. 21), there
are three main kinds of classifiers searched for: min-

imal, i.e., consisting of minimum possible number
of rules describing decision classes, exhaustive, i.e.,
consisting of all possible rules, satisfactory, i.e.,
containing rules tailored to a specific use. Classifiers
are evaluated globally with respect to their ability to
properly classify objects, usually by error which is
the ratio of the number of correctly classified objects
to the number of test objects, total accuracy being
the ratio of the number of correctly classified cases
to the number of recognized cases, and fotal cover-
age, i.e, the ratio of the number of recognized test
cases to the number of test cases.

Minimum size algorithms include LEM2 algo-
rithm due to Grzymala—Busse (Ref. 22) and cov-
ering algorithm in RSES package (Ref. 23); ex-
haustive algorithms include, e.g., LERS system due
to Grzymala—Busse (Ref. 22) and systems based
on discernibility matrices and Boolean reasoning
by Skowron (Ref. 16), Bazan (Ref. 19), Bazan
et al. (Ref. 14), implemented in the RSES pack-
age (Ref. 23). See also Stefanowski (Ref. 24) for
a discussion of recent advances.

3. Similarity

Analysis based on indiscernibility has allowed for
extracting the most important notions of rough set
theory; further progress has been obtained by de-
parting from indiscernibility to more general simi-
larity relations. There have been various methods
for introducing similarity relations.

An attempt at introducing some degrees of com-
parison among objects with respect to particular
concepts consisted in defining rough membership
functions in Pawlak and Skowron (Ref. 25): for an
object u, an attribute set B and a concept X C U, the
value,
|[u]z N X|

[ ]

.UB,X(M) = , )
was defined.

Informally, one can say that objects u,v are
€,B—similar with respect to the concept X in case
\upx(u) — upx(v)| < €. This relation is reflex-
ive and symmetric, i.e., it is a folerance relation
for each €,B,X, see Poincaré (Ref. 26) and Zee-
man (Ref. 27).

Published by Atlantis Press
Copyright: the authors

318



Tolerance relations were introduced into rough
sets in Nieminen (Ref. 28), and also studied
in Polkowski, Skowron, and Zytkow (Ref. 29),
Stowinski and Vanderpooten (Ref. 30), among oth-
ers. It is possible to build a parallel theory of rough
sets based on tolerance or similarity relations in
analogy to indiscernibility relations. g x does char-
acterize partial containment of objects in U into con-
cepts X; a further step consists in considering gen-
eral relations of partial containment in the form of
predicates “to be a part of to a degree at least”.

A general form of partial containment was pro-
posed as an extension of mereological theory of con-
cepts due to Lesniewski (Ref. 31); mereology takes
the predicate “fo be a part of” as its primitive no-
tion, requiring of it to be irreflexive and transitive on
the objects in the set U. The primitive notion of a
(proper) part is relaxed to the notion of an ingredi-
ent (an improper part) ing = part U “ =",

The extension consists in considering the predi-
cate “to be a part to a degree of a least”, formally
introduced as the generic notion of a rough inclu-
sion 1 in Polkowski and Skowron (Ref. 32), see
also ( Refs. 33, 34, 35), as a ternary predicate (re-
lation) with the semantic domain of U x U x [0, 1],
discussed in detail below, in sect. 5.

Other methods for introducing similarity rela-
tions into realm of information systems, include
methods based on templates and on quasi—distance
functions in Nguyen S. H. (Ref. 36); a template is
any conjunct of the form 7 : A,cg(a € W,) where
B is a set of attributes, and W, C V, is a sub-
set of the value set V, of the attribute a. Se-
mantics of templates is defined as with descrip-
tor formulas in sect.1. Templates are judged by
some parameters: length, i.e., the number of gen-
eralized descriptors (a € W,); support, i.e, num-
ber of matching objects; approximated length (ap-
plength), i.e, Za@m' Quality of the tem-
plate is given by a combination of some of param-
eters, e.g., quality(T)=support(T)+applength(T).
Templates are used in classification problems in the
way analogical to decision rules.

A quasi—metric (a similarity measure) (Ref. 36)
is a family A : {A, : a € A} of functions where
Ay(u,u) = 0 and Ay(u,v) = As(v,u) for u,v € U.

Knowledge Granulation and Classifiers

By means of these functions tolerance relations are
built with help of standard metric—forming opera-
tors like max, Y: 71(u,v) < max,{A(u,v) < €},
T (u,v) < Y, Ay(u,v) < €} for a given threshold €
are examples of such similarity relations. These sim-
ilarity relations are applied in (Ref. 36) towards clas-
sifier construction.

4. Mereological analysis of vagueness

The fundamental relation 7 of being a part is in
mereology theory of Lesniewski (Ref. 31) con-
structed as a non—reflexive and transitive relation on
entity set U, i.e.,

Part 1. 7w(u,u) for no entity u.

Part 2. w(u,v) and m(v,w) imply 7w(u,w).

