

Cellular Neural Networks-Based Genetic Algorithm for Optimizing the Behavior of an
Unstructured Robot

Alireza Fasih

Transportation Informatics Group, Institute of Smart Systems Technologies, University of Klagenfurt
Klagenfurt, Austria

E-mail: alireza.fasih@uni-klu.ac.at

Jean Chamberlain Chedjou
Transportation Informatics Group, Institute of Smart Systems Technologies, University of Klagenfurt

E-mail: jean.chedjou@uni-klu.ac.at

Kyandoghere Kyamakya
Transportation Informatics Group, Institute of Smart Systems Technologies, University of Klagenfurt

E-mail: kyandoghere.kyamakya@uni-klu.ac.at

Abstract

A new learning algorithm for advanced robot locomotion is presented in this paper. This method involves both
Cellular Neural Networks (CNN) technology and an evolutionary process based on genetic algorithm (GA) for a
learning process. Learning is formulated as an optimization problem. CNN Templates are derived by GA after an
optimization process. Through these templates the CNN computation platform generates a specific wave leading to
the best motion of a walker robot. It is demonstrated that due to the new method presented in this paper an irregular
and even a disjointed walker robot can successfully move with the highest performance.

Keywords: Cellular Neural Networks, Robot locomotion, Simulation, Genetic Algorithms.

1. Introduction

Nowadays, some of the main goals of robotics science,
mechatronics and artificial intelligence lie in designing
mechanisms close to or mimicking as good as possible
some natural structures or animal behavioral models.
According to this theory, the nature selects the powerful
and stable genes for breed, and weak genes
fall/disappear in the nature [1]. The good genes that can
adapt the animal structure to the environment have
higher chances for breed and evolution. The animal
locomotion is trained and adapted according to the
animal’s body structure. One key issue in the training
process is based on the energy saving. This justifies the
striking interest devoted to the modeling and simulation

of animal walking motion with the aim of optimizing
the energy consumption [2-4]. It is well-known that the
walking motion of animals is of a stereotype. In a large
variety of animals a central neural controller does
organize/coordinate the motion. A central neural
controller (e.g. the central pattern generator (CPG)) is a
main unit for controlling limbs for walking [5]. The
CPG unit does contain all the mechanisms needed to
generate the rhythmic pattern of movement. This unit is
suitable for designing walker, swimmer, or flyer robots
which exhibit motion close to natural locomotion
mechanisms. Due to recent advances in electronics and
the ability of cellular neural networks to solve partial
differential equations in real time, it is possible to
simulate a Reaction-Diffusion model by a specific CNN

International Journal of Computational Intelligence Systems, Vol.2, No. 2 (June, 2009), 124-131

Published by Atlantis Press
 Copyright: the authors
 124

zegerkarssen
Typewritten Text
Received: 01/10/08
Revised: 19/05/09

A. Fasih et al.

architecture, the so-called reaction-diffusion cellular
neural network (RD-CNN).

A striking interest has been devoted to the robot
control based on the RD-CNN technique [1, 5, 6]. In
this technique, the mathematical model describing the
robot behavior must be well-defined. This is a serious
limitation as modeling the complex behavior of robots is
challenging. In this paper we introduce a robots control
method which is not based on the mathematical
modeling of the robots behavior. It is rather a general
and effective method combining CNN with genetic
algorithms (GA). This method can support and drive
many types of structured and unstructured walker
robots. The method/approach is based on both the
natural modeling and the use of computational units
close to biological models. A combination of both CNN
(i.e. for computation) and GA (i.e. for optimizing the
nature) is a good tool for modeling and controlling
robots dynamics. The central parts of this scheme are
made-up of a CNN processor and an evolutionary
training unit. A Cellular neural network (CNN) is a
parallel computing paradigm similar to the artificial
neural networks computation platform, with the
difference that in CNN the communication is allowed
between neighboring units. This feature of the CNN
processor makes it a good computation platform to
analyze the dynamics of biological neurons. This paper
shows the possibility of directly driving a walker robot
by an evolutionary training of a CNN processor. This
method is further efficient to model widespread natural
locomotion mechanisms of animals (e.g. worms, insects,
quadrupeds, biped, etc) [7]. This locomotion is modeled
in the 3D space describing the real environment and in
very difficult situations (i.e. rough, bumpy, and/or scaly
surfaces) as well. The challenging focus is finding the
best signal for driving walker robot joints with
minimum energy consumption and the best locomotion
performance. This can be achieved by finding suitable
CNN templates to generate an efficient wave for driving
the walker robot joints. This paper is organized as
follows. Section 2 discusses the use of genetic
algorithms for optimizing the CNN templates. Section
3 presents the training algorithm and some simulation
results as well. Section 4 formulates some concluding
remarks. Further, the quintessence of the results
obtained is summarized, and some open research
questions are outlined.

