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Abstract

The problem considered in this article is how to solve the image correspondence problem in cases where it
is important to measure changes in the contour, position, and spatial orientation of bounded regions. This
article introduces a computational intelligence approach to the solution of this problem with anisotropic
(direction dependent) wavelets and a tolerance near set approach to detecting similarities in pairs of im-
ages. Near sets are a recent generalization of rough sets introduced by Z. Pawlak during the early 1980s.
Near sets resulted from a study of the perceptual basis for rough sets. Pairs of sets containing objects with
similar descriptions are known as near sets. The proposed wavelet-based image nearness measure is com-
pared with F. Hausdorff and P. Mahalanobis image distance measures. The results of three wavelet-based
image resemblance measures for several well-known images, are given. A direct benefit of this research
is an effective means of grouping together (classifying) images that correspond to each other relative to
minuscule similarities in the contour, position, and spatial orientation of bounded regions in the images,
especially in videos containing image sequences showing varied object movements. The contribution of
this article is the introduction of an anisotropic wavelet-based measure of image resemblance using a near
set approach.
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1. Introduction

This paper introduces a wavelet-based near set ap-
proach to solving the image correspondence prob-
lem, i.e., where one uses anisotropic (direction de-
pendent) wavelets to establish a correspondence be-

tween pairs of images. This is one of the central
tasks in photogrammetry and computer vision. Re-
cently, it has been shown that near sets can be used
in a perception-based approach to discovering cor-
respondences between images [16–19, 39, 41, 42].
Work on a basis for near sets began in 2002, mo-
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tivated by image analysis and inspired by a study of
the perception of the nearness of perceptual objects
carried out in cooperation with Z. Pawlak in [32].
This initial work led to the introduction of near
sets [36], elaborated in [35, 39, 44]. Recently, the
study of a perceptual basis for discovering resem-
blances between images led to a tolerance class form
of near sets [39] that models human perception in
a physical continuum viewed in the context of im-
age tolerance spaces. A near set-based approach to
perceiving image resemblances hearkens back to the
observation about perception made by E. Orłowska
in 1982 [27] (see, also, [28]), i.e., classes defined
in an approximation space serve as a formal coun-
terpart of perception. Sets of perceptual objects
where two or more of the objects have similar de-
scriptions are called near sets. For example, sets of
images containing bounded regions with similar de-
scriptions are examples of near sets. In particular,
consider an image description based on spatial ori-
entation. Let φ be a function that measures the spa-
tial orientation of a line segment in an image. Then
let φ(x),φ(y) denote the spatial orientations of a line
segments x,y, respectively, in a pair of images Ix, Iy
viewed as sets of line segments. In the case where
the L2 norm ‖ φ(x)−φ(y) ‖26 ε , then images Ix, Iy
are examples of near sets, i.e., ‖ φ(x)− φ(y) ‖2=
(∑k

i=1 d2
i )

1
2 6 ε,where di(xi,yi)2 = (φ(xi)−φ(yi))2.

In general, dT ,d denote row and column vectors
containing k feature value differences extracted from
a pair of images, respectively, i.e.,

dT = (d1 . . .dk),d =

 d1
. . .
dk

 . (1)

Finally, the overall distance is the L2 norm ‖ d ‖2 for
a vector d of feature value differences, i.e.,

‖ d ‖2= (dT d)
1
2 =

√
k

∑
i=1

di(xi,yi)2. (2)

Stemming from the work of Henri Lebesgue, ‖ · ‖2

denotes the length of a vector in L2 space [21].
Spatial orientation of image line segments can
be measured with direction-dependent (anisotropic)
wavelets. In general, a wavelet is a scaled function
that measures waveform variations [25].

