
Optimal IP Assignment for Efficient NoC-based System Implementation using
NSGA-II and MicroGA

Marcus Vinı́cius Carvalho da Silva1, Nadia Nedjah1 and Luiza de Macedo Mourelle2

1Department of Electronics Engineering and Telecommunications, Engineering Faculty,
State University of Rio de Janeiro, Brazil ∗

E-mail: marcus@uerj.br
2Department of System Engineering and Computation, Engineering Faculty,

State University of Rio de Janeiro, Brazil

Abstract
Network-on-chip (NoC) are considered the next generation of communication infrastructure, which will
be omnipresent in most of industry, office and personal electronic systems. In platform-based methodo-
logy, an application is implemented by a set of collaborating intellectual properties (IPs) blocks. In this
paper, we use two multi-objective evolutionary algorithms to address the problem of selecting the most
adequate set of IPs (from an available library) that best implements the application. The IP selection op-
timization is driven by the minimization of hardware area, total execution time and power consumption.

Keywords: Network-on-Chip, IP assignment, IP mapping, multi-objective optimization.

1. Introduction

As the integration rate of semiconductors increases,
more complex cores for system-on-chip (SoC) are
launched. A simple SoC is formed by homogeneous
or heterogeneous independent components while a
complex SoC is formed by interconnected heteroge-
neous components. The interconnection and com-
munication of these components form a network-on-
chip (NoC). A NoC is similar to a general network
but with limited resources, area and power. Each
component of a NoC is designed as an intellectual
property (IP) block. An IP block can be a general
or special purpose such as a processor, memory and
DSP8.

Normally, a NoC is designed to run a specific ap-
plication. This application, usually, consists of a li-
mited number of tasks that are implemented by a set
of IP blocks. Different applications may have a simi-
lar, or even the same, set of tasks. An IP block can
implement more than a single task of the applica-
tion. For instance, a processor IP block can execute
many tasks as a general processor does but a mul-
tiplier IP block for floating point numbers can only
multiply floating point numbers. The number of IP
blocks designers, as well as the number of available
IP blocks, is growing up fast.

In order to yield an efficient NoC-based design
for a given application, it is necessary to choose the
adequate minimal set of IP blocks. With the increase

∗Department of Electronics Engineering and Telecommunications, Engineering Faculty,
State University of Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 5022-D, Maracanã, Rio de Janeiro, Brazil

International Journal of Computational Intelligence Systems, Vol.2, No. 2 (June, 2009), 115-123

Published by Atlantis Press
 Copyright: the authors
 115

zegerkarssen
Typewritten Text

zegerkarssen
Typewritten Text
Received: 01/10/08
Revised: 19/05/09

M. V. C. da Silva, N. Nedjah, L. M. Mourelle

of IP blocks available, this task is becoming harder
and harder. Besides IP blocks careful assignment, it
is also necessary to map these blocks onto the NoC
available infra-structure, which consists of a set of
cores communicating through switches. Of course,
a bad mapping can degrade the NoC performance.
Different optimization criteria can be pursued de-
pending on how much information details is avai-
lable about the application and IP blocks.

Usually, the application is viewed as a graph of
tasks called task graph (TG). The features of IP
blocks can be obtained from their companion do-
cumentation. The task assignment and IP block
mapping key research problems for efficient NoC-
based designs13. These two problems can be solved
using multi-objective optimizations in which some
of the objectives are conflicting. Because of their
nature, both IP assignment and IP mapping are clas-
sified as NP-hard problems7. Normally, determi-
nistic techniques are not viable to solve such pro-
blems so we used multi-objective evolutionary algo-
rithms (MOEAs) with specific operators and objec-
tive functions. For this purpose, one needs to select
the best minimal set of objectives to be optimized.
The wrong set of optimized objectives can lead to
average instead of best results. In this work, we se-
lect to optimize three non-collaborative objectives,
which are the hardware required for the implemen-
tation of the NoC-based system, the response time
imposed and the power consumption by the sys-
tem while operating. Note that the non-linear relati-
onship between these three objectives.

