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Abstract 

Underwater sensor deployment for military surveillance is a significant challenge due to the inherent difficulties 
posed by the underwater channel in terms of sensing and communications between sensors, as well as the 
exorbitant cost of the sensors. As a result, these sensors must be deployed as efficiently as possible. The proposed 
Underwater Sensor Deployment Evolutionary Algorithm considers six important factors that have not yet been 
simultaneously considered due to the ensuing complexity of the problem. Two principle studies are presented in 
this work, a benchmarking study that shows the effectiveness of the algorithm and a simulation study that outlines 
the inevitable effect of communications range on the sensing capabilities on an underwater sensor field. 
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1. Introduction 

Underwater sensor networks are often used to 
monitor a general area of the ocean, a port or military 
installation, or to detect underwater vehicles near a high 
value unit at sea, such as a fuel ship or aircraft carrier. 
Any suspicious activity is reported by the sensors via a 
floating surface station to a central location, for 
example, a surface ship or a command station on land. 
Based on the reports, decisions are made on how to 
proceed against the threat [1]. The focus of this study is 
to investigate deployment strategies for underwater 
acoustic sensors, using an evolutionary algorithmic 
approach. 

An evolutionary approach (EA) is well suited to 
optimizing non-linear objective functions, while 
applying several constraints, which are a necessity for 
underwater sensor deployments. An EA is a powerful 
offline search tool, which can be used to efficiently 
search a large solution space in a parametric manner, 
allowing field designers to perform a wide variety of 
studies before a sensor field is deployed. The EA 
searches will ultimately provide field designers with 
heuristics for determining the composition of an 
efficient underwater sensor deployment. Lastly, the 
inherent flexibility of an EA allows for the relaxation of 
assumptions at the discretion of the field designer and 
the inclusion of several relevant factors for underwater 
sensor deployments. 

Deploying underwater acoustic sensors poses 
several challenges to field designers. Two major 
challenges are addressed in this article. First, 
determining the impacts of the underwater channel on 
the sensors in terms of sensing and communication 
capabilities is difficult. Secondly, the number of sensors 
available to field designers is limited by the high costs 
of such sensors and the associated high costs for 
deployment of these sensors [2]. 

Looking at the first challenge, the underwater 
channel introduces signal attenuation due to geometric 
spreading and absorption by the medium. Moreover, 
multipath and man-made and ambient noise causes 
significant interference [1-3]. As a result, sensing and 
communications ranges, bandwidth, and data rates are 
limited [2]. Also, extremely high propagation delays 
occur since the propagation speed of a signal in water is 
5 orders of magnitude slower than in the terrestrial 
channel [2]. Such high delays will severely limit 

channel utilization and throughput. It must also be noted 
that the speed of sound in water, and therefore delays, is 
range dependent, meaning that it varies by geographic 
location [4,5]. For these reasons, adopting models and 
studies conducted for transmission over terrestrial 
channels is not a viable option. 

Additionally, sound speed is dependent upon water 
temperature, depth, salinity, and time of year [4]. 
Permanent losses of connectivity between sensors may 
occur due to the existence of shadow zones that cannot 
be accounted for a priori.  Bubble clouds, caused by 
crashing waves, can cause intermittent disruptions in 
connectivity [2].  As this study focuses on acoustic 
sensors, both underwater sensing and communication 
are done acoustically. Thus, both are affected by the 
problems of the underwater channel [1]. 

To address the above challenges in this article we 
focus on six main factors that we believe to be of 
paramount importance for underwater military 
surveillance networks, including  

 
• sensing range 
• communications range  
• sensor and deployment costs  
• link redundancy 
• range dependence of the environment  
• probabilistic visitation 
 

Many of the more popular sensor deployment 
strategies, such as the ones noted in [3,6-9], tend to 
focus mainly on the sensing range of a sensor and the 
sensor field. We feel, however, that it is important to 
consider both the sensing range and the 
communications range. If sensors are deployed such that 
they are not within communications range of each other 
and/or a data sink, it becomes impossible to aggregate 
the sensed data.  

Communications range: As our study takes into 
account the communications range of a sensor, it was 
important to decide on a topology that would help 
aggregate the data. Mesh and cluster topologies are two 
of the more popular topologies used in ad hoc networks 
and hence are considered in this article. These two 
topologies are discussed in more detail in Section 3.1 
and, as will be discussed, each has a unique effect on 
the sensing capabilities of a sensor field. 

Sensor and deployment costs: Cost is a major factor 
in underwater sensor networks. Hence, it is logical that 
the limited number of sensors available to the field 

Published by Atlantis Press 
  Copyright: the authors 
                  185



 Evolutionary Underwater Sensor Deployment 
 

designer should be deterministically deployed in an 
efficient manner, rather than randomly deployed [3]. 
Our studies assume a limited number of sensors, which 
are to be deployed with the goal of maximizing field 
sensing capabilities, while meeting the connectivity 
requirements of the chosen topology. 

Link redundancy: The characteristics of the 
underwater channel can result in intermittent and even 
permanent losses on connectivity. This requires multiple 
communication paths, or link redundancy. Link 
redundancy is especially important if the sensor field is 
to be deployed in a particularly harsh environment.  

Range dependence denotes the non-negligible effect 
sensor location has on sensing and communications 
ranges. This is an artifact of the variability of sound 
speed and bathymetric phenomena, such as changes in 
depth over a region, which in turn varies the 
transmission loss of sound over distance [4]. Such 
variabilities suggest that an underwater sensor 
deployment strategy should utilize environmental data 
from historical databases, or in situ, to calculate realistic 
values for sensing and communications ranges 
throughout an area of interest. 

Probabilistic visitation is the likelihood that an 
adversary will visit a sector, which is defined as a 
particular region of unique acoustic characteristics. An 
area of interest could be comprised of several such 
sectors [5], as a result of variabilities in the 
environment. If it can be probabilistically determined 
that an adversary is more likely to visit one sector over 
another, more sensors should be allocated to that sector. 
Probabilistic visitation can be computed using game 
theory [5]. This knowledge provides a field designer 
with an allocation scheme suited to each sector  

Link redundancy, range dependence, and 
probabilistic visitation are important factors that have 
not been considered in any sensor deployment work to 
date to the best of our knowledge. We feel that not 
considering all six of the above factors, and the 
correlated effects, in an underwater sensor deployment 
strategy could result in an ineffective sensor 
deployment.  

The proposed Underwater Sensor Deployment 
Evolutionary Algorithm (USDEA) considers all of these 
factors.  

Two main contributions of this work, in addition to 
designing the USDEA, are 1) a standard benchmarking 
of the algorithm and 2) a study of the effect of 

communications range on the sensing capabilities of 
sensor fields using mesh and cluster topologies. The 
first study will show the effectiveness of the algorithm 
as compared with hill climbing and random search. The 
second study shows the effect the communications 
range and each topology has on the sensing capabilities 
of a sensor field. 