The proposed approach to measuring image
similarity stems from recent work on anisotropic
wavelets [46–48], image correspondence [13,16,18,
37, 39] and near sets [16, 26, 34–37, 39, 44]. Simi-
larities between images can be measured by taking
into account image features such as contour, spa-
tial orientation and position of line segments along
bounded regions contained in sample images. Each
image feature is represented by what is known as a
probe function, a partial model of perception viewed
as a mapping φ : X→ℜ inspired by a psychophysics
interpretation of the relation between a set of stimuli
X and sensation [1]. The notion of an image probe
function was first introduced in 1993 by M. Pavel as
part of a study of image registration [29] and later
refined in [16]. The basic idea is to “probe” images
as part of a feature-extraction process. Feature ex-
traction is a well-travelled and yet still a very ac-
tive research area, e.g., [5, 8, 20, 22, 51]. The pro-
posed near set approach to image classification (i.e.,
detecting images that correspond to each other) is
also akin to the approach to video classification by
M.K. Geetha and S. Palanivel [10]. The proposed
use of anisotropic wavelets relative to the contour
of images in the study of image correspondence
also has some kinship with recent work by V. De
Witte, S. Schulte and E.K. Kerre [57] on morpho-
logical image interpolation in magnifying colour im-
ages with sharp edges. A direct benefit of this re-
search is an effective means of grouping together
(classifying) images that correspond to each other
relative to minuscule similarities in the contour, po-
sition, and spatial orientation of bounded regions in
the images, especially in videos containing image
sequences showing varied object movements (see,
e.g., [15, 16, 40, 42, 44]). The contribution of this
article is the introduction of an anisotropic wavelet-
based measure of image resemblance using a near
set approach.

This paper has the following organization.
Sect. 2 presents the basics for anisotropic wavelets.
A tolerance space and a tolerance nearness measure
are presented and illustrated in Sect. 3. Image near-
ness measurement results are reported in Sect. 4.
Hausdorff and Mahalanobis distance measures are
briefly presented in Sect. 5. A comparison of the re-
sults using all three image resemblance measures is
given in Sect. 6.
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Fig. 1. Hann Window and Gaussian Wavelet

2. Anisotropic Wavelets

An anisotropic wavelet (i.e., dependent on the di-
rection (angle) that is used to define a wavelet) is
constructed in a polar coordinate system as a prod-
uct of the Hann window function and the Gaussian
wavelet [47]. The Hann window function is given in
(3). Figure 1.1 presents a single Hann window func-
tion constructed using (3). The Gaussian wavelet is
given in (4). Figure 1.2 presents a single Gaussian
wavelet.

ρ(α) = 0.5(1− cos(α)), α ∈ [0,2π), (3)

ψ(r) =−2r
(

2
π

)1/4

e−r2
. (4)

An anisotropic wavelet ψ(α,r) is a product of a
Hann window ρ(α) and translated by nr Gaussian
wavelet ψ(r) represented in (5). By putting (3) and
(4) into (5), we obtain a so-called ’mother wavelet’,
i.e., a wavelet function (6) that is used to construct a
wavelet set. Other approaches to wavelet construc-
tion with different spatial orientations are given in
[25] and [2–4,56]. Using (6), we construct a wavelet

set. Each wavelet in our set we calculate in (7).

ψ(α,r) = ρ(α)ψ(r), (5)

ψ(α,r) = 0.5(1− cos(α)) (−2r)
(

2
π

)1/4

e−r2
,

(6)

ψI (α,r) = (7)(
1/
√

2πnr/2sα+1
√

2−sr

)
· (8)

ψ
(
2sα α−π(nα −1),2−sr(r−nr)

)
,

(9)

Cψ{ f}(. . .) =
∫ ∫

f (α,r)ψ∗sα ,sr,nα ,nr
(α,r)dα dr.

(10)

where Cψ{ f}(. . .) denotes Cψ{ f}(sα ,sr,nα ,nr), ψ

denotes a wavelet with (α,r) a polar coordinates and
where I = {sα ,sr,nα ,nr} denotes an index set used
in (7) to define a wavelet with an angular scale sα ,
radial scale sr, an angular translation nα and a ra-
dial translation nr. In particular, it is nα that makes
(7) anisotropic, while nr is a radial distance from the
pole (origin of a polar coordinate system). For the
sake of clarity, we sometimes write ψsα ,sr,nα ,nr(α,r)
rather than the more concise ψI (α,r) (see, e.g.,
(10)).

We use the wavelet set in Fig. 3.1 to calcu-
late wavelet coefficients (which are real numbers)
given in (10), where C denotes a wavelet coeffi-
cient and f (α,r) is a function in polar coordinate
that describes image values. Using (10), we calcu-
late wavelet coefficients. Than we choose a wavelet
with coefficient maximum value. If the coefficient
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maximum value is greater than the threshold (for
the threshold, we use 15% of the maximum coeffi-
cient value), then we assume that we found an edge.
Therefore, our probe function for a given point of
an image gives two features. The first feature is a
wavelet coefficient value which corresponds to edge
intensity change and the second feature is a wavelet
orientation that corresponds to edge spatial orienta-
tion.