In this paper, we propose a multi-objective
evolutionary-based decision support system to help
NoC designers with respect to the IP assignment
stage. For this purpose, we propose a structured re-
presentation of the TG and an IP repository that will
feed data into our tool. We use data from The Em-
bedded Systems Synthesis benchmarks Suite (E3S)4
as our IP repository. The E3S is a collection of
TGs, representing real applications based on embed-
ded processors from the Embedded Microprocessor
Benchmark Consortium (EEMBC). It was develo-
ped to be used in system-level allocation, assign-
ment, and scheduling research. We use two MO-
EAs: NSGA-II3 and microGA1. Both of these al-

gorithms were modified according to some prescri-
bed NoC design constraints. Note that As far as the
authors are concerned, this is this application is no-
vel and the results obtained are competitive.
The rest of the paper is organized as follows:

First, in Section 2, we present teh related work avai-
lable so far. Subsequently, in Section 3, we describe
a structured TG and IP repository model based on
the E3S data. After that, in Section 4, we present
the IP assignment problem. Then, in Section 6, we
sketch the two MOEAs used in this work, individual
representations and objective functions for the opti-
mization process. Later, in Section 7, we show some
experimental results. Last but not least, in Section 8,
we draw some conclusions and outline new directi-
ons for future work.

2. Related Work

The problems of allocating IP blocks to application’s
tasks and mapping those blocks into a NoC physi-
cal space have been addressed in some previous stu-
dies with different emphasis. Some of these research
works did not take into account the multi-objective
nature of these problems and adopted a single objec-
tive optimization approach.
Hu and Marculescu8 proposed a branch

and bound algorithm which automatically maps
IPs/cores into a mesh based NoC architecture that
minimizes the total amount of consumed power by
minimizing the total communication among the used
cores. Specified constraints through bandwidth re-
servation were defined to control communication
limits.
Lei and Kumar10 proposed a two step genetic al-

gorithm for mapping the TG into a mesh based NoC
architecture that minimizes the execution time. In
the first step, they assumed that all communication
delays are the same and selected IP blocks based on
the computation delay imposed by the IPs only. In
the second step, they used real communication de-
lays to find an optimal binding of each task in the
TG to specific cores of the NoC.
Murali and De Micheli12 addressed the problem

under the bandwidth constraint with the aim of mi-
nimizing communication delay by exploiting the

Published by Atlantis Press
 Copyright: the authors
 116

Optimal IP Assignment for Efficient NoC-based System Implementation

possibility of splitting traffic among various paths.
Splitting the traffic increases the size of the routing
component at each node but the authors were not
worried about size.
Zhou et al.16 suggested a multi-objective explo-

ration approach, treating the mapping problem as a
two conflicting objective optimization problem that
attempts to minimize the average number of hops
and achieve a thermal balance. The number of hops
is incremented every time a data cross a switch be-
fore reaching its target. They used NSGA15, multi-
objective evolutionary algorithm. They also formu-
lated a thermal model to avoid hot spots, which are
areas with high computing activity.
Jena and Sharma9 addressed the problem of to-

pological mapping of IPs/cores into a mesh-based
NoC in two systematic steps using the NSGA-II 3.
The main objective was to obtain a solution that mi-
nimizes the energy consumption due to both compu-
tational and communicational activities and also mi-
nimizes the link bandwidth requirement under some
prescribed performance constraints.
As a recent field of research, the available litera-

ture about NoC-based design optimization is scarce.
The aforementioned works represent the state of the
art of this field. In (Ref 8, Ref 10 and Ref 11),
only one objective was considered and only10 used
an evolutionary approach. In (Ref. 9 and Ref. 15),
two objectives were considered and both adopted a
MOEA to solve the problem.

3. Task Graph and IP Repository Models

In order to formulate the IP assignment problem, it
is necessary to introduce a formal definition of an
application. An application can be viewed as a set of
tasks that can be executed sequentially or in parallel.
It can be represented by a directed graph of tasks,
called task graph.