The remainder of this paper is organized as follows. 
A brief literature review is given in Section 2, followed 
by a presentation of the topologies used in the USDEA 
in Section 3. A detailed discussion of the USDEA is 
provided in Section 4. Section 5 presents the 
benchmarking study, while Section 6 shows the effect 
of communications range on the sensing capabilities of 
both mesh and cluster fields. Further analysis of these 
results is presented in Section 7 and conclusions are 
drawn in Section 8. 

2. Related Works 

Numerous works exist in the literature for sensor 
deployment in terrestrial sensor networks [6-9], while 
relatively few can be noted for underwater sensor 
networks [3]. 

In [6], Voronoi diagrams and Delaunay 
Triangulation are used to determine the worst and best-
case coverage, respectively, of a field of randomly 
deployed sensors. These two computational geometric 
constructs are used to find optimal locations to deploy 
additional sensors so that the worst or best-case field 
coverage can be improved. However, it is assumed that 
a sensor’s location has no effect on its sensing 
capabilities. By not considering the range dependent 
effects of the environment, a sensor field is unlikely to 
perform in practice as it does in principle. 

A similar approach to improving the worst-case 
coverage of a random sensor deployment is shown in 
[7], where an area is divided into grid cells. Additional 
sensors can only be placed at the intersection point of 
the grid cells. Such an approach restricts the number of 
possible sensor locations to the granularity of the grid 
cells, which may result in suboptimal deployments. 
Since the number of available underwater sensors is 
limited due to cost constraints, random deployments 
may not be cost efficient. 

In [8], a Virtual Forces algorithm is proposed, where 
sensors repel each other if they are too close and attract 
each other if they are too far apart. Sensors are initially 
deployed at random, and based upon the repulsive and 
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attractive forces, reposition themselves. Sensing 
coverage is measured in terms of how well a sensor 
field covers a set of distinct points, rather than the 
coverage of the general area. In this article also sensing 
is assumed to be range independent and that underwater 
sensors are mobile, which could increase the cost factor 
of the resulting sensor field.  

A 2D underwater sensor deployment strategy that 
arranges sensors in a triangular pattern to minimize 
sensing coverage overlap is proposed in [3]. Its goal is 
to completely cover a region in terms of sensing, using a 
minimum number of sensors. However, the deployment 
strategy assumes the availability of hundreds, and even 
thousands, of sensors, which may not be monetarily 
feasible. 

It is worth noting that none of the previously 
mentioned deployment strategies consider 
communications ranges. This is problematic, as in the 
underwater case, communications ranges are typically 
less than sensing ranges, and thus are a limiting factor to 
the achievable sensing coverage of a field [1].  

The first evolutionary approach to deploying sensors 
can be found in [9], where a genetic algorithm (GA) is 
used to optimize two competing objectives, sensing 
coverage and energy consumption. Unlike the previous 
works, both sensing and communications ranges are 
considered in this work. A high-energy communications 
node is assumed to be in the center of the network, 
which effectively limits the manner in which the sensors 
can be deployed. When the ratio of the sensing to the 
communications range is less than 0.5, the sensors are 
deployed in a beehive configuration. However, when 
the ratio is greater than 0.5, the sensors are deployed in 
a hub and spoke configuration. [9] further assumed 
range independence in the environment. 

As can be noted, none of the sensor deployment 
strategies have taken into account all six factors that 
were highlighted earlier. Most of these deployment 
strategies, except for the last one, did not consider the 
impact of communications range on the achievable 
sensing coverage of a field. Hence, a performance 
comparison between the proposed USDEA and the 
above cited works would be unfair. 

3. Sensor Field Types 

Two predominant topologies used in ad hoc networks 
are considered in this work, the mesh topology and the 
cluster-based topology. Each has its unique strengths 

and weaknesses. Mesh fields provide redundant 
communication paths through the network to enhance 
connectivity. However, this could reduce the sensing 
coverage of the field, as the sensors have to be placed 
closer together in order to achieve the desired level of 
connectivity. On the other hand, cluster fields, with one 
hop clusters formed around dedicated cluster heads, will 
result in single points of failure. Sensing coverage can 
be improved by increasing the number of clusters.  For 
the purposes of communications, these topological 
constraints are imposed on the USDEA. This section 
provides the details on how the mesh and cluster based 
topologies are created and evaluated by the USDEA.  

3.1. Mesh Fields 

A mesh field is deployed such that each sensor is within 
the communications range of some number of other 
sensors, to provide multiple communication paths 
through the network. Recall that multiple 
communication paths are necessary for overcoming 
problems such as losses in connectivity caused by 
shadow zones and bubble clouds. Such losses in 
connectivity can result in delays in transmitting time 
critical sensed data (e.g. when an adversary is within the 
sensing range of a sensor) to a floating surface station. 
 

 
Fig.1. Example Mesh Field 

In a mesh field, link redundancy is measured by 
determining the minimum cut set size, which is the 
number of links that must be removed in order to 
segment a network [10]. In Fig. 1, for example, if a 
shadow zone removed the link between Nodes 4 and 5 
and Nodes 3 and 5, the network would be segmented. 
As a result, information about a target detected by Node 
7 could not be relayed to Node 1, which would be 
highly problematic, assuming Node 1 is the node closest 
to a floating surface station. Stoerr’s algorithm [10] 
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applies graph theory to determine the minimum cut set 
size of a mesh field.  

A logical inference is that as the minimum cut set 
size of a mesh field is increased, an appreciable 
decrease in the sensing coverage by the field will result.  

3.2. Cluster Fields 

Cost is a major consideration in cluster fields, as there 
are not only a limited number of sensors, but also, a 
limited number of dedicated high-energy cluster heads 
that can communicate directly with a surface station. 
These cluster heads act as sinks for the one-hop cluster 
client sensors and transmit the aggregated data to the 
surface stations. One hop clusters, as opposed to multi 
hop, minimize latency in transmitting detection data to 
the surface station.  
 

 
Fig.2. Example Cluster Field 

Fig. 2 shows a cluster field of 4 clusters. The nodes 
with arrows pointing to them are eligible to be cluster 
heads, based upon their location. The following 
algorithm is used to determine such eligible cluster 
heads prior to deployment. 

A node is a cluster head if it has the highest degree 
locally. That is, it has the most nodes within its 
communications range compared to all of its 
neighboring nodes. All nodes one hop from a cluster 
head are therefore not eligible to be a cluster head. Note 
that in Cluster 4, all of the nodes have a degree of 2, 
thus any of them can be a cluster head. 

As opposed to mesh fields, where the sensors create 
a single region of sensing coverage, cluster fields will 
have multiple clusters scattered throughout a sector, 
with their own unique sensing coverage regions. 