An example is the proper containment relation C
on sets.

One makes 7 into a partial order relation ing of
an ingredient by letting,
ing(u,v) if and only if either 7 (u,v) or u =v.

Clearly, ing is reflexive, weakly—antisymmetric
and transitive. An example is the containment rela-
tion C on sets.

The union of sets operator used in constructions
of approximations, has its counterpart in the mere-
ological class operator Cls (Ref. 36); it is applied
to any non—empty collection F of entities to pro-
duce the entity ClsF; the formal definition is given
in terms of the ingredient relation: an entity X is the
class CIsF if and only if the two conditions are sat-
isfied,

Class 1. u ing X foreachu € F.

Class 2. u ing X implies the existence of entities v, w
with the properties:

i.ving u;

ii. ving w;

iii.wekF.

It is easy to verify that in case when & = C, hence
ing = C, and F is a non—empty collection of sets,
CIsF is |JF, the union of sets in the collection F.

Mereological reasoning about concepts and
classes rests, to a substantial degree, on the
Les$niewski Inference Rule (IR) (Ref. 31).

(IR) For entities x,y, if for each entity z, from
z ing x it follows that there exists an entity w such
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that w ing z, w ing y, then x ing y.

Operators of the form ClsF are instrumental in
our definition of granules of knowledge, discussed
below in sect. 6.

4.1. A mereological extension of rough set theory

It follows from the previous sections, notably Re-
marks 1.1, 1.2, sect.1, that a more general rough
set theory can be formulated by using mereologi-
cal constructs in place of set theoretic ones. Given
a collection . of concepts, and a part relation 7
along with the ingredient relation ing, we define an
(Z, m)—definable concept X as the class Cls ¢ for
some non—-empty &4 C .%.

Given a concept Y C U, the (%,rm)-lower
approximation Y (#,m) is defined as the class
Cls L(Y, %, 1) where the property L(Y,.%, 1) is sat-
isfied by a concept Z in case Z ing Y. The upper
approximation is defined via the complement and
the lower approximation in the standard way, i.e.,
Y(Z#,n) =CIlsF \ L(CIsF\,%,T).

5. Rough mereology

In the process of development of rough set theory,
it has been understood that indiscernibility relations
could be replaced with more general and flexible
similarity relations.

An inspiring example of such relation was given
in (Ref. 26): given a metric p on a set U and a fixed
small positive &, one declares points x, y to be in the
relation sim(0) if and only if p(x,y) < o:

sim(8)(x,y) if and only if p(x,y) < §. (10)

The relation sim (&) is a tolerance relation.

We continue this example by introducing a
graded version of sim(6), viz., for a real number
r € [0, 1], we define the relation sim (0, r) by letting,

(In

The collections sim(8,r) for r € [0,1], of rela-
tions, have the following properties evident by prop-
erties of the metric p.

Sim 1. sim(6,1)(x,y) if and only if x = y.

sim(0,r)(x,y) if and only if p(x,y) < 1 —r.

Sim 2. sim(8,1)(x,y) and sim(8,r)(z,x) imply
sim(8,7)(z,y)-
Sim 3. sim(6,r)(x,y) and s < r imply sim(J,s)(x,y).

Properties Sim 1 — Sim 3, induced by the metric
p refer to the ingredient relation = whose corre-
sponding relation of part is empty; a generalization
can thus be obtained by replacing the identity = with
an ingredient relation ing in a mereological universe
(U,r).

In consequence a relation p (u, v, r) is defined that
satisfies the following conditions:
RM 1. u(u,v,1) if and only if ing(u,v).
RM 2. u(u,v,1) and p(w,u,r) imply u(w,v,r).
RM 3. u(u,v,r) and s < r imply p(u,v,s).

Any relation u which satisfies the conditions RM
1 — RM 3 is called a rough inclusion (Refs. 4, 32).
This relation is a similarity relation which is reflex-
ive but not necessarily symmetric or transitive. It is
read as “the relation of a part to a degree at least of

t}]

r.

5.1. Rough inclusions: Case of information
systems

The problem of methods by which rough inclusions
could be introduced in information/decision systems
has been studied, e.g., in (Refs. 4, 5, 6, 7, 8). Here
we recapitulate these results for the convenience of
the reader. We recall that an information system is
a method of representing knowledge about a certain
phenomenon in the form of a table of data; formally,
itis a triple (U, A, f) as indicated in sect. 1.

5.1.1. Rough inclusions from metrics

As equation (11) shows, any metric p defines a
rough inclusion t, by means of the equivalence
Mo (u,v,r) & p(u,v) < 1—r. A very important ex-
ample of a rough inclusion obtained on these lines
see, e.g., (Refs. 3,4, 5, 6, 7, 8) is the rough inclusion
Uy with h(u, v) being the reduced Hamming distance
on information vectors of u and v, i.e.,

_ HacA:(a,a(u) # (a,a(v))}|
Al ’

h(u,v) (12)
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where the symbol |A| denotes cardinality of the set
A.