2. Using Genetic Algorithms for CNN template
optimization

The concept of Cellular Neural Networks (CNN) was
introduced by Leon O. Chua and Yang [8]. CNN is a
computation platform which is mathematically modeled
by Eq. 1

IyTuTxx AB +∗+∗+= -& (1)

where, ‘TA’ denotes the 3×3 feedback template and ‘TB’
stands for the 3×3 control template. ‘I’ is a bias value
and ‘y’ is the nonlinear output sigmoid function of each
cell. ‘u’ denotes the input value and ‘x’ is the state of
each cell. The input value is discretized into pixels and
is represented in a table of numbers called matrix. The
size of this matrix depends upon the number of joints in
the walker robot. In Eq. 1, the stars stand for
convolution operations.

The genetic algorithm (GA) is a heuristic search
technique used in computing to find either exact or
approximate solutions for optimizing a given problem.
The GA is an evolutionary algorithm that uses
techniques inspired from biology such as inheritance,
mutation, selection, and crossover. In this paper, this
algorithm is used for finding the best templates for
optimum robots locomotion.

The complete structure of the system used for the
training process is shown in Fig. 1. This structure
consists of six main parts: (1) Initial Population; (2)
Crossover; (3) Mutation; (4) Fitness Function; (5)
Decoding; (6) Cellular Neural Network Simulator. In
Fig. 2 the connections between the robot
actuators/hinges and the CNN outputs are shown. These
connections are exploited in the control of both robot
hinges and actuators. Wave rhythms are generated from
the CNN processor outputs which can drive the walker
robot on a specific path and/or direction depending on
the high level task each of which consists of many low
level tasks. After the learning phase, the output waves
can drive the robot with a minimum energy and a good
efficiency. This driving depends upon specific choices
of templates values. Each template set is a solution for

CNN

Decoding

Fitness

Template

Out

Crossover

Mutation

Best Gene Init Population

Worst Gene

Add

Sort

Fig. 1. System Architecture Diagram

Published by Atlantis Press
 Copyright: the authors
 125

CNN-Based Robot Controller

driving the robot by means of (or by performing) some
specific low level tasks. For optimizing these solutions,
the templates must be coded as chromosomes as shown
in Fig. 3. In the initialization phase, Fig. 3 generates
many random chromosomes (in this case CNN
templates), each being a solution for driving the robot.
In fact, each chromosome is a CNN template that is
reshaped in a one dimensional array. According to Fig.
3, each chromosome does contain a feedback template,
a control template and a bias value. Various methods
exist (in genetic algorithms) for coding data as
chromosomes. This paper implements two different
methods for coding and generating chromosomes. The
first method is based on the IEEE-754 scheme which is
a floating point technique. In this technique, each value
must be converted to binary format according to the
IEEE-754 floating point technique. The IEEE floating
point format consists of three main parts: the sign, the
exponent, and the mantissa [12]. The number of bits for
each field is shown in the table below.