4. The Underwater Sensor Deployment 
Evolutionary Algorithm 

This section describes how a sensor field is represented 
in the USDEA and discusses each of the steps used in 
the algorithm. 

4.1. Sensor Field Representation 

Sensor fields are represented in the USDEA as an 
unordered set of n Cartesian sensor locations, as shown 
below in Eq. (1). 

 

 

€ 

F = (xs1 , ys1 ),(xs2 , ys2 ),...(xsn , ysn ){ } (1) 

 
F is a chromosome and each 2D Cartesian 

coordinate, which represents a sensor location, is a 
gene. Note that each sensor is assumed to be at the same 
depth for the purposes of this work, as the metric under 
consideration is the sensing capabilities of the sensor 
field. As the sensors under consideration are acoustic, a 
2D deployment for sensing purposes is sufficient since 
the entire water column is insonified by an adversary 
[4]. In cases where a surface duct is present, the sensors 
should be deployed below the duct, due to the likelihood 
that an adversary will spend a large portion of its patrol 
time well below periscope and duct depth. 3D sensor 
deployment is planned as a future study to reduce the 
effects of multipath on communications by sending 
transmissions in the vertical, rather than horizontal, 
channel as often as possible. However, that is beyond 
the scope of this work. 

4.2. Underwater Sensor Deployment Evolutionary 
Algorithm Steps 

The steps in the execution of the USDEA are listed 
below. 
 
Step 1: Initial Population Construction 
Step 2: Field Evaluation and Fitness Calculation 
Step 3: Order Fields by Fitness  
Step 4: Remove Least Fit Fields from Population  
Step 5: Crossover  
Step 6: Mutation 
Return to Step 2 until Max Generations Reached 
 

In Step 1, the algorithm begins by creating an initial 
population of mesh or cluster fields within a single 
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sector. An area can be divided into sectors using a 
learning algorithm, such as a self-organizing map 
(SOM), that can analyze historical or in-situ acoustic 
data for that area during a particular time of year that 
the sensor field will be deployed. The sectors are 
obtained so that the acoustics within are close to 
uniform. Each sensor field is independently optimized 
per sector, with a fixed number of sensors being 
allocated to each sector prior to the start of the 
algorithm. This allocation may be determined using the 
game theoretic approach to underwater sensor allocation 
described in [5]. 

The fitness of each sensor field is determined and 
then the fields are sorted by fitness, with the top 
performing fields surviving to the next generation. 
Lastly, evolutionary operators, crossover and mutation, 
are performed on the surviving population members 
before the next generation begins.  

Each of the steps in the USDEA is discussed in 
more detail below, except for Steps 3 and 4, as they are 
self-explanatory. 

Step 1: Initial Population Construction 

In Step 1 of the USDEA, an initial population of 
mesh or cluster fields is constructed within a sector 
using the algorithm explained below.  

Assume Rcomm is the communications range of a 
sensor within the sector. For both types of fields, the 
first sensor is placed at a random location. With mesh 
fields, the next sensor is placed at a random distance Rd 
from the first sensor at a random angle θ where, 

 

 

€ 

Rd = [0,Rcomm] (2) 

 

€ 

0 ≤θ < 360  (3) 

 
Each subsequent sensor location is derived based 

upon the location of any of the previously placed 
sensors, chosen at random.  

For cluster fields, the same method is followed, 
except that a sensor can be placed based upon the 
location of a currently existing sensor, or can be 
deployed to a random location, which will start a new 
cluster. 

Step 2: Field Evaluation and Fitness Calculation 

Each new sensor field constructed by the USDEA must 
undergo an evaluation step. First, an undirected 
connectivity graph of the sensor field is generated. Each 
graph is evaluated, as shown below, to determine its 
connectivity properties, which are compared with a 
threshold value defined for the sector. This value is 
defined by the field designer and depends on the 
harshness of the environment. 

The threshold value is either a minimum cut set size 
(MCSS) in the case of a mesh field or a maximum 
number of clusters (MNC) in the case of a cluster field. 
If the threshold value is not met, the field is given a 
fitness of 0 in order to prevent it from surviving to the 
next generation. For example, if an MCSS of 4 is 
required and the field only has an MCSS of 3, that field 
is given a fitness of 0, so that it is unlikely to survive to 
the next generation. 

Using the undirected connectivity graph for each 
field, the MCSS or MNC is calculated, as described in 
Section 3.1. 

If the field meets the threshold value, the sector is 
divided into 1 square kiloyard (1 kyd2=0.836 km2) grid 
cells and the signal excess of each cell is calculated with 
respect to each sensor in the field, using Urick’s Passive 
Sonar Equation [4]. 

 

 

€ 

SEi,jSk
= SL −TL − NL −DT +DI    (4) 

 
where 
 
• SE = Signal excess at a grid cell at location (i,j) 

with respect to the location of sensor k. 
• SL = Source level is the intensity of the sound 

emitted by an underwater adversary. 
• TL = Transmission loss is signal loss with distance 

as a result of propagation through the water and is 
representative of a sector’s acoustic characteristics.  
This loss is a result of both frequency-based 
absorption by the medium and geometric spreading 
[4]. 

• DI = Directivity index is a gain based upon how 
well the sensor can determine the direction of the 
sound. 

• DT = Detection threshold is the signal-to-noise ratio 
required by the sensor to differentiate an adversary 
from the medium. 
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• NL = Noise Level is indicative of the water depth, 
shipping level, and wind speed in a sector [4]. 

 
It should be noted that all values in Eq. (4) are in dB 

re µPa (read 1 micro Pascal of pressure). This 1 µPa 
reference value is equivalent to 0.67 x 10-22 Watts/cm2 
[4]. A signal excess of 0 implies that the instantaneous, 
or stationary, probability of detecting an adversary in 
that grid cell is 0.50. As the signal excess becomes more 
positive, the stationary probability of detection (PDS) 
increases [4]. The probability is stationary as it is an 
average detection probability by the sensors with 
respect to a particular grid cell and is not a temporal 
measure of detection. 

 

 

€ 

SEi,j =max(SEi, j s1
,SEi,j s2

,...,SEi, j sn
)  (5) 

 
In Eq. (5), the signal excess of a grid cell at location 

(i,j) is the maximum signal excess of all the sensors, sk, 
in the field, relative to that grid cell. 
 

 

€ 

PDSi,j =
SEi, j ≥ 0,

1
2
C−16

SEi, j < 0,1− 1
2
C−16

 

 
 

 
 

 (6) 

 

€ 

C = AiP
i

i=0

6

∑  (7) 

 

€ 

P =
SEi, j

2 *SD
 (8) 

 
Eqs. (6-8), presented in [4], convert the signal 

excess of a grid cell to a PDS.  Eqs. (6-7) are a 6-degree 
polynomial curve fitting that allows for a conversion 
from signal excess to PDS, where A = [1, 0.0705, 
0.04223, 0.00927, 0.000152, 0.000277, 0.00000431]. In 
Eq. (8), SD is the standard deviation of the normal 
distribution, typically 6 dB, for passive sonar [4].  