Thus, w,(u,v,r) if and only if A(u,v) < 1 —
r; introducing as in (Refs. 3-8) sets DIS(u,v) =
{a€A: (a,a(u)) # (a,a(v))} and IND(u,v) = A\
DIS(u,v)={a € A : a(u) = a(v)}, along with quo-
tients,

dis(u,v) = |DIS|X"’V)|, (13)
and
ind(u,v) "N”)A("”” (14)

one can write down the formula for p, either as,

Wi(u,v,r) < dis(u,v) < 1—r, (15)

or,

Wi(u,v,r) < ind(u,v) > r. (16)

Formula (16) witnesses that the rough inclusion
Uy is an extension of the indiscernibility relation /nd
to a graded indiscernibility ;.

In computing u,, one can use in place of the met-
ric h, any other metric function built on descriptors.

Rough inclusions induced by metrics possess an
important property of functional transitivity (Ref. 4)
expressed in a general form by the rule,

Hp(u7v7r)7.up(vvw7s)
[Jp(l/t,W,L(I’,S))

) (7)

where L(r,s) = max{0,r+s— 1} is the Lukasiewicz
t-norm, see, e.g. (Ref. 37). We recall a short
proof of this fact from (Ref. 4): assume that
Mp (1, v,7), Up(v,w,s) which means in terms of the
metric p that p(u,v) < 1 —r,p(v,w) < 1—s; by the
triangle inequality, p(u,w) < (1 —r)+ (1 —3s), i.e.,
Mp (u,w,r+5—1).

5.1.2. Rough inclusions from functors of
many—valued logics: the case of
non—archimedean rough inclusions

A function 7 : [0, 1] x [0,1] — [0, 1] is a t-norm, see,
e.g., (Refs. 37, 38), when it is increasing in each co-
ordinate, symmetric (meaning 7(x,y) = #(y,x)), as-
sociative (meaning (x,7(y,z)) = #(¢(x,y),z), and it
satisfies boundary conditions 7(x,0) = 0,#(x, 1) = x;

Knowledge Granulation and Classifiers

a t-norm is non—archimedean in case the equality
t(x,x) = x holds for x = 0,1 only; it is known, see,
e.g. (Refs. 3, 38), that only such t-norms up to an au-
tomorphism of the interval [0, 1] are the Lukasiewicz
L and the product t-norm P(x,y) = x-y.
Non—archimedean t-norms admit a functional
representation: 7(x,y) = g(f(x) + f(y)) (Ref. 39),
where f : [0,1] — [0,1] is a continuous decreasing
function, and g is the pseudo—inverse (Ref. 39) to f.
In the context of non—archimedean t—-norms, one
defines a rough inclusion y, by letting (Refs. 4-8),
W (u,v,r) < g(dis(u,v)) > r. (18)
In particular, in case of the t-norm L, one has
g(x) =1—x, see (Ref. 39) , and thus the rough inclu-
sion yy is expressed by means of the formula (16),
i.e., it does coincide with the rough inclusion ;.
The scarcity of the stock of non—archimedean
inclusions makes effectively only u; available as a
granulation tool. In order to enlarge this collection,

we reach to residua of continuous t—norms as first
indicated in (Refs. 5, 6).

5.1.3. Rough inclusions from functors of
many—valued logic: the case of residual
implications

Other systematic method for defining rough inclu-
sions is by means of residual implications of contin-
uous t-norms (Refs. 5, 6).

For a continuous t-norm ¢, the residual implica-
tion x =, y is a mapping from the square [0, 1]? into
[0, 1] defined as follows, see, e.g., (Refs. 37, 38),

x =y > zif and only if (x,z) < y. (19)

Thus, x =, y = max{z: t(x,z) < y}.

Proposition 1. . For every continuous t—norm t, the
residual implication x =, y does induce a rough in-
clusion u= by means of the formula: w= (x,y,r) if
and only if x =,y >r. Proof. We include a

short argument for the sake of completeness; clearly,
1~ (x,x,1) holds as x =, y > 1 is equivalent to x < y.
Assuming u,~ (x,y,1), i.e., x <y, and y~ (z,x,7),
i.e., 7= x > r hence t(z,r) < x we have t(z,r) <y,
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i.e., z=y > rso finally 1,7 (x,y,r). Clearly, by def-
inition, from w,~ (x,y,r) and s < r it does follow that
I"l't:> ('x’ y’ S) * D
We recollect here the basic cases of rough inclusions
obtained from most frequently applied t—norms, cf.,
e.g., (Ref. 38). In all cases, u,~ (x,y,1) if and only
if x <y so the associated ing relation is < and the
underlying part relation is <. For r < 1, i.e., x >y,
one has
Case 1.1 =L;inthis case x = y =min{1,1 —x+y},
hence y;” (x,y,r) if and only if 1 —x+y > r.
Case 2. t = P where P(x,y) = x-y; in this case,
x =>py =2 when x # 0 and 1 when x = 0 hence
up (x,y,r)if and only if y > x-r.
Case 3.1 = min(x,y); in this case x =, iny is y hence
w(x,y,r) if and only if y > r.