Definition 1. A Task Graph (TG)G=G(T,D) is
a directed graph where each node represents a com-
putational module in the application referred to as
task ti ∈ T . Each directed arc di, j ∈D, between tasks
ti and t j, characterizes either data or control depen-
dencies.

Each task ti is annotated with relevant informa-
tion, such as a unique identifier and type of proces-
sing element (PE) in the network. Each di, j is asso-
ciated with a value v(di, j), which represents the vo-
lume of bits exchanged in communication between
tasks ti and t j.
Once the IP assignment is performed, each task

is associated with an IP identifier. The result of this
stage is a graph of IPs representing the PEs respon-
sible of executing the application.

Definition 2. An Application Characterization
Graph (ACG) G = G(C,A) is a directed graph,
where each vertex ci ∈ C represents a selected
IP/core and each directed arc ai, j characterizes the
communication process from core ci to core c j.

Each ai, j can be tagged with IP/application spe-
cific information, such as communication rate, com-
munication bandwidth or a weight representing
communication cost.
A TG is based on application features only while

an ACG is based on application and IP features, pro-
viding us with a much more realistic representation
of the application in runtime on a NoC structure. In
order to be able to bind application and IP features,
at least one common feature is required in both of
the IP and TG models.
The E3S (0.9) Benchmark Suite4 contains the

characteristics of 17 embedded processors. These
processors are characterized by the measured execu-
tion times of 47 different type of tasks, power con-
sumption derived from processor datasheets, and ad-
ditional information, such as die size, price, clock
frequency and power consumption during idle state.
In addition, E3S contains task graphs of common
tasks in auto-industry, networking, telecommunica-
tion and office automation. Each one of the nodes
of these task graphs is associated with a task type.
A task type is a processor instruction or a set of ins-
tructions, e.g., FFT, inverse FFT, floating point ope-
ration, OSPF/Dijkstra6, etc. If a given processor is
able to execute a given type of instruction, so that
processor is a candidate to receive a resource in the
NoC structure and would be responsible for the exe-
cution of one or more tasks.

Published by Atlantis Press
 Copyright: the authors
 117

M. V. C. da Silva, N. Nedjah, L. M. Mourelle

3.1. XML Representation

The E3S Benchmark Suite contains rich data about
embedded processors and some common applicati-
ons. TGFF5, a random TG generator based on E3S
processors, generates TGs with parallel and sequen-
tial tasks, nodes with IP types and other important
features. Both, E3S and TGFF, are text files. We
use XML Schema2 to model the TG and IP repo-
sitory. At this point, no standard schema for NoC
design is available, so the XML structure for both
representations reflects the features available from
E3S processors and applications.

3.2. Task Graph Representation

Here, we represent TGs using the XML2. A TG is
divided in three major elements: taskgraph, nodes
and edges. The taskgraph element is the TG itself
which contains nodes and edges. The nodes element
includes a node element for each task of the TG and
the edges element includes an edge element for each
arc in the TG. Each node has two main attributes: an
unique identifier (id) and a task type (type), chosen
among the 47 different types of tasks present in the
E3S. Each edge has four main attributes: an unique
identifier (id), the id of its source node (src), the id of
its target node (tgt) and an attribute representing the
communication cost imposed (cost). Fig. 1 shows a
simple TG and Fig. 2 its corresponding XML repre-
sentation.

Fig. 1. Example of task graph

3.3. IP Repository Representation

The IP repository is divided into two major elements: the
repository and the ips elements. The repository is the IP
repository itself. Recall that the repository contains diffe-
rent non-general purpose embedded processors and each

processor implements up to 47 different types of operati-
ons. Not all 47 different types of operations are available
in all processors. Each type of operation available in
each processor is represented by an ip element. Each ip
is identified by its attribute id, which is unique, and by
other attributes such as taskType, taskName, taskPower,
taskTime, processorID, processorName, processorWidth,
processorHeight, processorClock, processorIdlePower
and cost. The common element in TG and IP repository
representations is the type attribute. Therefore, this ele-
ment will be used to bind an ip to a node. Fig. 3 shows a
simplified XML structure representing the IP repository.
The repository contains IPs for digital signal processing,
matrix operations, text processing and image manipula-
tion.