Once the signal excess for each grid cell has been 
converted to a PDS, the overall fitness of the sensor 
field is calculated using Eq. (9).  

 

 

€ 

Fitness =

PDSi, j
j=1

width

∑
i=1

length

∑

length*width
 (9) 

 
The fitness of the field is the average PDS across all 

grid cells in the sector. Parameters length and width 
denote how many grid cells in the x and y direction, 
respectively, exist within the sector. This fitness 
function provides little analytical meaning, but is useful 
for predicting simulated sensor field performance. As 
the fitness function value increases, the simulated 
detection capabilities of the sensor field also increases. 

Step 5: Crossover 

Crossover, Step 5 of the algorithm, is executed between 
a given percentage of the fittest fields, starting with the 
highest, and a randomly chosen partner. Once a partner 
is chosen, a random number of genes (sensor locations), 
chosen at random, between 1 and n/2 (rounded down) 
are exchanged, resulting in two children. 
 

 
Fig. 3. An Example of Crossover 

The crossover operator is demonstrated in Fig. 3 
between Parents i and j. Each chromosome is of size 7, 
thus between 1 and 3 genes can be swapped in the 
crossover. In this example, 3 sensor locations are 
swapped. As can be seen, sensor locations 1, 5, and 6 
from Parent j are merged with the remaining sensor 
locations from Parent i, resulting in Child 1. Similarly, 
sensor locations 1, 5, and 6 from Parent i are merged 
with the remaining sensor locations from Parent j, 
resulting in Child 2. Each child’s fitness is then 
evaluated, as defined in Step 2 of the USDEA. 
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Step 6: Mutation 

Mutation is attempted per gene, with a mutation 
probability (µm) specified by the field designer, to 
prevent preliminary convergence of the USDEA and 
provide variation in the population. 

In the case of mutation, a new random sensor 
location is chosen for the gene and the altered 
chromosome becomes a new population member.  

 

 
Fig.4. An Example of Mutation 

In Fig. 4, for example, a mutation occurred at sensor 
location 4. A new location for that sensor was chosen at 
random. As a result, Member 1 becomes a new member 
of the population. The fitness of this member is then 
calculated in Step 2 of the USDEA. 

5. Benchmarking the USDEA 

As concluded in Section 2, the deployment strategies 
investigated in the literature have a different set of goals 
and use different metrics than the proposed USDEA, 
thus making a direct comparison unsuitable. Instead, a 
benchmarking of the USDEA was done similar to the 
evolutionary algorithm presented in [11]. This 
benchmarking has two main purposes. First, it will show 
that the evolutionary approach to sensor deployment 
employed by the USDEA will provide better sensor 
field fitness, and ultimately, better sensor field 
performance, than a brute force or a random search 
approach. Second, it will validate the need to use the 
initialization step (Step 1) of the USDEA in order to 
achieve high fitness values for both mesh and cluster 
fields. 

In [11], two comparisons were made during 
benchmarking, one with a random search and the other, 
with a brute force search, in the form of a parallel hill 
climber (PHC) algorithm.  

5.1. Random Search 

The random search consists of executing Steps 1 and 
2 of the USDEA repeatedly for some number of 

iterations. An iteration of the random search algorithm 
is called a generation. At the end of the first generation, 
the fitness of the fittest field in the population is 
recorded. After each subsequent generation, the 
algorithm compares the fitness of the fittest field of the 
current generation with the fitness of fittest field found 
to date. If the fitness is greater, the fitness of that sensor 
field becomes the new fitness of the random search. 

5.2. Parallel Hill Climber 

A standard benchmarking approach for an 
evolutionary algorithm is a comparison with a PHC 
algorithm, as it demonstrates the effectiveness of the 
crossover operator over taking a brute force approach 
(based exclusively on mutation) [12]. 

In a PHC algorithm, during the first generation, an 
initial population of sensor fields is constructed. The 
fitness of each sensor field is then determined using 
Step 2 of the USDEA. Steps 3, 4, and 5 are not used, but 
Step 6 is executed, where every gene in each 
chromosome is mutated with a mutation probability of 
1. Subsequent generations consist of executing only 
Steps 2 and 6. At the end of each generation, however, a 
copy of the fittest chromosome, which is the current 
local maxima, automatically survives to the next 
generation, so that the fitness of the algorithm never 
decreases. 

Two PHC algorithms are considered in this work, 
one that constructs its initial population using Step 1 of 
the USDEA. The second creates its initial population 
using only random sensor locations, resulting in a 
purely random brute force search. These algorithms are 
referred to as “PHC Init” and “PHC No Init”, 
respectively.  

A comparison between these two PHC algorithms is 
used to validate the utility of Step 1 of the USDEA. If 
the fitness of the “PHC Init” is greater than “PHC No 
Init”, it is highly likely that this is due to Step 1. The 
purpose of this initialization step is to create mesh or 
cluster fields with a required minimum cut set size or 
maximum number of clusters, respectively. On the other 
hand, not using an initialization step and creating an 
initial population of sensor fields using only random 
sensor locations will often result in a mesh or cluster 
field that will not meet the threshold requirements. 
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5.3. Benchmarking Parameters 

Table 1. Parameters Used in the Benchmarking Study 

Parameter Value 
Size of Area 100 x 100 kiloyards 

Number of Sensors 10 
Population Size 100  

Communications Range 22 kiloyards 
Sensing Range 11 kiloyards 

Minimum Cut Set Size 
(MCSS) 1 to 5 links 

Maximum Number of 
Clusters (MNC) 2 to 5  

Crossover Top 70% of fields 
USDEA Mutation 

Probability 0.05 

Number of Generations 300  
Number of Runs 10 runs per algorithm 

 
Table 1 records the parameters used for each 

algorithm in the benchmarking study. Note that the 
communications range is twice the sensing range. This 
is done so any sensing coverage overlaps only occur as 
a result of the requirements for the mesh and cluster 
fields, namely the topology’s MCSS or MNC values. 
Doing so allows for a study of how effectively each 
algorithm can form each topology and then improve its 
fitness. In the subsections that follow, the fitness of 
mesh fields are presented as studies under Case 1 and 
the fitness of cluster fields as Case 2. All runs for each 
algorithm were done using Matlab. 

5.4. Case 1 – Mesh Fields 

Mesh fields are desirable due to their link 
redundancy when the environment is harsh. A moderate 
link redundancy with an MCSS of 2 or 3 should suffice 
for most networks. However, this study has been 
extended to an MCSS of 5 to illustrate the complexity in 
improving fitness, and ultimately, sensing performance 
of the field, when imposing such a high connectivity 
requirement. 