It has been proved (Ref. 4) that all rough inclu-
sions induced from either non—archimedean or con-
tinuous t-norms in the manner as above are transi-

tive in the sense of the formula: Rl r) (v 0s5)
u(u,w,t(r,s)

5.2. Modifications and weaker variants of rough
inclusions

In applications to be presented, some modified
rough inclusions or weaker similarity measures will
be instrumental, and we include a discussion of them
here.

5.2.1. Modifications by means of metrics on
attribute values

For the rough inclusion p;, the formula py (v, u,r)
means that ind(v,u) > r, i.e., at least r- 100 per-
cent of attributes agree on u and v; an extension of
this rough inclusion depends on a chosen metric p
bounded by 1 in the attribute value space V (we as-
sume a simple case that p is defined for all attribute
value sets).
Then, given an € € [0, 1], we let (Ref. 9),

HE(ur) & [{a € A: pla(v),a(u) < e} > r-|A]

(20)
it is manifest that u® is a rough inclusion if
p is a non-archimedean metric, i.e., p(u,w) <
max{p(u,v),p(v,w)}, otherwise, the monotonicity

condition RM 2 of sect. 5 need not be satisfied and
this takes place with most popular metrics like Eu-
clidean, Manhattan, or Minkowski’s p-metrics.

5.2.2. Weak variants of rough inclusions

It is desirable to take into account also distribution of
values of attributes on objects; to this end, we intro-
duce quasi—rough inclusions which as a rule do not
observe the monotonicity property RM2 (Ref. 40).
We introduce for given objects u,v, and € €

[0, 1], factors: dise(u,v) = ‘{GEA:p(a(lz)"“(v))%}‘

, and

indg(u,v) = ‘{“GA:”(“(‘Z)"“(V))<£}‘, where p is a metric
on the attribute value set V bounded by 1.
Then, we modify the formula (29)to the form,

v(u,v,r) if and only if dise(u,v) —; inde(u,v) >r.
2D
Clearly, v has properties: 1. v(u,u,1); 2. v(u,v,r)
and s < r imply v(u,v,s) but monotonicity property
RM 2 need not hold.
Rough inclusions defined above can be applied
in granulation of knowledge (Ref. 41).

6. Granulation of knowledge

Formal theory of rough inclusions allows for a for-
mal mechanism of granulation of knowledge; we as-
sume an information system (U, A, f) given. Gran-
ulation of knowledge, proposed as a paradigm by L.
A. Zadeh (Ref. 42), see also (Refs. 43, 44), means
grouping objects into collections called granules,
objects within a granule being similar with respect to
a chosen measure; granular computing means com-
puting with granules in place of objects. Into rough
set theory the idea of granulation was brought in by
T.Y. Lin (Ref. 45, 46) see also (Ref. 47).

The mechanism of granule formation based on
rough inclusions has been presented by Polkowski
in a number of works, see, e.g. (Refs. 6,7,9,11,41),
and we recall it here. The basic tool in establishing
properties of granules is the class operator of mere-
ology, see sect. 4 along with the Lesniewski Infer-
ence Rule (IR), see sect. 4.

Given a rough inclusion u on the set U, for each
object u and each r € [0, 1], the granule g, (u,r) of
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the radius r about u relative to u is defined as the
class of the property ®(u,r, i) = {v: u(v,u,r)}:
gu(u,r) is Cls®(u,r,1). (22)

Thus, a granule g, (u,r), is constructed as the
class of all objects v with the property that v is a
part of u to degree at least r.

In case of t-norm—induced rough inclu-
sions, by their transitivity, the important property
holds (Ref. 5).

v ing gy, (u,r) if and only if u, (v, u,r), (23)

i.e, the granule g, (u,r) is the set @ (u,r, ;) .

6.1. Granular reflections of data sets

An idea of granulated data sets was proposed
in (Refs. 5, 6). Given a decision system (U, A, f,d),
a rough inclusion pt on the universe U, and a radius
r € [0,1], one can find granules g, (u,r) taken in ac-
cordance to the formula (23) for all # € U and make
them into the set Gran(U,r, ). From this set, a cov-
ering Cov(U,r, i) of the universe U can be selected
by means of a strategy ¢, i.e.,
Cov(U,r,u) =9 (Gran(U,r,1)). (24)
Each granule g in Cov(U,r,it) is a collection of
objects; attributes in the set AU {d} can be factored
through the granule g by means of a chosen strategy
<, i.e., for each attribute ¢ € AU {d}, the new fac-
tored attribute g is defined by means of the formula,
a(e) =7 ({alv) :ve D(urp)}).  (©29)
We denote this value assignment with the symbol f.
In effect, a new decision system #(U) =
(Cov(U,r,u),{a:ac A},d,f) is defined which is
called the granular reflection of the original system.
The object v with Inf(v) = {(@a=1a(g)) :a € A} is
called the granular reflection of g. Granular reflec-
tions of granules need not be objects found in data
set; yet, the results show that they mediate very well
between the training and test sets.