<?xml version="1.0" encoding="UTF-8"?>
<taskgraph>
<nodes>
<node id="0" type="45" .../>
<node id="1" type="21" .../>
<node id="2" type="28" .../>
<node id="3" type="32" .../>

</nodes>

<edges>
<edge id="0" src="0" tgt="1" cost="5"/>
<edge id="1" src="1" tgt="3" cost="4"/>
<edge id="2" src="1" tgt="2" cost="3"/>
<edge id="3" src="2" tgt="3" cost="2"/>

</edges>
</taskgraph>

Fig. 2. TG XML structure

<?xml version="1.0" encoding="UTF-8"?>
<repository>
<ips>

<ip id="10" type="0" procID="3" .../>
<ip id="23" type="38" procID="5" .../>
<ip id="68" type="12" procID="14" .../>
<ip id="99" type="47" procID="17" .../>

</ips>
</repository>

Fig. 3. IP repository XML structure

These simplified and well-structured representations
are easily intelligible, improve information processing
and can be universally shared among different NoC de-
sign tools.

Published by Atlantis Press
 Copyright: the authors
 118

Optimal IP Assignment for Efficient NoC-based System Implementation

4. The IP Assignment Problem

The platform-based design methodology for SoC is based
on the components reuse philosophy to increase reusabi-
lity and to reduce the time-to-market of new designs. The
designer of NoC-based systems faces two main problems:
selecting the right set of IPs that optimize the execution of
a given application and finding the best physical mapping
of these IPs into the NoC structure.

The main objective in this paper is to select a set of
IPs, from the IP repository, that minimizes the NoC con-
sumption of power, area occupied and execution time.
Different IP characteristics have to be analyzed to opti-
mize each one of these objectives. For example, to opti-
mize the execution time, the processor clock and the exe-
cution time of each task have to be considered simultane-
ously. At this step, no information about physical alloca-
tion of IPs is available so optimization must be done ba-
sed on TG and IP information only. The result of this step
is the set of IPs that should maximize the NoC perfor-
mance, without consideration of their respective physical
allocation in the NoC internal structure. The result of this
optimization produces an ACG from the TG, where each
node has an IP associated with it.

5. The choice of optimization Objectives

Different objectives may be considered in the IP assign-
ment problem. If the improvement of an objective leads
to a deterioration of an other one (e.g. maximizing clock
frequency increases power consumption), the objectives
are said to be concurrent. On the other hand, if the im-
provement of an objective leads to also an improvement
of an other one, the objectives are said to be collabora-
tive. Optimization problems with concurrent and colla-
borative objectives are called Multi-objective Optimiza-
tion Problems (MOPs). In such problems, all collabora-
tive objectives should be grouped and one single member
of the group should be selected to be optimized, aiming
at the optimization of the whole group. However, con-
current objectives should all be considered during the op-
timization process. The best solution for a MOP is the
solution with the adequate trade-off between all concur-
rent objectives.

Table 1 helps choosing the minimal set of objectives
to be considered in IP assignment optimization stage. A
up/down arrow in entry for objectives i× j means that an
increase/reduction with respect to objective i also leads
to and increase/reduction with respect to objective j.

Table 1. Concurrent and Collaborative Objectives
Area Cost Clock Time Power #PEs

Area ↓ - - - - ↓

Cost - ↓ - - - ↓

Clock - - ↑ ↓ ↑ -
Time - - ↑ ↓ ↑ -
Power - - ↓ ↑ ↓ -
#PEs ↓ ↓ - - - ↓

For instance, the last column of Table 1, which characte-
rizes objective #PE (i.e. number of processor elements),
indicates that a reduction with respect to this objective yi-
elds a reduction with respect to both area and cost. The-
refore, those three objectives are considered collabora-
tive. This is the same case for objective time and clock
frequency. However, in the penultimate column of Ta-
ble 1, which characterizes objective power, indicates that
a reduction in power leads to an increase in both time and
clock frequency. Note that objective powermust be mini-
mized. Therefore, objective power is considered concur-
rent with both objective time and clock frequency. As a
conclusion, the adequate trade-off can be achieved using
only minimization functions of objectives area, execution
time, power consumption.