 

 
Fig.5. Benchmarking for a Mesh Field with an MCSS of 2 

Fig. 5 shows the average fitness of the fittest sensor 
field from each generation over the 10 runs of each 
algorithm. In the case of mesh fields with an MCSS of 
2, the PHC without an initialization step, labeled in Fig. 
5 as “PHC No Init”, performed quite poorly. This was a 
result of the algorithm using random sensor locations to 
construct its initial population of sensor fields. In fact, 
the algorithm was unable to form a single mesh field 
with an MCSS of 2 in 7 out of 10 runs, hence the low 
average fitness values. In contrast, the PHC with 
initialization step, labeled as “PHC Init”, performed 
significantly better than the “PHC No Init” since it used 
Step 1 of the USDEA to construct its initial population 
of sensor fields. As a result, the “PHC Init” algorithm 
was able to construct many mesh fields with an MCSS 
of 2, which it could then evolve using only mutation. 

However, the USDEA, which uses not only a 
moderate amount of mutation, but also crossover, 
outperforms the “PHC Init” algorithm by 6.53%. Since 
both algorithms use Step 1 of the USDEA and mutation, 
it can be conjectured that the use of crossover in the 
USDEA is quite valuable. 

Lastly, the USDEA also outperforms the random 
search algorithm by 17.09% since the random search 
only creates initial populations of sensor fields using 
Step 1 of the USDEA, but does not perform crossover 
or mutation. 
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Fig.6. Benchmarking for a Mesh Field with an MCSS of 4 

When the MCSS threshold is increased to 4, shown 
in Fig. 6, the performance improvement of the USDEA 
over the “PHC Init” and the random search is less. The 
reason for this is twofold. First, it is difficult to 
construct a field with an MCSS of 4 due to the strictness 
of the connectivity requirements. Secondly, once a field 
with this high link redundancy is created, adjusting the 
positions of sensors, while still maintaining the same 
connectivity, becomes quite complex. Furthermore, 
since sensors must be placed close together in order to 
meet connectivity requirements, the fitness of the sensor 
field decreases in comparison with mesh fields with 
smaller MCSS values.  

It is worth noting in Fig. 6 that the “PHC No Init” 
never achieves a field with fitness greater than zero. 
This signifies that using a pure brute force approach has 
a high probability of failure for creating a field with an 
MCSS of 4. Such a finding validates Step 1 of the 
USDEA for mesh fields since it is able to construct 
many fields that meet connectivity requirements for any 
MCSS investigated in this section. 

Table 2. USDEA Improvement Statistics for Mesh Fields 

MCSS δPHC_init δPHC_no_init δRandom 
1 4.57% 7.95% 22.30% 
2 6.53% 256.07% 17.09% 
3 5.90% ∞ 8.80% 
4 6.69% ∞ 4.51% 
5 3.86% ∞ 2.88% 

 
The fitness improvement δ achieved in using the 

USDEA over the PHC algorithms and the random 
search is defined in Eq. (10), where a is the algorithm 
being compared with the USDEA. 
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Table 2 shows the improvement in performance 
achieved by the USDEA over both PHC algorithms and 
the random search after 300 generations.  

The differences in performance of these four 
algorithms can be logically attributed to the differences 
in intelligence of each algorithm. However, when the 
MCSS value is increased, the relative improvement 
achieved with USDEA over the “PHC Init” and random 
search decreases. 

Sensor fields in the “PHC No Init” algorithm never 
achieved fitness greater than zero for MCSS values 
above 2 because a pure brute force approach lacks the 
intelligence to create sensor fields with such strict 
connectivity requirements. Even with an initialization 
step, the “PHC Init” has a difficult time creating mesh 
fields of any MCSS value above 2. Thus, expecting a 
purely random approach to sensor deployment, as used 
in the “PHC No Init” algorithm, to successfully create 
mesh fields of any MCSS value above 2 is unrealistic. 

Convergence: Convergence and convergence times 
are important criteria for evaluating an evolutionary 
algorithm, as they measure how quickly an algorithm 
can reach a viable solution. The USDEA converges on 
average to a fitness value equal to 97.5% of the fitness 
value at Generation 300 after only 25 generations. Even 
the USDEA’s fitness value after 25 generations is 
higher than any of the other algorithms for mesh fields. 
The low convergence time of the USDEA is due to the 
combination of using Step 1, along with both crossover 
and mutation. In terms of computation time, the 
USDEA achieved convergence in 3† minutes. (As a 
note, the full 300-generation run of the USDEA took 36 
minutes on average to complete.) 

Both PHC algorithms took an average of 12 minutes 
to run 300 generations, but never converged during this 
time, since very few mesh fields maintained their 
connectivity after being mutated during each generation. 
Even with the initialization step, the “PHC Init” could 
obtain very few mesh fields with fitness above zero 
after mutation. Whenever a field did not meet 
connectivity requirements, which was a common 
occurrence with the PHC algorithms, its fitness was not 

                                                
† A MacBook Pro with a 2.33 GHz Intel Core 2 Duo processor and 2 
GB of RAM was used in this work. 
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evaluated, hence the low runtime for mesh fields using 
both PHC algorithms. 

Runtime for the random search was 45 minutes on 
average.  Numerous fitness calculations had to be run 
for this algorithm, as the algorithm consists only of 
doing an initialization step during each generation. This 
suggests that the initialization step is quite effective in 
producing mesh fields that meet connectivity 
requirements since many fields did meet connectivity 
requirements and thus had to have their fitness 
calculated. 

While the importance of the initialization step and 
mutation is quite clear, the importance of additionally 
using crossover in the USDEA cannot be understated. 

5.5. Case 2 – Cluster Fields 

Cluster fields are valuable in situations where the 
environment is not harsh since they only require one-
hop cluster clients to maintain connectivity with a 
cluster head. As the number of clusters increases, a 
sensor field can attain more sensing coverage because 
the clusters, as well as the sensors located within those 
clusters, can be more spread out. Unfortunately, there is 
a cost implication associated with adding more clusters 
to a field, as each additional cluster requires an 
expensive cluster head to be added to the field. This 
study shows that creating a cluster field with an MNC of 
2 is rather complex, but that deployment becomes less 
complex with an increased MNC, albeit at a higher 
monetary cost for the field. 

 

 
Fig.7. Benchmarking for a Cluster Field with an MNC of 2 

In the case of cluster fields with an MNC of 2, 
shown in Fig. 7, the “PHC No Init” takes approximately 
200 generations to achieve fitness similar to “PHC Init”. 
This is because creating a field with two clusters is non-

trivial since the formation of a new cluster is very 
sensitive to the location of the sensors in the field, as 
discussed in Section 3.2 When sensors are placed 
randomly, it is difficult to ensure that only 2 clusters are 
formed.  