The angular scale sα determines how many
wavelets we have in a wavelet set. Wavelet set num-
ber is equal to 2sα+1. We assumed in (7) sα = 3;
therefore each wavelet set consists of 16 wavelets.
To construct a wavelet set, we used sr = 0,1,2,3,4
values. A greater sr value gives wavelets with
greater support, i.e., a set of points where a wavelet
is not zero. In our implementation, we assumed

that the wavelet support is a set of points with value
greater than 0.001, since a Gaussian wavelet used
in our wavelet construction has infinitive support.
Table 1 shows wavelet support width dependency
(along r coordinate) on scale sr. Figure 2 presents
a single wavelet obtained using (7). Every wavelet
in a set has the same scale sr but different spa-
tial orientation nα in the image plane. Figure 3.1
presents wavelets with different spatial orientation.
Wavelets have different spatial orientation because
of different angular translation nα . Wavelets in Fig-
ure 3.1 in the left-upper corner have angular trans-
lation nα = 0,1,2,3,4,5,6,7,8. This wavelet set is
able to detect edges at given points of an image and
estimate its spatial orientation [48] or may be used
for particular points detection [47].

2.1: 3D wavelet 2.2: 2D wavelet
Fig. 2. Sample Wavelets

Table 1. support vs. sr scale.

sr scale support width [px]
0 5
1 9
2 17
3 33
4 65
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3.1: sα = 3, sr = 3 3.2: sr=1 (left), sr=2 (right) 3.3: sr=3, nα =0 (left) and
nα =4 (right)

Fig. 3. Sample Wavelet Sets

The presented wavelet has multi-resolution and
anisotropic properties. Fig. 3.2 shows that a wavelet
with scale sr = 1 has higher spatial frequencies than
a wavelet with scale sr = 2. Therefore, this wavelet
set can be used as a multi-resolution filter bank.
Figure 3.3 presents two wavelets in the same scale
and with different spatial orientation. The top left
wavelet has orientation nα = 0 and the top right
wavelet has nα = 4. Wavelet Fourier transforms
prove that they have different spatial orientations
(the difference equals to 90 degrees).

3. Tolerance Space for Image Recognition

A perception-based approach to discovering resem-
blances between images leads to a tolerance class
form of near sets that models human perception in
a physical continuum viewed in the context of im-
age tolerance spaces. A tolerance space-based ap-
proach to perceiving image resemblances hearkens
back to the observation about perception made by
Ewa Orłowska in 1982 [27] (see, also, [28]), i.e.,
classes defined in an approximation space serve as
a formal counterpart of perception.

The term tolerance space was coined by E.C.
Zeeman in 1961 in modelling visual perception with
tolerances [58]. A tolerance space is a set X supplied
with a binary relation ' (i.e., a subset ' ⊂ X ×X)
that is reflexive (for all x ∈ X , x ' x) and symmet-
ric (for all x,y ∈ X , x ' y and x∼ y) but transitivity
of ' is not required. For example, it is possible to
define a tolerance space relative to subimages of an
image. This is made possible by assuming that each

image is a set of fixed points. Let O denote a set of
perceptual objects (e.g., grey level subimages) and
let gr(x) = average grey level of subimage x. Then
the tolerance relation 'gr is defined as