6. Multi-objective evolutionary approach

The search space for a “good” IP assignment for a gi-
ven application is defined by the possible combinations
of IPs available in the repository. Within a repository of
N IPs, we have a domain size of N!. Among the huge
number of solutions, it is possible to find many solutions
equally good. Deterministic approaches do not deal very
well with MOPs in huge non-continuous search space.
The domination concept introduced by Pareto14 is neces-
sary to classify solutions. In order to deal with such a big
search space and the trade-off between solutions in a rea-
sonable time, a multi-objective evolutionary approach is
adopted.

The core of the proposed tool offers the utilization
of two well-known and well-tested MOEAs: NSGA-II3
and microGA1. Both adopt the domination concept with
a ranking schema for classification. The ranking process
separates solutions in Pareto fronts where each front cor-
responds to a given rank. Solutions from rank one, which
is the Pareto-optimal front) are equally good and bet-
ter than any other solution from Pareto fronts of higher
ranks.

NSGA-II features a fast and elitist ranking process

Published by Atlantis Press
 Copyright: the authors
 119

M. V. C. da Silva, N. Nedjah, L. M. Mourelle

that minimizes computational complexity and provides a
good spread of solutions. The elitist process consists in
joining parents and offspring populations and diversity is
achieved using the crowded-comparison operator3. Mi-
croGA works with a very small population (3 to 5 indi-
viduals), which makes it very fast. A bigger population
is stored on a population memory divided in replaceable
and non-replaceable areas. The elitist process consists of
storing the best solutions on an external memory and di-
versity is achieved using an adaptive grid1.

The basic workflow of both algorithms is almost the
same. They start with a random population of individu-
als, where each individual represents a solution. Each
individual is associated with a rank. The selection ope-
rator is applied to select the parents. The parents pass
through crossover and mutation operators to generate an
offspring. A new population is created and the process is
repeated until the stop criterion is reached.

Once the IP assignment is complete, we have a set of
individuals (or a single one) with rank one and those are
the best individuals for the available information in the IP
repository.

6.1. Representation and Genetic Operators

The individual representation is shown in Fig. 4. The
selection, crossover and mutation operators were modi-
fied based on the developed individual chromosome re-
presentation. Tournament selection, one-point crossover
and simple mutation were used. The chromosome is for-
med by a set of genes and each one represents a node id
from the TG. Initially, a random IP id is assigned to each
gene, with the constraint of the IP type. The crossover
operator, without any constraint, can only produce fea-
sible individuals because the order of genes is not chan-
ged. The mutation is controlled by IP type constraint to
avoid selecting a random IP, from IP repository, of diffe-
rent type.

Fig. 4. Chromosome encoding for IP assignment step

6.2. Objective Function

During the evolutionary process, the fitness of each one
of the previously selected objectives (i.e. area, time, and

power) must be efficiently computed for each solution.

6.2.1. Area

In order to compute the area required, it is necessary to
know the area of the selected processors. As a proces-
sor can be responsible for more than one task, each ACG
node must be visited in order to check the number of pro-
cessor elements. Grouping the nodes of same proces-
sorID attribute allows us to implement this verification.
The area is computed adding up all the processor’s areas.
Note that this is not the sum of IP’s areas. Equation 1
shows how to compute the required area to use a given IP
assignment, wherein function Proc(.) provides the set of
processors used in a given ACG and areape is the requi-
red area for processor pe in

Area= ∑
pe∈Proc(ACG)

areape (1)

6.2.2. Execution Time

In order to compute the execution time imposed, it is ne-
cessary to find the critical path of the ACG. The critical
path can be found visiting all nodes of all paths and recor-
ding the execution time of the slowest path. Equation 2
is computed using a recursive function that implements a
depth-first search, wherein function Paths(.) provides all
possible paths of a given ACG and timet is the required
time for task t in

Time= max
p∈Paths(ACG)

(

∑
∀t∈p

timet

)

(2)

6.2.3. Power Consumption

In order to compute the power consumption, the task
power of all nodes of the ACG is sumed up. In Equation
3, powert is the required power consumption to execute
task t on the specified processor.