Table 1: Single Precision - IEEE Floating Point Format Structure

Sign Exponent Mantissa
1 bit 8 bit 23 bit

With the floating data types mentioned in Table 1, it

is possible to store values between the
ranges []3845 104.3,105.1 ×× − . The use of this method
as a gene coder requires the definition of a mask for
some bits. Otherwise, the random chromosome
generator will generate values out of the
range . This condition is of high
importance as a hardware implementation (using TTL
devices) of this algorithm is under consideration. In the
second method implemented, a “real” data type value is
used as a chromosome coding. For this step, a random
function generates a value in the acceptable range. The
implementation of this method is easier than of the first
method. The results from the two methods are compared
and a very good similarity is obtained between them.
Nevertheless, the convergence time in binary coding
was 10 percent faster. One particular important part of
this algorithm is the design of the fitness function. This
function or cost function defines/fixes indirectly the
robot behavior [9]. This function is a particular type of
objective function that quantifies the optimality of a
solution in Genetic Algorithms. The input data for the
fitness function are based on measurements of robots’
parts orientation, location and displacement. In the
fitness function we don’t define any behavioral
locomotion exactly, like a robot kinematics. On the
other hand, we define a function that satisfies the target
or destination without any details.

[VV 5,5 +−

Fig. 2. Robot hinges connection to CNN

Fig. 3. Template Encoding in an Array List

] We need the robot to escape from a position without any
specific direction. For this purpose, we must define a
simple function for measuring the length between the
central point (i.e. the gravity center) of the robot and the
initial position. In this example, we didn’t define any
detail for the locomotion behavior. After generating new
chromosomes, we obtain the corresponding fitness
value by applying the fitness function. The main point
on applying the fitness function is that this function is
not a real time procedure and that the result from the
fitness calculation will be only ready after a certain
period of time beyond the time the wave effect will act
on robot hinges/actuators. In fact, one cycle of time (i.e.
one period of the wave acting on the actuator) is not
sufficient for measuring with good accuracy the position
in space of the robot. Many cycles of the wave
generated are necessary to be applied to robot actuators.
By measuring some robot parameters like the position
of the robot central point, the robot angle (related to the
global coordinates of the system) and so on, the fitness
function is quantified. In the initial state of the training
phase the algorithm selects some randomly generated

Published by Atlantis Press
 Copyright: the authors
 126

A. Fasih et al.

chromosomes. There is no rule for evaluating how many
chromosomes should be generated in the initial
population. This number varies depending upon the
complexity of the problem [10]. Some authors have
defined 100 generations of chromosomes/genes for the
initial state [10-12]. After each generation, a fitness
function is used to evaluate the cost of chromosomes in
the simulator leading to maximum efficiency. During
our computations, each evaluation took approx. 3
seconds and the program spent approx. 60 seconds to
evaluate appropriated chromosomes. After this step,
both chromosomes and fitness values will be sorted with
the aim/goal of minimizing the fitness values in a link
list. The next step concerns the crossover (i.e. both
selection and breed) of chromosomes. Our experiments
have shown that 50% of the best chromosomes are
fitting for the crossover. It was found that this range has
a good probability to generating the better
chromosomes. In each step, we randomly select 2
chromosomes in this range for the crossover process.
Many evaluations have shown that the use of the “two-
point” technique for the crossover is the best solution. In
this process we define two points (randomly) on the
selected chromosomes; the contents of the
chromosomes between these two points are exchanged
(Fig. 4). In Fig. 4 P1 and P2 are two randomly selected
points. S1 and S2 are two selected
parents/chromosomes. The crossover leads to two new
“children” (see Ch1 and Ch2 in Fig. 4) with new
properties. During the trial and error process, we
obtained that the good probability for mutation is
around 10%. This rate is essential for avoiding the local
minimum trap. In the long term, this rate of the mutation
increases the quality of chromosomes in the list [13].