'gr= {(x,y) ∈ O×O | |gr(x)−gr(y)|6 ε},

for some tolerance ε ∈ ℜ (reals). Then (O,'gr)
is a sample tolerance space. A tolerance denoted
by ε is directly related to the exact idea of close-
ness or resemblance (i.e., being within some toler-
ance) in comparing objects. The basic idea is to
find objects such as images that resemble each other
with a tolerable level of error. A. Sossinsky [55]
observes that main idea underlying tolerance the-
ory comes from H. Poincaré [45]. Physical con-
tinua (e.g., measurable magnitudes in the physical
world of medical imaging [13]) are contrasted with
the mathematical continua (real numbers) where al-
most solutions are common and a given equation
have no exact solutions. An almost solution of an
equation (or a system of equations) is an object
which, when substituted into the equation, trans-
forms it into a numerical ’almost identity’, i.e., a
relation between numbers which is true only approx-
imately (within a prescribed tolerance) [55]. Equal-
ity in the physical world is meaningless, since it
can never be verified either in practice or in theory.
Hence, the basic idea in a tolerance space view of
images, for example, is to replace the indiscernib-
lity relation in rough sets [31] with a tolerance re-
lation in partitioning images into homologous re-
gions where there is a high likelihood of overlaps,
i.e., non-empty intersections between image toler-
ance classes. The use of image tolerance spaces in
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this work is directly linked to recent work on tol-
erance spaces [9, 11, 13, 38, 39, 43, 52–54, 59]. The
contribution of this article is the introduction of two
new tolerance space-based image resemblance mea-
sures and a comparison of the new measures with
the original Henry-Peters nearness measure.

When dealing with perceptual objects (espe-
cially, components in images), it is sometimes nec-
essary to relax the equivalence condition in the
original indiscernibility relation introduced by Z.
Pawlak [31, 33] to facilitate observation of associa-
tions in a perceptual system. This variation is called
a tolerance relation that defines yet another form of
near sets [38, 39, 43] and is given in Def. 1. A per-
ceptual tolerance relation is defined in the context of
perceptual systems in (11).

Definition 1 Perceptual Tolerance Relation [43]
Let 〈O,F〉 be a perceptual system and let ε ∈ℜ (set

of all real numbers). For every B⊆ F the perceptual
tolerance relation 'B,ε is defined in (11).

'B,ε= {(x,y) ∈ O×O | ‖ φ(x)−φ(y) ‖26 ε},
(11)

where ‖ · ‖2 is the L2 norm, φ(x) =
[φ1(x) φ2(x) ... φl(x)]

T is a feature-value vector ob-
tained using all the probe functions in B. A probe
function is a real-valued function representing fea-
tures of physical objects.
Notice that if ε = 0, then 'B,ε is an equivalence re-
lation similar to the original indiscernibility relation
introduced by Z. Pawlak in 1981-1982 [30, 31], i.e.,

'B,0= {(x,y) ∈ O×O | ‖ φ(x)−φ(y) ‖2= 0}

The relation 'B,0 is useful, since it defines a par-
tition (segmentation) of an image (this was pointed
out in [13, 18]).

4.1: Lena 4.2: Lena Tol. Classes 4.3: Lena Eye Classes 4.4: Barbara

4.5: Barb Tol. Classes 4.6: Barb Eye Classes

Fig. 4. Image tolerance classes

Example 1 Grey-Level Tolerance Classes
Let I1, I2 denote the pair of images in Fig. 4.1,
Fig. 4.4, respectively. The tolerance class cover-
ings for I1, I2 are shown in Fig. 4.2,Fig. 4.5, respec-

tively and selected overlapping tolerance classes rel-
ative to a particular image region (Fig. 4.3,Fig. 4.6).
Let 〈O,F〉 be a perceptual system where O denotes
the set of 25× 25 subimages. The image is di-
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vided into 100 subimages of size 25×25 and can be
shown as a set X = O of all the 100 subimages. Let
B = {φ1(x)}⊆F where φ1(x) = gr(x) is the average
grey scale value of subimage x between 0 and 255.
Let ε = 25.5(10%). Notice the (very dark) subim-
ages x in the archway in Fig. 4.2 and subimages y
in the bookcase (upper left corner) in Fig. 4.5, i.e.,
subimages x,y have similar grey levels. This reveals
that there is at least one tolerance class consisting of
subimages extracted from each of the original im-
ages. In effect, x '{gr},25.5 y. In fact, it is also the
case that I1 '{gr},25.5 I2. To see this, let I1, I2⊆O,
i.e., I1, I2 are viewed as sets of subimages in O. In
particular,

'φ ,25.5= {(x,y) ∈O×O | ‖ φ(x)−φ(y) ‖26 25.5}.

Also observe, for example, the sample overlapping
tolerance classes in Fig. 4.3 containing subimages
that include Lena’s left eye. Again, for example,
observe the sample overlapping tolerance classes in
Fig. 4.6 containing subimages that include Barbara’s
left eye. Relative to the subimage containing Lena’s
eye and Barbara’s eye, each tolerance class con-
tains subimages where the difference between av-
erage grey scale values of the subimages are within
the prescribed tolerance level ε . In Sect. 3.1, sepa-
rate image tolerance class coverings for each image
provide a basis for measuring the degree that pairs
of image resemble each other.