Power= ∑
t∈ACG

powert (3)

7. Results

First of all, the implementation of both algorithms (i.e.
NSGA-II and microGA) was used to solve mathemati-
cal MOPs and the results were compared with the expec-
ted results. Fig. 5 shows results of both algorithms for

Published by Atlantis Press
 Copyright: the authors
 120

Optimal IP Assignment for Efficient NoC-based System Implementation

a two-objective optimization problem (called KUR) pro-
posed by Kursawe and used by Deb and Coello to vali-
date NSGA-II3 and microGA1, respectively. Both algo-
rithms converged to the true Pareto-front. As expected,
NSGA-II found a higher diversity of solutions while mi-
croGA converged much faster. The parameters used for
these tests were the same as those originally used by the

authors3,1.
For NoC optimization, only the individual representa-

tion and the objective functions were altered, keeping the
ranking, selection, crossover and mutation operators un-
changed. Different TGs generated with TGFF5 and from
E3S were used. The TGs included sequential and parallel
tasks.

Fig. 5. Results for KUR function

Many simulations were used to find out the right
values to set up the parameters of NSGA-II and mi-
croGA. For the former, we used a population size
of 600, mutation probability of 0.01, crossover pro-
bability of 0.8, tournament size of 50 and run the
algorithm for 50 generations. For the latter, we used
a population memory size of 1000 with 70% for the
replaceable fraction, micro population of 4 individu-
als, mutation probability of 0.02, crossover probabi-
lity of 0.09, tournament size of 2, external memory
of 200, nominal convergence of 4, replacement cy-
cle of 100, bisection of 5, and run the algorithm for
3000 generations.

The application, represented as a TG in Fig. 6,
was generated by the TGFF5. This TG is interesting
because of the five levels of parallelism, formed by
the mirrored left-right side nodes.

The evolutionary process performed for the IP
assignment of the TG of Fig. 6 was able to disco-
ver 25 distinct optimal IP assignments. The Pareto-
optimal solutions together with the respective fitness
with respect to each of the considered objectives of
the solutions are listed in Table 2. Fig. 7 repre-
sents the time× area trade-off, Fig. 8 depicts the
power× time trade-off and Fig. 9 plots the power×
area trade-off. As we can observe, comparing the
dots against the line of interpolation, the trade-off

between time and area and between power and time
is not so linear as the trade-off between power and
area. Fig. 7 shows that solutions that occupies more
area tend to spend less time of execution because
of the better distribution of parallel tasks. Fig. 8
shows that solutions that spend less time of execu-
tion tend to consume more power because of IP’s
features (i.e. higher clock) and physical effects like
more inner electrons activity. Fig. 9 shows a linear
relation between consumption power and area oc-
cupied. Those values and units are based on E3S
Benchmark Suite4.

Fig. 6. Task graph with five levels of parallelism

Published by Atlantis Press
 Copyright: the authors
 121

M. V. C. da Silva, N. Nedjah, L. M. Mourelle

0.12 0.14 0.16 0.18 0.2 0.22 0.24
2

4

6

8

10

12

14

16
x 10−5

time (s)

ar
ea

 (m
2)

time x area

Fig. 7. Trade-off time×area for TG in Fig. 6

10 20 30 40 50 60 70
0.12

0.14

0.16

0.18

0.2

0.22

0.24

power (x10−1W)

tim
e

(s
)

power x time

Fig. 8. Trade-off power× time for TG in Fig. 6

10 20 30 40 50 60 70
2

4

6

8

10

12

14

16
x 10−5

power (x10−1W)

ar
ea

 (m
2)

power x area

Fig. 9. Trade-off power×area for TG in Fig. 6

8. Conclusions

The problem of allocating IPs into an application re-
presented as a task graph is an NP-hard key research
problems in NoC design.