S1 1.2 2.0 -0.3 2.1 1.01 1.7 1.03 2.22 2.0
S2 3.1 1.2 0.5 -1.3 1.73 0.2 -1.0 1.31 0.0

Ch1 1.2 2.0 0.5 -1.3 1.73 0.2 1.03 2.22 2.0
Ch2 3.1 1.2 -0.3 2.1 1.01 1.7 -1.0 1.31 0.0

Fig. 4. Two-Point Crossover Method for Template ‘A’

3. Training Algorithm and Simulation Results

One of the most important parts of this research is
simulating both robot and environment. Some authors
have implemented the robot and a virtual world by
simulation of dynamic rigid bodies [14, 15]. The robot
which depends on the physical parameters is
implemented in a specific environment. Each part of the
robot has a mass, a center of mass, an elasticity
parameter, and both dynamic and static friction
coefficients. Fig. 5 shows the implementation of a
“snake robot” made up of joints with 2 degrees of
freedom. The hinges do not have any limitation in
rotation. Nevertheless, applying limitation in the
rotation range is possible for each joint separately.
According to Fig. 2, each column of the CNN processor
is connected to robot actuators. Hence, each actuator of
the robot should be connected to one of the columns
separately. Since the robot actuators’ response time is
not equal for all of them we do assume/take the
maximum delay for sending the wave on the robot
actuators. This delay interval is essential for the robot
locomotion/movement. The goal of the learning process
is finding optimum templates for moving the robot
according to our desires. Finding these templates for a
specific movement mechanism/pattern is essential and
suitable for the use in a multi layer tasks manager or
controlling unit. We are able to use these templates for a
low level robotics activity. When a high level controller
sends commands to the robot for performing a specific
task another controller needs to manage some low level
skills like running, turning, jumping and so on, which
are necessary to ensure the realization of the high level
task [2, 3, 16, 17]. Therefore, by understanding some
robot properties the high level task management is very
simple in the high level controller. In the above
referenced evaluation, authors have tried to find lateral
undulation locomotion for a snake robot. Each hinge has
two degree of freedom (2-DOF) and can turn in 2
directions. With the method based on genetic
algorithms, an optimum template is obtained to make
the robot moving or acting according to our desires. The
most important point in this learning method is that we
don’t predefine any robot kinematics for
movement/locomotion in the fitness function. The
fitness function is a simple and important function
which defines the robot behavior in the environment.
Complicated rules and equations in the fitness function
cannot improve the robot behavioral performance; a
simple definition can result to a best robot behavior.
Eqs. (2) define the fitness function used for the snake
robot lateral undulation locomotion shown in Fig. 5.

P1 P2

Bias
Template ‘A’

Published by Atlantis Press
 Copyright: the authors
 127

CNN-Based Robot Controller

DIST
AVG

RMSFitness ××=
1

()∑
=

−=
7

1

2

i
iLAVGRMS

7

7

1
∑
== i

iL
AVG

1LXDIST =

The term ‘AVG’ denotes the mean distance
parts and the ‘x’ axis. The term ‘Li’ denotes th
between the i’th part of the snake robot and th
RMS denotes the roots mean square error be
robot part’s position and the ‘x’ axis. XL1 stan
forward distance towards the ‘x’ axis.

In the lateral undulation locomotion, this te
fitness-function must be close to zero. Th
function defines the “snake robot” behavior
undulation locomotion tasks. The first term
the fitness function shows that the robot must
in-line by moving parallel to the ‘x’ axis. T
term (AVG) shows that the robot must escape
‘x’ axis and the 3rd term (DIST) in the fitnes
shows that the robot usually don’t move in t
direction.

27.46.0
45.051.0
39.246.3

,
17.418.233.4
89.485.244.3

79.101.08.0

⎢
⎢
⎢

⎣

⎡

−

−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−= TbTa

After a first generation of 100 chromosomes, the
robot learns to move in the lateral undulation with a