5.1: Lena with ¶ 5.2: Edge Tol. Classes 5.3: Lena¶ Edge Class 5.4: Barbara with ¶

5.5: Edge Tol. Classes 5.6: Barb¶ Edge Class

Fig. 5. Orientation tolerance classes

Example 2 Wavelet Orientation Tolerance
Classes
Let I1, I2 denote the pair of images in Fig. 5.1,
Fig. 5.4, respectively. For this example, sr = 1 and
ε = 0.1. The wavelet orientation tolerance class
coverings for I1, I2 are shown in Fig. 5.2, Fig. 5.5,
respectively and selected overlapping anisotropic

wavelet orientation tolerance classes relative to
a particular image edges are shown in (Fig. 5.3,
Fig. 5.6). That is, using anisotropic wavelets, a
covering of the images consisting of orientation tol-
erance classes containing edges with similar orien-
tation is shown for each of the original images.

For visualization purposes, a ¶ is pointing to the

Published by Atlantis Press 
  Copyright: the authors 
                 174



J.F. Peters, L. Puzio

selection of an edge belonging to a particular toler-
ance class, i.e., all edges (tiny line segments) that
are close to vertical in both images (with tolerance
ε = 11.25 degrees).

3.1. Tolerance Nearness Measure

This section briefly introduces a L2 norm-based tol-
erance nearness measure useful is discerning resem-
blances between images [15, 38, 39, 43]. Sets can be
considered near each other when they have “things”
in common. In the context of near sets, the “things”
can be quantified by granules of a perceptual system,
i.e., the elementary sets. The simplest example of
nearness between sets sharing “things” in common
is the case when two sets have similar elements. In
particular, digital images are viewed as sets of points

with definable coverings using Def. 1 and suscepti-
ble to comparisons using nearness measures such as
the one in (12). This idea leads to the definition of a
tolerance nearness relation.
Definition 2 Tolerance Nearness Relation [43]
Let 〈O,F〉 be a perceptual system and let X ,Y ⊆ O.
A set X is perceptually near a Y within the percep-
tual system 〈O,F〉 (i.e., (X./FY )) iff there are x ∈ X
and y∈Y and there is B ⊆ F such that x∼=B,ε y. We
then say that X ,Y are perceptually near each other
in the tolerance sense of nearness in Def. 1.
For simplicity, we usually write x ∼=B y instead of
x ∼=B,ε y. An example of Def. 2 is given in Fig. 6
where the grey lines belong to tolerance classes. The
sets X and Y are examples of tolerance near sets in
Fig. 6 because they both share objects belonging to
the same tolerance class, namely, α .

Defn. 2 can be used to define a Nearness Mea-
sure (NM) between two sets X and Y [13, 16]. Let
Z = X ∪Y and let the notation

[z/∼=B
]X = {z ∈ z/∼=B

| z ∈ X},

denote the portion of the elementary set z/∼=B
that

belongs to X , and similarly, use the notation

[z/∼=B
]Y = {z ∈ z/∼=B

| z ∈ Y},

to denote the portion that belongs to Y . Further, let
the sets X and Y be weakly near each other using
Defn. 2. Then, a NM∼=B(X ,Y ) between X and Y is
given in [15] by (12).

NM∼=B(X ,Y )=
∑z/∼=B

∈Z/∼=B
|z/∼=B

|min(|[z/∼=B
]X |,|[z/∼=B

]Y |)
max(|[z/∼=B

]X |,|[z/∼=B
]Y |)

∑z/∼=B
∈Z/∼=B

|z/∼=B
|

(12)
The idea behind (12) is that sets that are similar
should have a similar number of objects in each

tolerance class. Thus, for each tolerance class ob-
tained from Z = X ∪Y , (12) counts the number of
objects that belong to X and Y and takes the ratio
(as a proper fraction) of their cardinalities. Further-
more, each ratio is weighted by the total size of the
tolerance class (thus giving importance to the larger
classes) and the final result is normalized by divid-
ing by the sum of all the cardinalities. The range of
(12) is in the interval [0,1], where a value of 1 is ob-
tained if the sets are equivalent and a value of 0 is
obtained if they have no elements in common.