Knowledge Granulation and Classifiers

7. Granular Classification

In the sequel, we present results of tests with real
data of classifiers induced from granular reflections
of data as well as classifiers constructed by means
of voting schemes based on variants of rough inclu-
sions. We begin with classifiers based on the rough
inclusion w, (u,v,r) = ur(u,v,r), see equations (16),
(18).

As is usual in classification tasks, the data set is
split into training and test parts (sets) and we pro-
ceed in accordance with well-known procedures of
cross—validation of results. In non—granulated case,
we use the exhaustive classifier and for purpose of
standardization, we apply the exhaustive classifier
available in the RSES system (Ref. 23). The gen-
eral procedure consists in splitting a given data set
into the training and test sets, forming a granular re-
flection of the training set, for a given granule radius
r, inducing classification rules from this new data set
by the exhaustive classifier and applying the induced
rules in classifying data in the test set. In case r =0,
the exhaustive classifier is induced from the non—
granulated training set, which gives the comparison
and evaluation of the effectiveness of granulation for
radii in the interval [0, 1].

We include some examples showing the high ef-
ficiency of this approach (Refs. 40, 48, 49).

7.1. The case of U, = Ur,

In tests with Ly, the strategy ¢ was a random choice
of an irreducible covering from the set of all gran-
ules of a given radius and the strategy .’ was chosen
as majority voting with random tie resolution. Other
possible strategies are, e.g.: an ordered choice for ¢,
a choice of granule centers for .7, etc.

We show results of tests with Australian Credit
data set (Ref. 50), well studied in rough set litera-
ture: we include for comparison, some best results
obtained by means of some other rough set-based
methods, in Table 1. Classification quality is ex-
pressed by means of two factors: (fotal) accuracy
which is the ratio of the number of correctly classi-
fied objects to the number of recognized test objects)
and (total) coverage, X<, where rec is the number of

> test’®
recognized test cases and fest is the number of test
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cases.

Table 1. Best results for Australian credit by some rough set
based algorithms

source accuracy coverage

(Ref. 14) - error =0.130 -
(Ref. 36) 0.929 0.623

(Ref. 36) 0.886 0.905

(Ref. 36) 0.875 1.0

(Ref. 51) 0.863 —

Tests on this data with granular approach indi-
cated above were carried by splitting the Australian
credit data set into the training and test sets in the
ratio of 1:1; the training sample was granulated and
a granular reflection was formed from which by
means of RSES exhaustive algorithm a classifier was
produced which was applied to the test part of data
to find quality of classification.

Granules were calculated in a twofold way:
first as indicated above and second, by a mod-
ified procedure of concept dependent granula-
tion (Refs. 40, 49): in the latter procedure, the gran-
ule g (u,r) = gn(u,r) N [uls was computed relative
to the concept, i.e., decision class, to which u be-
longed. The results of tests are given in Table 2 in
which the best results obtained with various granu-
lation radii are shown.

Table 2. Best results for Australian credit by granular approach

source accuracy coverage
(Refs. 40, 48,49)  0.867 1.0
(Refs. 40, 48,49)  0.875 1.0

Results in Table 2 do witness that granular ap-
proach gives results fully comparable with other re-
sults for satisfactorily large radii of granulation.

In order to test the impact which the choice of
granular covering has on classification, we have car-
ried out 10 experiments with random coverings on
the Heart data set (Cleveland) (Ref. 50). Results are
given in Table 3.

Table 3. Effect of a choice of a granular covering on classifica-
tion

radius total accuracy total coverage

0.0 0.0 0.0
0.0769231 0.0 0.0
0.153846 0.0 0.0
0.230769 0.0—-0.789 0.0-1.0
0.307692 0.01.0 0.0-1.0
0.384615 0.737-0.799  0.993—-1.00
0.461538  0.778 —0.822 0.996—1.0
0.538462  0.881—-0.911 1.0
0.615385  0.874—0.907 1.0
0.692308 0.963 —-0.974 1.0
0.769231 1.0 1.0
0.846154 1.0 1.0
0.923077 1.0 1.0

1.0 1.0 1.0

Total accuracy was found to be 0.807, and total
coverage 1.0 with exhaustive algorithm on the full
data. These values are achieved here with radius of
at least 0.538462, and beginning with the radius of
0.384615, the error in total accuracy is at most 0.07,
and the error in total coverage is at most 0.007.

This does witness a very high stability of the
granular approach showing the essential indepen-
dence of results of a choice of a granular covering
for inducing a granular reflection of data.