Y

X

Fig. 5. Snake robot lateral undulation
locomotion

Fig. 6. Wave generated for lateral undulation
locomotion
(2.a)
corresponding set of CNN templates, which are
obtained by the evolution method. These templates are
shown in Eq. (3). A task manager in the high level can
select a best template for performing a specific task by
(2.b)

the robot. On the other hand, each set of templates
corresponds to a specific robot movement/locomotion.
In another evaluation we define a fitness function
(2.c)

according to Eq. (4). This function is defined for robot
rectilinear locomotion with a minimum sidle. According
(2.d)
s between
e distance
e ‘x’ axis.
tween the
ds for the

rm of the

is fitness-
for lateral
 (RMS) in
keep itself
he second
 from the
s function
he frontal

29.3,
06.3
09.1
07.1

=
⎥
⎥
⎥

⎦

⎤

−
−
−

I

(3)

to this equation, each term must be close to zero. The
first term (RMS) shows that the robot must have a
minimum deviance to the ‘x’ axis. The second term
(AVG) shows that the robot should not be away from
this axis. The last term (DIST) shows that the robot must
crawl on the ‘x’ axis. After each breed, a new
chromosome is added to the chromosome population.
After checking of new chromosomes by the fitness
function, they will be sorted in a population list ordered
by the best fitness. According to the evolution theory,
after many generations, some chromosomes (“children”)
can inherit good properties from others (“parents”)
which are best and fit chromosomes.

After nearly 790 chromosome generations the robot
would have learned to move with the highest speed.
With Eq. (5), the CNN processor can generate a hinge
wave according to Fig. 7. This wave is optimum for the
robot rectilinear locomotion using an evolution
algorithm. Fig. 8 shows the robot during the simulation
in rectilinear locomotion. Fig. 9 is the plot of the time
evolution of the fitness function obtained after 790
generation of chromosomes; the robot has learned the
best movement and locomotion. The extension of this
architecture or learning method to another kind of robot
is possible. By connecting the CNN outputs to
unknown/arbitrary robot actuators, the robot can learn
any locomotion. Due to the high capacity of CNN, we
can connect the CNN output to the robot hinges
actuators by any arrangement and structure. The results
are same although both learning and optimization times
might change.

DIST

AVGRMSFitness 1
××=

 Fig. 7. Wave generated for rectilinear
locomotion

Published by Atlantis Press
 Copyright: the authors
 128
(4)

A. Fasih et al.

05.3,
44.174.173.3

27.439.297.0
543.383.4

,
58.01.292.0
69.115.462.4
01.274.267.2

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−−
= ITT BA

(5)

Fig. 10 shows a spider robot with 4 legs and 16

degrees of freedom. Each hinge has 2 degrees of
freedom in rotation. A 16×16 CNN array can be used to
drive this robot. Fig.11 shows the sequences of the robot
locomotion after the learning process. In this test, the
robot must turn around the ‘z’ axis. Another test in
Fig. 10 shows the design of a 6 legs insect robot for
locomotion learning. The robot has 12 degrees of
freedom in hinges. In this case, the aim is moving
around the circle with a given radius. After nearly 2500
iterations it was found that the result converged to zero.
The CNN templates shown in Eq. (6) are optimized for
this purpose. The fitness function in Eq. (7) is used to
generate the CNN output wave shown in Fig. 13.

Fig. 8. Snake Robot rectilinear locomotion

-5

0

5

10

15

20

25

30

35

1 67 133 199 265 331 397 463 529 595 661 727 793 859

Series1
Series2

 (6)

01.4,
95.002.388.4
49.261.22.3

52.305.303.4
,

35.23.123.2
2.368.135.0

64.185.173.1
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
= ITT BA

According to Eq. (7), the fitness value has a direct
relation with the distance between the initial position
point (Init_Center_Pos) and the robot position
(Robot_Pos) divided by (R). Further, this function has
an inverse relation with the robot movement (Robot_
Movement).

Fitness = (1 - Dist (Init_Center_Pos, Robot_Pos) / R)
*(1/Robot_Movement) Fig. 9. Series 1 is fitness-function value; Series2 is fitness-

function minimum value, during cycle of time in learning
process. (7)

By optimizing the robot movement/locomotion, the

fitness value will converge to zero. For the case of an
unstructured robot, we have designed a broken-leg
spider. In this test, the aim is learning the robot for the
turning left and right skill as a complete and perfect
spider. In Fig. 14 is shown the representation of this
type of robot.