As an example of the degree of nearness between
two sets, consider Fig. 7 in which each image con-
sists of two sets of objects, X and Y . Each colour in
the figures corresponds to an elementary set where
all the objects in the class share the same descrip-
tion. The idea behind Eq. 12 is that the nearness of
sets in a perceptual system is based on the cardinal-
ity of equivalence classes that they share. Thus, the
sets in Fig. 7.1 are closer (more near) to each other in
terms of their descriptions than the sets in Fig. 7.2.

4. Image Nearness Measurement Results

This section briefly presents the result of NMs us-
ing different features such as wavelet coefficient,
wavelet localization, and wavelet orientation or con-

tour length. Contour length is defined as the number
of edges that belong to a given contour. In the ex-
amples in the sequel, we use all of those features to
calculate NM∼=B(X ,Y ) (12) relative to pairs of im-
ages X and Y . Notice that the images in Figure 8

Published by Atlantis Press 
  Copyright: the authors 
                 175



Wavelet-Based Image Nearness Measure

Fig. 6. Example of Defn. 2.

7.1: High nearness 7.2: Low nearness

Fig. 7. Examples of degree of nearness.

have the same average gray level value. Thanks to
the edge orientation feature, we are able to distin-
guish these two images. Table 2 presents nearness
measurements. To calculate NM∼=B(X ,Y ), we used
image features obtained for different sr scales 4, 3,

2, 1 and 0.

4.1. Correspondence Between Simple Images

4.2. Portrait Comparison

Figure 9 presents images used for NM∼=B(X ,Y )
comparison. Let B,L,M denote the portrait of Bar-
bara, Lena and the Mona Lisa, respectively.

4.2.1. B & L Image Portrait Comparison

Table 3 shows calculated NMs for images B & L.
NMs in column entitled ’coefficient’ uses wavelet
coefficient as a feature and an equation (12) with
tolerance ε=0.1. Column entitled ’orientation’ uses
wavelet orientation as a feature and (12)with toler-
ance ε=1. Epsilon value equal to 1 means that toler-
ance is set to +/− 22.5o degrees. The Column en-
titled ’contour’ presents results obtained using con-
tour length as a feature and (12) with tolerance ε=10
of contour points. Obtained NM values are higher,
when we use as a feature wavelet coefficient values,

when we compare only orientations we get lower
NM values. NM with weights gives even lower val-
ues. But lowest values of NM gives contours. Table
4 presents NMs of B & L images calculated using
(12) and wavelet coefficient values as a feature. Re-
sults show that higher epsilon values lead to higher
NMs values. It reflects ours expectations, that big-
ger tolerance leads to bigger nearness of two images.
One would expect that with tolerance equal to 1 NM
value should be equal to 1, but we have to remem-
ber that NM takes into account also tolerance classes
number in each images. Table 5 presents NMs of B
& L images calculated using equation (12) and con-
tour length as a feature. The epsilon value equal to
1 means that tolerance is set to the maximum con-
tour length value. Figure 10.2 presents NM depen-
dences on epsilon value and wavelet scale. Figure
10.3 shows how the NM based on orientation de-
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8.1: Lena with ¶ 8.2: Edge Tol. Classes

Fig. 8. 256×256 px Image Comparison

Table 2. Nearness Measures comparison.

Feature ε sr NM
coef 0.1 any ∼1
cont 0.02 any 1
orien 0 any 0
pos 0.02 any ∼0.05

9.1: Barbara 9.2: Lena 9.3: Mona Lisa
Fig. 9. 512×512 px Portrait Comparison

pends on an epsilon for three different wavelet sr
scales 4, 3 and 2. NM value rises when epsilon value
increases. Table 6 presents NMs (12) comparison of
contour length for the B & M images. NM values do

not depend on epsilon value. Instead, they depend
more on scale sr. All results are presented in Figure
11.1.

4.2.2. B & M comparison

Table 7 presents NMs (12) comparison of contour
length for the L & M images. NM values do not de-
pend on the ε value. They more depend on scale sr.
All results are presented in Figure 11.2. Our conclu-
sions are that based on NMs, we are able to state that
B & L images are most similar. Other pairs of L &
M and B & M are less similar. It is not surprise, be-

cause B & L images are real photos, while two last
pairs compare the real photo to the painting.