Table 2. Optimal IP assignment for the task graph of Fig. 6
solution set of IPs time (s) area1 power2

1 [462,722,458,378,490,523,240,0,855,864,379,637,110,721,661,239] 0.1233 14.8935 62.9500
2 [866,138,458,378,490,523,240,0,855,592,379,215,399,721,620,719] 0.1278 14.0406 61.3750
3 [462,138,938,378,490,523,240,0,855,112,379,215,399,721,620,719] 0.1278 14.1917 60.4500
4 [866,138,458,378,490,523,240,0,855,401,379,215,399,721,620,719] 0.1279 14.0449 49.8750
5 [369,138,938,378,860,523,240,0,855,401,379,215,399,721,620,719] 0.1279 14.1434 48.4450
6 [462,937,458,378,860,523,240,0,855,401,379,215,879,721,661,719] 0.1290 14.6892 36.4250
7 [462,937,458,378,490,523,240,0,855,864,691,13,382,721,661,239] 0.1292 10.8422 34.6250
8 [462,937,458,378,490,523,240,0,855,592,379,215,399,721,620,719] 0.1297 9.9991 46.5250
9 [462,937,458,378,490,523,240,0,855,401,379,215,399,721,620,719] 0.1298 9.9982 35.0250
10 [369,937,458,378,860,523,240,0,855,401,379,215,399,721,620,719] 0.1298 10.0913 34.5200
11 [866,92,938,378,490,523,240,0,855,401,379,215,399,721,94,719] 0.1319 9.8334 41.8750
12 [462,92,938,378,490,523,240,0,855,401,379,215,399,721,94,719] 0.1319 9.9856 40.9500
13 [462,937,458,378,490,523,240,0,855,864,379,215,399,721,94,719] 0.1321 9.9817 29.5250
14 [369,138,938,378,490,523,240,0,855,864,691,13,382,936,724,239] 0.1486 8.0183 32.7200
15 [866,138,938,378,490,523,240,0,855,112,691,13,382,936,724,239] 0.1486 7.9146 46.5500
16 [849,92,938,378,490,523,240,0,855,864,691,13,382,936,724,239] 0.1502 8.0124 28.7200
17 [866,92,938,378,490,523,240,0,855,66,691,13,382,936,724,239] 0.1502 7.9112 38.5500
18 [462,937,458,378,490,523,240,0,855,864,691,13,382,936,724,239] 0.1505 3.8679 18.7000
19 [462,937,458,378,860,847,240,0,855,401,691,13,382,936,724,239] 0.1821 4.9264 18.1700
20 [462,937,458,378,860,847,240,0,855,401,489,13,382,936,724,239] 0.1821 5.8873 17.7700
21 [369,722,458,378,860,847,455,0,855,494,211,13,382,936,724,239] 0.2011 4.0635 17.3650
22 [369,937,458,378,860,847,455,0,392,864,211,13,382,936,724,239] 0.2075 5.0214 16.3400
23 [849,937,458,378,490,847,455,0,855,494,691,13,382,936,724,239] 0.2076 3.9611 16.0400
24 [369,937,458,378,860,847,455,0,855,494,211,13,382,936,724,239] 0.2076 4.0693 15.4400
25 [369,937,458,378,860,847,455,480,485,864,211,695,382,936,724,239] 0.2215 3.1033 15.8400

1 (x10−5m2), 2 (x10−1W)