7.2. The case of parameterized variants of L,

As discussed in (Ref. 40), for the formula p, (v, u,r)
an extension is proposed which depends on a chosen
metric p bounded by 1 in the attribute value space V
of (we assume for simplicity that p is suitable for all
attributes).

Then, given an € € [0,1], we let S (v, u,s) if and
only if [{a € A: p(a(v),a(u)) < €}| > s-]A|. The
parameter s is called in this case the catch radius.

Granules induced by the rough inclusion p; with
s = 1 have a simple structure: a granule g} (u, 1) con-
sists of all v € U such that p(a(u),a(v)) < €.

Usage of granules induced by 1 is as follows.

First on the training set, rules are induced by
an exhaustive algorithm. Then, given a set Rul of
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these rules, and an object u in the test set, a granule
g5 (u, 1) is formed in the set Rul: in this, the duality
between objects and rules is exploited as rules and
objects can be written down in a same format of in-
formation sets. This also allows for using training
objects instead of rules in forming granules and vot-
ing for decision by majority voting.

Thus, g;(u,1) = {R € Rul : p(a(u),a(R)) <
efor each attribute a € A where a(R) is the value of
the attribute a in the premise of the rule.

Rules in the granule g (u,1) are taking part in a
voting process: for each decision class c, the follow-
ing factor is computed,

param(c) = sum of supports of rules pointing to ¢

cardinality of c in the training set

(26)
cf., (Ref. 19) for a discussion of various strategies of
voting for decision values.

The class ¢, assigned to u is decided by

param(c,) = max,param(c), (27)
with random resolution of ties.

In computing granules, the parameter € is nor-
malized to the interval [0,1] as follows: first,
for each attribute a € A, the value train(a) =
MAXtraining set@ — Miltraining ser@ 15 computed and the
real line (—oo,+o0) is contracted to the interval
[mintraining set@, MAXtraining seta] by the mapping f,,

mintraining ser@ 1N case x < mintraining set@

Ja(x) =

(28)
When the value a(u) for a test object u is off the
range [Milraining ser@, MAXiraining serd), it is replaced
with the value f,(a(u)) in the range. For an ob-
ject v, or a rule R with the value a(v), resp., a(R)

of a denoted a(v,R), the parameter € is computed
(v.R)—fa(a(u))|

as g train(a)
metric |x — y| in the real line.

We show results of experiments with rough in-
clusions discussed in this work. Our data set was a
subset of Australian credit data in which training set
had 100 objects from class 1 and 150 objects from
class O (which approximately yields the distribution

. The metric p was chosen as the

X 1incase x € [mlntraining setdy, MAXtraining seta]
MAXtraining set@ 1M CASE X = MAaX¢raining setQ-

Knowledge Granulation and Classifiers

of classes in the whole data set). The test set had
100 objects, 50 from each class. The RSES exhaus-
tive classifier applied to this data set gives accuracy
of 0.79 and coverage of 1.0.

7.2.1. The case of granules of training objects
according to U} (v,u, 1) voting for decision

In Fig. 1 results of classification are given in func-
tion of € for accuracy as well as for coverage.

Fig. 1. Results for voting by granules of training objects.
Best result for € = 0.62: accuracy = 0.828283, coverage =
0.99

7.2.2. The case of granules of training objects
according to U} (v,u,s) voting for decision

We return to the rough inclusion (v, u, r) with gen-
eral catch radius s. The procedure applied in case
of uf (v,u,1) can be repeated in the general setting.
The resulting classifier is a function of two parame-
ters €, catch radius.

In Table 4 results are included where against
values of the catch radius s the best value for €’s
marked by the optimal value optimal eps is given
for accuracy and coverage.

The results show the effectiveness of the method:
the optimal value of accuracy of 0.86 at the catch ra-
dius of 0.785714 and optimal € of 0.39 exceeds by
0.07 the accuracy by the plain rough set exhaustive
classifier.
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Table 4. Results of voting by granules of training objects;
r_catch=catch radius, optimal_eps=Best_¢, acc= accuracy, cov=
coverage

r_catch  optimal eps acc cov
nil nil 0.79 1.0
0.071428 0 0.06 1.0
0.142857 0 0.66 1.0
0.214286 0.01 0.74 1.0
0.285714 0.02 0.83 1.0
0.357143 0.07 0.82 1.0
0.428571 0.05 0.82 1.0
0.500000 0 0.82 1.0
0.571429 0.08 0.84 1.0
0.642857 0.09 0.84 1.0
0.714286 0.16 0.85 1.0
0.785714 0.22 0.86 1.0
0.857143 0.39 0.84 1.0
0.928571 0.41 0.828283 0.99

1.000000 0.62 0.828283 0.99

7.2.3. The case of weak variants from residual
implications

As shown in (Ref. 9), residual implications of con-
tinuous t-norms can supply rough inclusions ac-
cording to a general formula,

Mo (vyu,r) iff ¢(u) = ¢(v) > 1, (29)

where ¢ maps the set U of objects into [0,1] and
o (u) < ¢(v) if and only if u ing v (ing is an in-
gredient relation of the underlying mereology, see
e.g., (Ref. 9)); = is the residual implication induced
by the t-norm.