The random search achieves a low fitness even after 
300 generations since it does not evolve the cluster 
fields once they are formed. Once again, the USDEA 
outperforms the other algorithms due to the combination 
of its initialization step, crossover, and mutation. 

 

 
Fig.8. Benchmarking for a Cluster Field with an MNC of 5 

From Fig. 8 it can be noticed that when creating a 
field with 5 clusters, it is slightly more beneficial for the 
PHC to use random sensor locations for the initial 
population, which is denoted by “PHC No Init” having a 
higher fitness than “PHC Init”. It should also be noted 
that the fitness when using 5 clusters is higher than with 
2 clusters since the clusters are more spread out and less 
sensing overlap occurs. Finally, Fig. 8 shows that 
deploying a 5-cluster field is less complex than a 2-
cluster field since a purely brute force approach 
outperformed the brute force approach using an 
initialization step that was used to help form clusters. 

Table 3. USDEA Improvement Statistics for Cluster Fields 

MNC δPHC_init δPHC_no_init δRandom 
2 5.94% 8.27% 16.26% 
3 4.64% 4.71% 15.12% 
4 3.70% 2.66% 12.97% 
5 2.89% 1.24% 11.85% 

 
Table 3 shows that the improvement in using the 

USDEA diminishes in comparison with each algorithm 
after each MNC increment. This finding again suggests 
that the deployment is easier when more clusters are 
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formed since the clusters, and the sensors located within 
them, can be more spread out. Of course, using 
additional clusters comes at a cost of adding expensive 
cluster heads to the field. 

Convergence: Similar to the mesh field 
benchmarking, the USDEA converges at approximately 
3 minutes of runtime. Comparatively, neither PHC 
algorithm converges after 300 generations. Even for an 
MNC of 5, there remains sensitivity in the location of 
sensors in terms of causing additional clusters to form 
as a result of mutating every sensor location during each 
generation. Both PHC algorithms ran on average for 20 
minutes, as they were able to achieve comparatively 
more cluster fields with the required MNC value than 
with mesh fields. Once again, the random search took 
on average 45 minutes to complete. Finally, the full 300 
generations of the USDEA took 36 minutes to run on 
average. 

6. Effect of Communications Range on Field 
Sensing Capabilities 

Having validated the USDEA approach in the previous 
section, the sensing capabilities of fields generated 
using the USDEA is now evaluated. This evaluation is 
done using a Monte Carlo simulation tool called 
MUSICALTM [13]. The evaluation takes into account 
the impact of the communications range and the 
topology on the sensing capabilities of a sensor field 
and is the second major contribution of this article.  

Two stages were involved in this study. In the first 
stage, for each type of sensor field, i.e. the mesh and the 
cluster field, the USDEA was run with the parameters 
provided in Table 4. The USDEA was run 100 times for 
each of the field types using two communications 
ranges, 11 and 5.5 kiloyards (kyd) and the fittest field 
from each run was saved. 

Table 4. USDEA Parameters Used in the Communications 
Range and Topology Study 

Parameter Value 
Size of Area 100 x 100 kiloyards 

Number of Sensors 10 
Population Size 100  

Communications Range 11 and 5.5 kiloyards 
Sensing Range 11 kiloyards 

Minimum Cut Set Size 
(MCSS) 1 to 5 links 

Maximum Number of 
Clusters (MNC) 2 to 5  

Number of Generations 25 generations 

Crossover Top 70% of fields 
Mutation Probability 0.05 

Number of USDEA Runs 100 per threshold value 
 

These communications ranges are exactly equal to 
and half of, respectively, the sensing range that can be 
achieved by each sensor. Such communications ranges 
force sensing overlap between sensors and thus reduce a 
field’s sensing capabilities as a result. In addition, 
connectivity restrictions placed on the sensor fields for 
each topology may further reduce a field’s sensing 
capabilities. 

In the second stage, the most fit sensor field found 
after each USDEA run was simulated 100 times, using 
MUSICALTM, which evaluates the field’s effectiveness 
in sensing underwater adversaries. Simulations in 
MUSICALTM were run for 12 hours of simulation time 
against 5000 randomly placed adversaries, whose 
course changed every hour in a random fashion. During 
each simulation, the number of uniquely detected 
adversaries was counted to determine the cumulative 
probability detection CPDSIM. This value represents the 
expected performance of a sensor field in practice. 

The results presented in this section highlight the 
dependence of a field’s sensing capabilities on the 
communications range. Additionally, they also illustrate 
the ability of the USDEA to improve the sensing 
capabilities of a sensor field from the first generation to 
the last generation of evolution, even with strict 
connectivity requirements and communications ranges. 

6.1. Case 1 – Mesh Fields 

In the following subsections, a series of cumulative 
probability of detection plots are presented. These plots 
were determined by running MUSICALTM for mesh 
fields and cluster fields, using the two communications 
ranges.  Included in each plot is an “Ideal” curve, which 
is the expected performance of a field of 10 sensors 
after 12 hours without any constraints on the 
communications range. The curve was determined 
analytically using Koopman’s search equation [14], as 
discussed in [5]. In Figs. 9-12, the curves for MCSS 3 
and 4 are omitted to avoid clutter, as these curves fall 
between the curves for MCSS 2 and 5 and do not 
provide any added knowledge.  
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Fig.9. Average CPD of Initial USDEA Mesh Fields 

Communications Range = 11 kyd 

 
Fig.10. Average CPD of Final USDEA Mesh Fields 

Communications Range = 11 kyd 

Figs. 9 and 10 show the average CPDSIM accretion 
over 100 simulations of the fittest sensor field from each 
of the 100 USDEA runs done for each MCSS. The 
average performance of the fittest mesh fields of the 
first (initial) generation is shown in Fig. 9, while Fig. 10 
shows that of the most fit (best) mesh field after the 25th, 
and final, generation. There is a significant increase in 
CPDSIM from the initial to the final generation in all 
cases due to the effectiveness of the USDEA. However, 
there is also substantial field performance degradation 
as the MCSS is increased from 1 to 5 links since the 
sensors must be placed closer together in order to 
achieve higher MCSS values. 

 
Fig.11. Average CPD of Initial USDEA Mesh Fields 

Communications Range = 5.5 kyd 

 
Fig.12. Average CPD of Final USDEA Mesh Fields 

Communications Range = 5.5 kyd 

When the communications range for the sensors in a 
mesh field is reduced to 5.5 kyd, improvement in sensor 
field performance is difficult to achieve, as seen in Figs. 
11 and 12. This is especially evident as the MCSS 
increases since both connectivity requirements and the 
strict communications range make optimization of the 
sensor locations quite complex. Also, it should be noted 
that the achievable field performance with a 
communications range of 5.5 kyd is much less than that 
of 11 kyd due to the closeness with which the sensors 
must be placed to provide the desired connectivity. 