Published by Atlantis Press
 Copyright: the authors
 122

Optimal IP Assignment for Efficient NoC-based System Implementation

In this paper we proposed a decision support sys-
tem based on MOEAs to help NoC designers to se-
lect a set of IPs from a repository of IPs. The use of
two different MOEAs consolidates the obtained re-
sults. Structured and intelligible representations of a
NoC, a TG and of a repository of IPs were proposed.
These can be easily extended to different NoC ap-
plications. Despite of the fact that we have adopted
E3S Benchmark Suite4 as our repository of IPs, any
other repository could be used and modeled using
XML, making this tool compatible with different re-
positories.
Future work is four-fold: tackling the IP map-

ping problem 11; adopting a dynamic topology stra-
tegy to try to evolve the most adequate topology for
a given application; exploring the use of different
objectives based on different repositories and propo-
sing an interfacing mechanism with a hardware des-
cription simulator to integrate our tool to the NoC
design platform.

References

1. Carlos A. Coello Coello and Gregorio Toscano Pu-
lido. A micro-genetic algorithm for multiobjective
optimization. Lecture Notes in Computer Science,
1993:126–138, 2001.

2. The World Wide Web Consortium. World Wide Web
Consortium (W3C): http://www.w3.org, 2008.

3. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan.
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE-EC, 6:182–197, April 2002.

4. Robert P. Dick. Embedded Sys-
tem Synthesis Benchmarks Suite (E3S):
http://ziyang.eecs.northwestern.edu/ dickrp/e3s/.

5. Robert P. Dick, David L. Rhodes, and Wayne Wolf.
TGFF: Task Graphs For Free. In Proceedings of the
6th International Workshop on Hardware/Software
Co-design, pages 97–101, Seattle, Washington, USA,
March 1998. IEEE Computer Society.

6. Edsger. W. Dijkstra. A note on two problems in con-

nexion with graphs. Numerische Mathematik, 1:269–
271, 1959.

7. M. R. Garey and D. S. Johnson. Computers and in-
tractability; a guide to the theory of NP-completeness.
Freeman and Company, 1979.

8. Jingcao Hu and Radu Marculescu. Energy-aware
mapping for tile-based NoC architectures under per-
formance constraints. In ASPDAC: Proceedings of the
2003 conference on Asia South Pacific design auto-
mation, pages 233–239, New York, NY, USA, 2003.
ACM.

9. Rabindra Ku. Jena and Gopal Ku. Sharma. A multi-
objective evolutionary algorithm based optimization
model for network-on-chip synthesis. In ITNG, pages
977–982. IEEE Computer Society, 2007.

10. Tang Lei and Shashi Kumar. A two-step genetic al-
gorithm for mapping task graphs to a network on chip
architecture. InDSD, pages 180–189. IEEE Computer
Society, 2003.

11. Marcus Vinicius Carvalho da Silva, Nadia Nedjah ;
Luiza de Macedo Mourelle. Application Synthesis for
MPSoCs Implementation using Multiobjective Opti-
mization. Lecture Notes in Computer Science, Vol.
5517, pages 736–743, 2009.

12. Srinivasan Murali and Giovanni De Micheli.
Bandwidth-constrained mapping of cores onto NoC
architectures. In DATE, pages 896–903. IEEE
Computer Society, 2004.

13. Ümit Y. Ogras, Jingcao Hu, and Radu Marculescu.
Key research problems in NoC design: a holistic
perspective. In Petru Eles, Axel Jantsch, and Rei-
naldo A. Bergamaschi, editors, Proceedings of the 3rd
IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, CO-
DES+ISSS 2005, Jersey City, NJ, USA, September 19-
21, 2005, pages 69–74. ACM, 2005.

14. Vilfredo Pareto. Cours D’Economie Politique. F.
Rouge, Lausanne, 1896.

15. N. Srinivas and KalyanmoyDeb. Multiobjective func-
tion optimization using nondominated sorting in gene-
tic algorithms. Evolutionary Computation, 2(3):221–
248, 1995.

16. Wenbiao Zhou, Yan Zhang, and Zhigang Mao. Pareto
based multi-objective mapping IP cores onto NoC ar-
chitectures. In APCCAS, pages 331–334. IEEE, 2006.

Published by Atlantis Press
 Copyright: the authors
 123