5. Hausdorff and Mahalanobis Distance
Measures

In this section, we use the well known Hausdorff and
Mahalanobis distance measures.
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Table 3. B & L Images Comparison.

wavelet NM
sr coef orien cont pos

scale ε=10% ε=1 ε=10pt ε=10px
4 0.7830 0.8393 0.7671 0.2777
3 0.7082 0.7148 0.6727 0.2567
2 0.8224 0.7787 0.7222 0.3665
1 0.8928 0.8284 0.7202 0.3062
0 0.5207 0.4762 0.2601

Table 4. B & L NMs for coefficient values.

wavelet NM (12) based on coefficient
sr epsilon ε

scale ε = 0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.5 ε = 1
4 0 0.79 0.78 0.78 0.93 0.92
3 0 0.70 0.71 0.72 0.81 0.87
2 0 0.79 0.82 0.84 0.81 0.89
1 0 0.88 0.89 0.90 0.95
0 0 0.46 0.51
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Fig. 10. B & L images NM Measurements Comparison

Algorithm 1: Hausdorff Distance
Input : X ,Y (point sets)
Output: dist (Hausdorff Distance Measure value)

dist← max(distance(X ,Y ),distance(Y,X));

5.1. Hausdorff Distance Measure

The Hausdorff distance measure [50] inspired
by [14, 49] is used to calculate the distance be-
tween two point sets X = {x1,x2, . . . ,xm} and Y =
{y1,y2, . . . ,yn} and is defined as

dH(X ,Y ) = max(h(X ,Y ),h(Y,X)),with, (13)

h(X ,Y ) = max
x∈X

min
y∈Y
‖ x− y ‖2, (14)

where ‖ · ‖2 is the L2 norm defined on a point set
[12], and where h(X ,Y ) (14) is called the directed
Hausdorff distance (dHd) from X to Y [50]. Geo-
metrically, dHd (14) can be viewed as the radius of
the smallest disk that can be drawn about each point
of X so that each disk contains at least one point of
Y . Using (13), for each point of X , we find its closest
neighbour from X and the most mismatched point of
X (i.e., the point in X farthest from any point in Y )
determines the value of dHd (14).
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Table 5. Nearness Measures of B & L images based on contour
lengths.

wavelet NM (12) based on contour length
sr epsilon ε

scale ε = 0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.5 ε = 1
4 0.790866 0.803117 0.805671 0.782644 0.821623 0.868421
3 0.533313 0.538091 0.597315 0.672464 0.643665 0.696202
2 0.614586 0.775402 0.747663 0.703257 0.741402 0.856209
1 0.627346 0.691802 0.738488 0.759480 0.772515 0.779761
0 0.372041 0.457141 0.488494 0.490471 0.429877 0.370728

Table 6. Nearness Measures of B & M images based on contour
lengths.

wavelet epsilon ε

sr scale 0 0.01 0.05 0.1 0.2 0.3
4 0.5985 0.5985 0.5985 0.6646 0.7027 0.7027
3 0.4945 0.4945 0.5682 0.5434 0.5086 0.4543
2 0.6798 0.6798 0.6896 0.6486 0.6045 0.5995
1 0.6983 0.7627 0.7317 0.6555 0.5851 0.5841
0 0.2394 0.2280 0.2210 0.2241 0.2236 0.2238
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Fig. 11. Contour Length Comparisons.

Table 7. Nearness Measures of L & M images based on contour
lengths.

wavelet epsilon ε

sr scale 0 0.01 0.02 0.05 0.1 0.2
4 0.5631 0.5631 0.5631 0.6504 0.7131 0.8348
3 0.5433 0.5433 0.6331 0.6462 0.8129 0.7799
2 0.6751 0.6751 0.7359 0.7981 0.8182 0.8308
1 0.6054 0.6054 0.5954 0.5697 0.5547 0.5422
0 0.616 0.621 0.5779 0.5274 0.4929 0.4944
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Algorithm 2: Directed Hausdorff Distance
Input : A,B (point sets)
Output: dist (distance value)

m← size(A);
n← size(B);
max← |A(1)−B(1)|;
for (k← 1;k < m;k ++) do

min← A(k)−B(1);
for (l← 1; l < n; l ++) do

dist← |A(k)−B(l)|;
if dist < min then

min← dist;
end

end
if min > max then

max← min;
end

end
dist← max;