It should be noted that the impact of the 
communications range on the detection capabilities of a 
sensor field is much more significant than the impact of 
the connectivity constraints imposed by increasing the 
MCSS. This is intuitive since a reduction in 
communications range by half must result in the sensors 
being deployed at least twice as closely. However, 
increasing the MCSS does not necessarily result in such 
a significant change. 
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6.2. Case 2 – Cluster Fields 

 
Fig.13. Average CPD of Initial USDEA Cluster Fields 

Communications Range = 11 kyd 

 
Fig.14. Average CPD of Final USDEA Cluster Fields 

Communications Range = 11 kyd 

For cluster fields, a high level of improvement in 
performance can be realized for all MNC values from 
the initial fields, shown in Fig. 13, to the final fields, 
shown in Fig. 14. Less strict communications 
requirements afforded by the use of one-hop clusters 
allows for more flexibility in sensor locations during 
optimization of the cluster fields. As the number of 
clusters increases to 5, field performance is able to reach 
nearly that of the Ideal case, even with a 
communications range equal to the sensing range. With 
each additional cluster added to the field (increase in 
MNC), unique sensing coverage regions are formed and 
less sensing overlap occurs since fewer sensors are 
attempting to communicate with the cluster head. 
 

 
Fig.15. Average CPD of Initial USDEA Cluster Fields 

Communications Range = 5.5 kyd 

 
Fig.16. Average CPD of Final USDEA Cluster Fields 

Communications Range = 5.5 kyd 

 Reducing the communications range to 5.5 kyd still 
results in good sensing capabilities, compared to the 
“Ideal” case, as seen in Figs. 15 and 16. There is 
degradation in performance of the cluster fields when 
the communications range is halved. However, the 
reduction in sensing capabilities for the same decrease 
in communications range is not as significant as seen in 
the mesh fields since the communications requirements 
for cluster fields requires cluster clients to communicate 
only with cluster heads. This performance improvement 
in sensing capabilities of the cluster fields comes at a 
cost of adding an expensive cluster head to the field for 
each additional cluster. 

7. Analysis and Discussion 

This section provides an in depth analysis of the sensor 
field performance results shown in the previous section. 
A comparison is also made between these results and 
the simulated sensor field detection capabilities when 
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the communications range of the sensors was double the 
sensing range, or 22 kiloyards. It is unlikely that a 
communications range would be double the acoustic 
sensing range of a sensor due to the relatively high 
frequencies used for communications underwater, thus 
the 22 kyd sensing data is only used here for illustrative 
purposes. 

7.1. Case 1 – Mesh Fields 

The following equations are used to calculate the 
metrics shown in the next two tables, as well as the first 
two tables in the next subsection. 

 

 

€ 

δUSDEA =
FitnessFinal
FitnessInitial

−1
 

 
 

 

 
 *100 (11) 

 

€ 

λSIM =
CPDFinal

CPDInitial

−1
 

 
 

 

 
 *100   (12) 

 
Eq. (11) shows the improvement in fitness δUSDEA 

from the fittest field of the first generation to the fittest 
field of the 25th, and final, generation for a single 
threshold (MCSS or MNC) value. Eq. (12) represents 
λSIM, the improvement in CPDSIM after 12 hours of 
simulation time using the fittest field from the first 
generation to the fittest field of the final generation. 
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When a field’s threshold value γ is increased from 

its smallest value i to any higher value n, there is a 
change in CPDSIM, which is represented in Eq. (13). 
This change µi,n is always a loss in the case of mesh 
fields. For example, in Table 5 below, a loss in sensing 
capabilities of -41.93% is seen when increasing the 
MCSS from 1 to 3 links.  

Eq. (14), however, denotes the change in fitness 
when incrementing from the previous threshold value n-
1 to the current threshold value n, which is known as the 
marginal utility ∇n-1,n of the increment. The marginal 

utility is always negative for mesh fields. For example, 
increasing the MCSS from 2 to 3 links results in a 
change of -15.97% in CPDSIM. 

Table 5. Effect of Increasing MCSS, Communications Range 
11 Kiloyards 

MCSS δUSDEA λSIM µ1,n ∇n-1,n 

1 41.36% 39.76% - - 
2 18.63% 16.83% -25.97% -25.97% 
3 12.99% 11.51% -41.93% -15.97% 
4 8.54% 7.69% -57.35% -15.41% 
5 5.07% 4.43% -69.13% -11.79% 

 
Table 5 first shows the increase in fitness by the 

USDEA after 25 generations of evolution for each 
MCSS with a communications range of 11 kyd. It can 
be seen that there is a decrease in δUSDEA as the MCSS 
increases since the added strictness of the 
communications requirements causes the sensors to be 
deployed closer together. The λSIM after 12 hours of 
simulation time also decreases as the MCSS increases 
for the same reasons. It is worth noting that 
improvements in fitness and CPDSIM for each MCSS 
closely coincide with one another. The fact that they 
similarly increase again validates the fitness function of 
the USDEA.  

Additionally, it can be seen in Table 5 that as the 
MCSS is increased above one link, there is a significant 
loss in CPDSIM due to an increased strictness of the 
connectivity requirements. Also note that marginal 
utility actually decreases with each MCSS increment. 
This suggests that the impact of the MCSS on sensing 
capabilities decreases as the MCSS increases. 

Table 6. Effect of Increasing MCSS, Communications Range 
5.5 Kiloyards 

MCSS δUSDEA λSIM µ1,n ∇n-1,n 

1 17.96% 16.56% - - 
2 6.97% 6.42% -15.88% -15.88% 
3 3.61% 3.55% -23.79% -7.90% 
4 2.01% 1.94% -30.86% -7.07% 
5 0.95% 0.77% -36.40% -5.54% 

 
When decreasing the communications ranges from 

11 kyd to 5.5 kyd, there is little opportunity to increase 
the sensing capabilities of the sensor field beyond an 
MCSS of 2, as seen in the first two columns of Table 6. 
Such a short communications range by nature causes a 
large amount of sensing overlap. Under strict 
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connectivity requirements, it is even more complex to 
optimize the deployment. 

Table 7. Average CPD at 12 Hours of Simulation Time for the 
Best Mesh Fields 

Comm 
Range 
(kyd) 

MCSS 1 MCSS 2 MCSS 3 MCSS 4 MCSS 5 

22 0.8164 0.7030 0.5957 0.5186 0.4691 
11 0.5666 0.4498 0.3992 0.3601 0.3350 
5.5 0.3575 0.3085 0.2888 0.2732 0.2621 

 
Table 7 shows the average CPDSIM after 12 hours of 

simulation time for communications ranges of 22, 11, 
and 5.5 kyd for each MCSS value. There are two trends 
of note in this table. First, the CPDSIM for each 
communications range decreases as the MCSS 
increases. Secondly, the CPDSIM decreases for each 
MCSS value as the communications range decreases. 
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To quantify the second trend, let ϕα,β be the change 
in CPDSIM when the communications range of a sensor 
is reduced from α kyd to β kyd for a threshold value γ, 
as given in Eq. (15). This change is always negative in 
the case of mesh fields, as seen in Table 8. 