 Fig. 10. Learning 4-legs semi-spider robot

R

Path Path

Fig. 12. Moving 6-Leg Robot, around the Circle
 Fig. 11. 4-leg robot spider, during the turning.

Published by Atlantis Press
 Copyright: the authors
 129

CNN-Based Robot Controller

The definition of the fitness function is a little bit
sensitive in this case. According to Eq. (8), the fitness
value has a direct relation with the distance between the
initial position point (Init_Center_Pos) and the robot
position (Robot_Pos). Further, this function has an
inverse relation with the robot angle (Robot_Angle).
During the optimization phase, the aim/goal is
converging the fitness function to zero.

Fitness = Dist (Init_Center_Pos, Robot_Pos)

*(1/Robot_Angle)
(8)

92.3,
97.433.349.2
04.325.219.2
61.22.172.4

,
17.425.397.0
77.421.061.4
85.3161.0

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−−

= ITT BA

 (9)

After nearly 3300 chromosome generations and
evolution, the robot is able to turn over its Yaw axis.
Fig. 15 shows the result of the wave pattern for
unstructured spider turning. The usability of the
templates in this paper can be summarized as follows.
Templates are stored in a list/memory. By a high level
task management templates are selected. This selection
depends on the high level task management decision
and the environment situation as well. Further, a factor
of high importance is the behavioral architecture and
behavioral programming. In fact, low level skills (e.g.
moving forward, turning left and right, jumping and
etc.) for insuring the control of the robot are very
important. The choice of templates is highly influenced
by these factors.

 Fig. 13. Wave generated for circular locomotion Fig. 15. Wave generated for Broken-Leg Spider; Turning Skill

4. Conclusion

This paper has presented a concept based on an
evolutionary technique for the robot locomotion
learning. The technique proposed was a combination of
both CNN and genetic algorithms. The motivation of
this combination can be justified by the high accuracy
of the CNN processors and their good computational
speed as well. Further, the topology of CNN is flexible
for designing neuro-evolutive systems. The genetic
algorithm was exploited for the training process in order
to determine the best genes according to the pre-defined
requirements (i.e. dada requirements) for the design
process. Two types of robots were considered (i.e. both
structured and unstructured robots). For each of these
types, algorithms were developed to derive the
appropriate chromosomes from which corresponding
templates were derived. The results in this paper have
shown that combining the cellular neural networks
(CNN) technology with an evolution scheme like
genetic algorithm (GA) is very effective and suitable for
learning the movement /locomotion of different types of
robots (e.g. high DOF robots, symmetrical,
unsymmetrical and defective robots). Due to the
intrinsic characteristics of the CNN, this type of neural
network is very close to natural processors and therefore
is efficient for building robot controllers. During the
training process, we found that the complexity of the
environment (e.g. rough, bumpy, and/or scaly surfaces)
was a key factor influencing the results. Basically, the
technique developed in this paper provided interesting
results with high accuracy in complex environments.
Nevertheless, we found that the accuracy of the results
decreases with the increasing complexity of the
environment (e.g. ecosystem and robot environment).
An interesting issue under investigation in subsequent
and future works is implementing/developing methods
of high accuracy and efficiency for robot control in very
difficult environments.

Fig. 14. Broken Leg Spider as an unstructured robot

References

[1] P. Arena, L. Fortuna, and M. Branciforte, “Reaction-
diffusion CNN algorithms to generate and control
artificial locomotion,” in IEEE Transactions on Circuits

Published by Atlantis Press
 Copyright: the authors
 130

A. Fasih et al.

and Systems I: Fundamental Theory and Applications.
46(2) 253-260 (1999).

[2] P. Arena, L. Fortuna, M. Frasca, L. Patane and M.
Pollino, “Bio-inspired robotics: application of a CNN-
based CPG VLSI chip to control an autonomous mini-
hexapod robot,” in Proc. of the 10th International
Workshop on Cellular Neural Networks and Their
Applications (CNNA'06), pp. 1-3, (2006).