Candidates for ¢ have been proposed in (Ref. 9),
and a weak interesting variant of this class of
rough inclusions is indicated. This variant uses sets

dise(u,v) = HoALlalaOIZEl - ang jngy(u,v) =
‘{”EA:p(“(‘Z)l’“(V))<8H, for u,v € U, € € [0, 1], where p

is a metric |x — y| on attribute value sets.
The resulting weak variant of the rough inclusion

He is,

e (u,v,r) iff dise(u,v) = indg(u,v) >r.  (30)

Basic variants for three principal t-norms: the
PFukasiewicz t-norm L = max{0,x +y — 1}, the
product t-norm P(x,y) = x-y, and min{x,y} are (the
value in all variants is 1 if and only if x < y),

1 —disg(u,v) + inde (u,v) > r for L
i dS( 3 )

ZZ.SE (Z,:) >rforP

indg(u,v) = r for min

e (u, v, r) iff

(€29)

Objects in the class ¢ in the training set vote for
decision at the test object u# according to the for-

mula: p(c)— [c[ in the training set

is disg(u,v) = indg(u,v); rules induced from the
training set pointing to the class ¢ vote according to

_ Y, w(rt)-support(r)
" || in the training set "

where weight w(v,t)

the formula p(c)

In either case, the class ¢* with p(c*) = maxp(c)
is chosen. We include here results of tests with
training objects and ¢ = min (Fig.2)and rules and
t = min (Fig.3).

Accuracy —*—nAccuracy of classl

—+

== +—+ f—t—f—a—t
®.1 ©.2 8.3 8.4 8.5 6.6 ©.7 ©.8 8.9 1.8 Eps

Fig. 2. Results of voting by training objects. Best result for
€ =0.04, accuracy = 0.82, coverage = 1
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Fig. 3. Results of voting by rules. Best result for € = 0.01,
accuracy = 0.84, coverage = 1

7.2.4. The case of voting by granules

Tests have been carried out with Australian Credit
data set (Ref. 50) and the method of result validation
was CV-5 (the 5-fold cross validation) (Ref. 52).
Results of classification have been judged by ac-
curacy and coverage factors. The accuracy com-
puted with the standard RSES exhaustive classifier
for these data is 0.845, and coverage is 1.0.

We have four cases for testing with: 1. granules
of objects in the training set, 2. granules of rules
from the training set, 3. granules of granular objects,
for each of the three rough inclusions t=min, P, L.

In Case 1, training objects are made into granules
for a given €. Objects in each granule g about a test
object u, vote for decision value at u as follows: for
each decision class ¢, the value,

p(c) o Ztraining object v in g falling in ¢ W(V, t) (32)
size of c in training set

is computed where the weight w(v,¢) is computed
for a given t-norm ¢ as,

w(v,t) = disg(u,v) —; inde(u,v). (33)

The class c* assigned to u is the one with the largest
value of p. Results for the three chosen t-norms are
given in Fig.4 (t=min), Fig.5 (t=P), Fig.6 (t=L).

Knowledge Granulation and Classifiers

—B—— Acouracy of olass®
Accuracy ———AfAccuracy of classl
Total accuracy

-

P
8.1 ®@.2 8.2 8.4 ®.5 0.6 8.7 8.8 8. 1.8 Eps

Fig. 4. Results for algorithm 5_v1, Best result for € = 0.04:
accuracy = 0.847826, coverage = 1

—8— fcouracy of class@
Accurac: o = ficouracy of classl
Tetal accuracy

DI,X . U“B ; B‘.B : UI.1 ; U’.J L ﬂl.ﬁ 8.7 8.8 8.9 1.8 Eps
Fig. 5. Results for algorithm 6_v1, Best result for € = 0.06:
accuracy = 0.847826, coverage = 1
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—=&—fAccuracu of class@
—#—Accuracy of classl

Total accuracy

Accuracy

.1 ®.2 ©.3 ®©.2 8.5 8.6 ©.7 8.8 8.9

Fig. 6. Results for algorithm 7_v1, Best result for € = 0.05:
accuracy = 0.846377, coverage = 1

1.8 Eps

In Case 2, weighted voting of rules in a given
granule g for decision at test object u goes accord-
ing to the formula d(u) = argmaxp(c), where

_ Zrule R in g pointing to ¢ W(R7t) : support(R)

P(c) size of ¢ in training set
(34)
where weight is computed as,
w(R,t) = dis¢(u,r) —; indg(u,r).  (35)

Results are shown in Fig. 7 (t=min), Fig. 8 (t=P),
Fig.9 (t=L).