Table 8. Change in Average CPD in Mesh Fields When 
Decreasing Communications Range 

MCSS ϕ22,11 ϕ22,5.5 ϕ11,5.5 
1 -44.09% -128.36% -58.49% 
2 -56.29% -127.88% -45.80% 
3 -49.22% -106.27% -38.23% 
4 -44.02% -89.82% -31.81% 
5 -40.03% -78.98% -27.81% 

  
The profound effect the communications range has 

on the sensing coverage of a mesh field can be seen in 
Table 8. For all MCSS values, the change in sensing 
capabilities when reducing the communications range 
from 22 to 11 kyd varies from -40.03% to -56.29%. Far 
worse is the change when the communications range is 
reduced by a factor of 4, to 5.5 kyd, which reaches 
upwards of -128.36% for an MCSS of 1. When reducing 

the communications range from 11 to 5.5 kyd, the loss 
is not as significant as in the previous case.  

However, the changes when reducing the 
communications range from 22 to 11 kyd and 11 to 5.5 
kyd are far larger for each MCSS than any marginal 
utility value shown in Tables 5 and 6, respectively, 
when incrementing the MCSS. Only when the MCSS is 
increased by more than one link does such a large 
change occur. 

7.2. Case 2 – Cluster Fields 

Table 9. Effect of Increasing MNC, Communications Range 
11 Kiloyards 

MNC δUSDEA λSIM µ2,n ∇n-1,n 

2 17.59% 14.58% - - 
3 20.12% 18.53% 28.24% 28.24% 
4 21.24% 20.99% 45.56% 17.32% 
5 22.11% 22.90% 56.48% 10.92% 
 
In contrast with mesh fields, in the case of cluster 

fields, the addition of a cluster results in a gain in 
CPDSIM, according to the µ2,n column in Table 9. A 
positive marginal utility is also seen, but it decreases as 
the maximum number of clusters (MNC) is increased. 
This decrease in marginal utility represents a tradeoff 
between increasing sensing capabilities and the cost of 
adding expensive additional cluster heads. As more 
clusters are added, the USDEA is able to achieve higher 
increases in δUSDEA, and as a result, λSIM, since 
deployment becomes relatively less complex. This is an 
inverse of the effect in mesh fields, where adding more 
link redundancy to the field (increasing the MCSS) 
results in smaller increases in δUSDEA and λSIM, as 
deployment becomes more complex. 

Table 10. Effect of Increasing MNC, Communications Range 
5.5 Kiloyards 

MNC δUSDEA λSIM µ2,n ∇n-1,n 

2 9.21% 8.58% - - 
3 12.55% 12.82% 33.82% 33.82% 
4 14.09% 15.08% 58.02% 24.20% 
5 17.29% 19.08% 75.88% 17.86% 

 
Similar to the results in Table 9, Table 10 shows 

increases in λSIM with each additional cluster added to 
the field. However, these increases, and their marginal 
utilities, are even larger when the communications range 
is reduced to 5.5 kyd. This implies that adding clusters 
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when the communications range is short is extremely 
beneficial to increasing the field’s sensing capabilities. 
At the same time, however, the USDEA is not able to 
improve the δUSDEA of these fields as much as in the 11 
kyd case, since the communications range is much 
shorter. 

 Table 11. Average CPD at 12 Hours of Simulation Time for 
the Best Cluster Fields 

Comm 
Range 
(kyd) 

MNC 2 MNC 3 MNC 4 MNC 5 

22 0.7434 0.8759 0.9337 0.9508 
11 0.5652 0.7248 0.8227 0.8844 
5.5 0.4669 0.6248 0.7378 0.8212 

 
In Table 11, as the MNC increases, there is an 

increase in CPDSIM as each additional cluster is added to 
the field. This is opposite to the effect seen in mesh 
fields (Table 7) where the CPDSIM decreases with an 
increase in MCSS. However, there is still a decrease in 
CPDSIM as the communications range decreases, in the 
case of cluster fields. 

Table 12. Change in Average CPD in Cluster Fields When 
Decreasing Communications Range 

MNC ϕ22,11 ϕ22,5.5 ϕ11,5.5 
2 -31.53% -59.22% -21.05% 
3 -20.85% -40.19% -16.01% 
4 -13.49% -26.55% -11.51% 
5 -7.51% -15.78% -7.70% 

 
Table 12 shows that the loss in CPDSIM when the 

communications range is reduced is not nearly as 
significant as in the case of mesh fields, shown in Table 
8. There are two main reasons for this finding. First, the 
connectivity requirements for a cluster topology are not 
as strict as mesh fields above an MCSS of 1. More 
importantly, cluster fields allow for a variety of sensor 
coverage regions that are scattered throughout an area, 
instead of all sensing coverage being located in a single 
region, as in a mesh field. This inherent flexibility in 
sensor deployment allows cluster fields to perform quite 
well, even with a short communications range. 

The main drawback of a cluster field is that there 
exists a bottleneck at the cluster head, thus connectivity 
is not robust within the network. When an environment 
is especially harsh, a mesh field is likely to be required, 
even though its sensing capabilities are hindered by the 

connectivity requirements. A future course of study will 
consider the use of a meshed multihop cluster topology 
to determine its feasibility in terms of sensing 
capabilities with the added connectivity requirements to 
the cluster. 

This analysis has shown the impact of both the 
communications range and a sensor network’s topology 
on the sensing capabilities of a sensor field. No such 
study exists in the literature to the knowledge of the 
authors. 

8. Conclusions 

The Underwater Sensor Deployment Evolutionary 
Algorithm (USDEA) has shown the ability to create 
highly capable sensing fields, even with strict 
communications ranges and connectivity requirements. 
It provides underwater sensor field designers with a 
deployment strategy that not only takes into account six 
factors of the utmost importance to underwater sensor 
networks (sensing and communications range, sensor 
and deployment costs, link redundancy, range 
dependence, and probabilistic visitation), but also, two 
topologies that are well suited to the underwater 
environment, mesh and cluster. A benchmarking study 
has shown that the proposed sensor deployment strategy 
is superior in performance to a parallel hill climber with 
and without an initialization step, as well as a random 
search. Finally, the effects of communications range, in 
conjunction with various threshold values, on field 
sensing capabilities were studied for both mesh and 
cluster fields. It was determined that cluster fields are 
superior to mesh fields in terms of field detection 
capabilities when covering a large area of interest. 
However, mesh fields will likely be required when 
environmental conditions are especially harsh, in order 
to maintain connectivity between sensors, the surface 
station, and the decision makers. 
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