[3] P. Arena, L. Fortuna, M. Frasca and G. Sicurella, “An
adaptive, self-organizing dynamical system for
hierarchical control of bio-inspired locomotion,” in IEEE
Transactions on Systems, Man and Cybernetics, Part B.
34(4) 1823-1837 (2004).

[4] L. Fortuna, L. Patane, D. E. E. e Sistemistico and V. A.
Doria, “Hexapod locomotion control through a CNN
based decentralized system,” in International Symposium
on Proceedings of the ISIE, pp. 4-10, (2002).

[5] P. Arena, L. Fortuna, M. Frasca, L. Patane and M.
Pollino, “An autonomous mini-hexapod robot controlled
through a CNN-based CPG VLSI chip,” in Proc. of the
10th International Workshop on Cellular Neural
Networks and Their Applications (CNNA'06), pp. 1-6,
(2006).

[6] M. Branciforte, G. Di Bernardo, F. Doddo and L.
Occhipinti, “Reaction-diffusion CNN design for a new
class of biologically-inspired processors in artificial
locomotion applications,”.in Proc. of the Seventh
International Conference on Microelectronics for
Neural, Fuzzy and Bio-Inspired Systems
(MicroNeuro'99), pp. 69-76, (1999).

[7] Gabriele Manganaro, P. Arena, L. Fortuna, Cellular
Neural Networks: Chaos, Complexity and VLSI
Processing, (Springer 1999), pp.152-161

[8] Chua, L.O. and L. Yang, “Cellular neural networks:
theory,” in IEEE Transactions on Circuits and Systems.
35(10) 1257-1272 (1988).

[9] Cho, S.B., “Evolving multiple sensory-motor controllers
based on cellular neural networks,” in Proc. of IFSA
World Congress and 20th NAFIPS International
Conference, pp. 2218-2222 (2001)

[10] Cigale, B. and D. Zazula, “Segmentation of Ovarian
Ultrasound Images Using Cellular Neural Networks,” in
International Journal of Pattern Recognition and
Artificial Intelligence. 18(4) (2004) 563-581.

[11] Beasley, J.E. and P.C. Chu, “A genetic algorithm for the
set covering problem,” in European Journal of
Operational Research. 94(2) 392-404 (1996).

[12] Horn, J., N. Nafpliotis, and D.E. Goldberg, “A niched
Pareto genetic algorithm for multiobjective
optimization,” in Proceedings of the First IEEE
Conference on Evolutionary Computation 1994, pp. 82-
87.

[13] Bilotta, E., G. Cutri, and P. Panano, “Evolving Robot’s
Behavior by Using CNNs,” in Proceedings of 9th Int.
Conf Simulation of Adaptive Behavior (SAB'06), pp.
631-639.

[14] Wolff, K. and P. Nordin, “Learning Biped Locomotion
from First Principles on a Simulated Humanoid Robot
Using Linear Genetic Programming,” in Lecture Notes in
Computer Science 2003, pp. 495-506.

[15] D. Marbach and A. Ijspeert, “Co-evolution of
configuration and control for homogenous modular
robots,” in Proceedings of the Eighth Conference on
Intelligent Autonomous Systems (IAS8), pp. 712-719,
(2004).

[16] B. Muthuswamy, “Implementing central pattern
generators for bipedal walkers using cellular neural
networks”, Thesis in Department of Electrical
Engineering and Computer Sciences, University of
California, Berkeley, CA, Masters thesis, pp. 4-8 (2005).

[17] P. Arena, L. Fortuna, M. Frasca, L. Patane and M.
Pavone, “Realization of a CNN-driven cockroach-
inspired robot,” in Proceedings of Circuits and Systems.
IEEE International Symposium on ISCAS, pp. 4-9,
(2006).

Published by Atlantis Press
 Copyright: the authors
 131