5.2. Mahalanobis Distance Measure

We use the Mahalanobis Distance Measure (MDM)
[23, 24] to measure dissimilarity between two im-
ages. We use features sets X of the first image and
Y of the second image. Firstly, we calculate the first
image mean values mX(i) of features i = {1, . . . ,n}
and their standard deviations σX(i). We also calcu-
late the second image mean values mY (i) and stan-
dard deviation σY (i) values. Than, we choose the
maximum standard deviation σmax(i) of each fea-
tures. At last, we calculate MDM (dM) of two sets X
and Y of image’s features as

dM(X ,Y ) =

√
n

∑
i=1

(mX(i)−mY (i))2

σ2
max(i)

. (15)

This approach was inspired by [7].

6. Image Resemblance Measurement
Compared

The results of image resemblance measurements us-
ing Hausdorff, Mahalanobis and a nearness measure

based on wavelet features, are reported summarized
in this section.

Fig. 12.1 presents comparison of similarity mea-
sures method based on a wavelet coefficient value
feature. NM (12) values distinguish images more
than normalized HDM (13) and MDM (15) values.
Fig. 12.2 presents a comparison of similarity mea-
surements based on extracted contour lengths. We
normalized the Hausdorff distance measure (13) us-
ing with the maximum contour length as a normal-
izer. NM (12) and normalized HDM (13) values are
lower than normalized MDM (15) values. Fig. 12.3
presents comparison of similarity measures method
based on the orientation of extracted edges. HDM
values are equal to 1 because we use a limited num-
ber of orientations (16) and every orientation occurs
in both images. normalized MDM (15) values are
close to 1, which means that using this measure,
we would be mislead and conclude that the Lena
(L) and Barbara (B) images are almost the same.
NM (12) works better because it gives lower values.
Fig. 12.4 presents comparison of similarity measure-
ments based on an extracted contours’ position (x,y)
in the image plane. We normalized Hausdorff Dis-
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Fig. 12. Wavelet-Based B & L Images Resemblance Mea-
surements Comparison

tance Measure using the maximum distance, which
is equal to the image dimension.

In sum, HDM values based on wavelet coeffi-
cient, contour, orientation and position features are
about 90%. Again, using the Mahalanobis DM mea-
sure, we conclude that the B & L images as almost
similar, which does not corespond to our subjec-
tive perception. Mahalanobis DM values are in gen-
eral lower than HDM, but are still higher than NM
(12). From the results of the experiments reported in
this article and in [6], NM (12) better distinguishes
images than either Hausdorff HDM (13) or Maha-
lanobis MDM (15) measures in solving the problem
of visual recognition of similarities (and dissimilar-
ities) between images.

7. Conclusion

This article presents an anisotropic (direction de-
pendent) wavelet basis for measuring the degree
of resemblance between images. Anisotropic

wavelets offer a straightforward approach to mea-
suring changes in features of image objects, e.g., ob-
ject contour lengths (i.e., number of edges belonging
to a given contour), spatial orientation, position and
wavelet coefficient. Because we want to take into
account the differences between image feature val-
ues, measures are carried out in an L2 norm-based
perceptual tolerance space. To do this, we use a per-
ceptual tolerance nearness relation∼=B,ε to establish
a framework for image resemblance measurements
relative to a chosen set of features B and a toler-
ance ε . This is essentially a tolerance near set-based
approach to perceiving image resemblance that hear-
kens back to E.C. Zeeman’s 1961 approach to mod-
elling visual perception with tolerances [58]. This
approach also has its roots in the original rough set
approach to classifying objects and perception. Al-
though near sets do not depend on set approxima-
tion [44], it is definitely the case that near sets were
inspired by a fundamental idea in rough set theory
enunciated by E. Orłowska in 1982 [27], namely,
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classes in an approximation space serve as a formal
counterpart of perception. It is this insight that car-
ries over to classes in a covering defined by a tol-
erance relation and provides a solid computational
intelligence basis for measuring image resemblance.
Future work will include the application of the pro-
posed approach in solving image retrieval and video
segmentation problems.
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