Accuracy

—&— Aceuracy of classe
——fAccuracy of classl
Total accuracy

1.84 g — B

i i Lok s s

RSE!

—

SR O e S
e.1 8.2 8.3 8.4 a.5 8.6 e.7 8.8 8.9

1.8 Eps

Fig. 7. Results for algorithm 5_v2, Best result for € = 0.02:
accuracy = 0.86087, coverage = 1

—8— Accuracy of class@
—#——fAccuracy of classl
Total accuracy

—8——a——f

Accuracy

o &
P e = s
T+

RSES exh

L B e e e e LI S +
@e.1 8.2 8.3 8.4 8.5 0.6 6.7 0.8 0.9

s ——
1.8 Eps

Fig. 8. Results for algorithm 6_v2, Best result for € = 0.01:
accuracy = 0.850725, coverage = 1

—H— Accuracy of clas<8
——— fAccuracy of classl
Total accuracy

Accuracy

| RSES exh

+—¥
1.8 Eps

Fig. 9. Results for algorithm 7_v2, Best result for € = 0,
accuracy = 0.555073, coverage = 1

In Case 3, granule reflections induced, see sect. 6,
from granules vote for decision. The difference is in
the fact that now we have two—parameter case with
€,r hence results are given in Table 5 (t=min), Table
6 (t=P), Table 7 (t=L) in which for each row corre-
sponding to the radius of granulation the best € is
given along with accuracy and coverage in that case.
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Table 5. CV-5; Australian credit; Algorithm 5_v3.
r_gran=granulation radius, optimal_eps= optimal epsilon, acc=
accuracy, cov=coverage, m_trn=mean training set

r_gran  optimal eps acc cov m.trn

nil nil 0.845 1.0 552
0.500000 0.03 0.834783 1.0 53.8
0.571429 0.02 0.791304 1.0 1344
0.642857 0.01 0.798551 1.0 295.8
0.714286 0.02 0.83913 1.0 4548
0.785714 0.05 0.855072 1.0 533.8
0.857143 0.05 0.847826 1.0 546.2
0.928571 0.04 0.847826 1.0 548
1.000000 0.04 0.847826 1.0 552

Table 6. CV-5; Australian credit; Algorithm 6_v3.
r_gran=granulation radius, optimal_eps= optimal epsilon, acc=
accuracy, cov= coverage, m_trn=mean training set

r-gran  optimal eps acc cov m.trn
nil nil 0.845 1.0 552
0 0.01 0.555073 1.0 1

0.500000 0.01
0.571429 0.01
0.642857 0.01
0.714286 0.01
0.785714 0.01
0.857143 0.01
0.928571 0.01
1.000000 0.06

0.808696 1.0 54.8
0.746377 1.0 131.8
0.763768 1.0 295.2
0.818841 1.0 4544
0.852174 1.0 533.2
0.847826 1.0 546.2
0.846377 1.0 548
0.847826 1.0 552

Table 7. CV-5; Australian credit; Algorithm 7_v3.
r_gran=granulation radius, optimal_eps= optimal epsilon,
acc=Total accuracy, cov=Total coverage, m_trn=mean training
set

r-gran  optimal eps acc cov m.trn

nil nil 0.845 1.0 552
0.500000 0.01 0.707247 1.0 53.2
0.571429 0.01 0.595652 1.0 132
0.642857 0.01 0.563768 1.0 292.2
0.714286 0.02 0.786956 1.0 457.6
0.785714 0.01 0.85942 1.0 533
0.857143 0.05 0.847826 1.0 546.2
0.928571 0.05 0.849275 1.0 548
1.000000 0.05 0.846377 1.0 552

Knowledge Granulation and Classifiers

Conclusions

We have surveyed basic means for inducing rough
inclusions in data sets. Applications to classification
of data have been tested with real data with very
good results: optimal results obtained with these
classifiers are on par with best results obtained by
other rough set methods, cf., Tab. 1. Optimal results
obtained with granules of training objects relative to
the all three t—norms and with granules of decision
rules induced from the original training set for t=min
and t=P are fully comparable with best results by
rough set techniques. Comparison with classifica-
tion by exhaustive classifier in non—granulated case
shows that granulation heuristics enhances classifi-
cation quality. In the last three tables, we show also
the size of the granular reflection of the training set:
here, we observe the reduction of its size in compar-
ison to the non—granular case: for optimal classifi-
cation results, the reduction is about 4-5 percent.

We mention some problems to be approached in
future research in a deeper analysis of results and
methods.

OPTIMAL GRANULATION RADIUS PROB-
LEM (OGRP)

Input: A data set

Problem: Determine optimal value r,, of the
granulation radius r at which the factor accuracy -
coverage reaches the maximum value

OPTIMAL EPSILON PROBLEM (OEP)

Input: A data set, a granulation radius r

Problem: Determine optimal value g, of the pa-
rameter € at which the factor accuracy - coverage
reaches the maximum value
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