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Abstract 

A new learning algorithm for advanced robot locomotion is presented in this paper. This method involves both 
Cellular Neural Networks (CNN) technology and an evolutionary process based on genetic algorithm (GA) for a 
learning process. Learning is formulated as an optimization problem. CNN Templates are derived by GA after an 
optimization process. Through these templates the CNN computation platform generates a specific wave leading to 
the best motion of a walker robot. It is demonstrated that due to the new method presented in this paper an irregular 
and even a disjointed walker robot can successfully move with the highest performance.  

Keywords: Cellular Neural Networks, Robot locomotion, Simulation, Genetic Algorithms. 

 

 

1. Introduction 

Nowadays, some of the main goals of robotics science, 
mechatronics and artificial intelligence lie in designing 
mechanisms close to or mimicking as good as possible 
some natural structures or animal behavioral models. 
According to this theory, the nature selects the powerful 
and stable genes for breed, and weak genes 
fall/disappear in the nature [1]. The good genes that can 
adapt the animal structure to the environment have 
higher chances for breed and evolution. The animal 
locomotion is trained and adapted according to the 
animal’s body structure. One key issue in the training 
process is based on the energy saving. This justifies the 
striking interest devoted to the modeling and simulation 

of animal walking motion with the aim of optimizing 
the energy consumption [2-4]. It is well-known that the 
walking motion of animals is of a stereotype. In a large 
variety of animals a central neural controller does 
organize/coordinate the motion. A central neural 
controller (e.g. the central pattern generator (CPG)) is a 
main unit for controlling limbs for walking [5]. The 
CPG unit does contain all the mechanisms needed to 
generate the rhythmic pattern of movement. This unit is 
suitable for designing walker, swimmer, or flyer robots 
which exhibit motion close to natural locomotion 
mechanisms. Due to recent advances in electronics and 
the ability of cellular neural networks to solve partial 
differential equations in real time, it is possible to 
simulate a Reaction-Diffusion model by a specific CNN 
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architecture, the so-called reaction-diffusion cellular 
neural network (RD-CNN).  

A striking interest has been devoted to the robot 
control based on the RD-CNN technique [1, 5, 6]. In 
this technique, the mathematical model describing the 
robot behavior must be well-defined. This is a serious 
limitation as modeling the complex behavior of robots is 
challenging. In this paper we introduce a robots control 
method which is not based on the mathematical 
modeling of the robots behavior. It is rather a general 
and effective method combining CNN with genetic 
algorithms (GA). This method can support and drive 
many types of structured and unstructured walker 
robots. The method/approach is based on both the 
natural modeling and the use of computational units 
close to biological models. A combination of both CNN 
(i.e. for computation) and GA (i.e. for optimizing the 
nature) is a good tool for modeling and controlling 
robots dynamics. The central parts of this scheme are 
made-up of a CNN processor and an evolutionary 
training unit. A Cellular neural network (CNN) is a 
parallel computing paradigm similar to the artificial 
neural networks computation platform, with the 
difference that in CNN the communication is allowed 
between neighboring units. This feature of the CNN 
processor makes it a good computation platform to 
analyze the dynamics of biological neurons. This paper 
shows the possibility of directly driving a walker robot 
by an evolutionary training of a CNN processor. This 
method is further efficient to model widespread natural 
locomotion mechanisms of animals (e.g. worms, insects, 
quadrupeds, biped, etc) [7]. This locomotion is modeled 
in the 3D space describing the real environment and in 
very difficult situations (i.e. rough, bumpy, and/or scaly 
surfaces) as well. The challenging focus is finding the 
best signal for driving walker robot joints with 
minimum energy consumption and the best locomotion 
performance. This can be achieved by finding suitable 
CNN templates to generate an efficient wave for driving 
the walker robot joints. This paper is organized as 
follows. Section 2 discusses the use of genetic 
algorithms for optimizing the CNN templates.  Section 
3 presents the training algorithm and some simulation 
results as well. Section 4 formulates some concluding 
remarks. Further, the quintessence of the results 
obtained is summarized, and some open research 
questions are outlined.  

2. Using Genetic Algorithms for CNN template 
optimization 

The concept of Cellular Neural Networks (CNN) was 
introduced by Leon O. Chua and Yang [8]. CNN is a 
computation platform which is mathematically modeled 
by Eq. 1 

IyTuTxx AB +∗+∗+= -&                           (1)  
 

where, ‘TA’ denotes the 3×3 feedback template and ‘TB’ 
stands for the 3×3 control template. ‘I’ is a bias value 
and ‘y’ is the nonlinear output sigmoid function of each 
cell. ‘u’ denotes the input value and ‘x’ is the state of  
each cell. The input value is discretized into pixels and 
is represented in a table of numbers called matrix. The 
size of this matrix depends upon the number of joints in 
the walker robot. In Eq. 1, the stars stand for 
convolution operations.  

The genetic algorithm (GA) is a heuristic search 
technique used in computing to find either exact or 
approximate solutions for optimizing a given problem. 
The GA is an evolutionary algorithm that uses 
techniques inspired from biology such as inheritance, 
mutation, selection, and crossover. In this paper, this 
algorithm is used for finding the best templates for 
optimum robots locomotion.  

The complete structure of the system used for the 
training process is shown in Fig. 1. This structure 
consists of six main parts: (1) Initial Population; (2) 
Crossover; (3) Mutation; (4) Fitness Function; (5) 
Decoding; (6) Cellular Neural Network Simulator. In 
Fig. 2 the connections between the robot 
actuators/hinges and the CNN outputs are shown. These 
connections are exploited in the control of both robot 
hinges and actuators. Wave rhythms are generated from 
the CNN processor outputs which can drive the walker 
robot on a specific path and/or direction depending on 
the high level task each of which consists of many low 
level tasks. After the learning phase, the output waves 
can drive the robot with a minimum energy and a good 
efficiency. This driving depends upon specific choices 
of templates values. Each template set is a solution for 
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Fig. 1. System Architecture Diagram  
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driving the robot by means of (or by performing) some 
specific low level tasks. For optimizing these solutions, 
the templates must be coded as chromosomes as shown 
in Fig. 3. In the initialization phase, Fig. 3 generates 
many random chromosomes (in this case CNN 
templates), each being a solution for driving the robot. 
In fact, each chromosome is a CNN template that is 
reshaped in a one dimensional array. According to Fig. 
3, each chromosome does contain a feedback template, 
a control template and a bias value. Various methods 
exist (in genetic algorithms) for coding data as 
chromosomes. This paper implements two different 
methods for coding and generating chromosomes. The 
first method is based on the IEEE-754 scheme which is 
a floating point technique. In this technique, each value 
must be converted to binary format according to the 
IEEE-754 floating point technique. The IEEE floating 
point format consists of three main parts: the sign, the 
exponent, and the mantissa [12]. The number of bits for 
each field is shown in the table below. 

 
Table 1: Single Precision - IEEE Floating Point Format Structure 

 
Sign Exponent Mantissa 
1 bit 8 bit 23 bit 

 
With the floating data types mentioned in Table 1, it 

is possible to store values between the 
ranges [ ]3845 104.3,105.1 ×× − . The use of this method 
as a gene coder requires the definition of a mask for 
some bits. Otherwise, the random chromosome 
generator will generate values out of the 
range . This condition is of high 
importance as a hardware implementation (using TTL 
devices) of this algorithm is under consideration. In the 
second method implemented, a “real” data type value is 
used as a chromosome coding. For this step, a random 
function generates a value in the acceptable range. The 
implementation of this method is easier than of the first 
method. The results from the two methods are compared 
and a very good similarity is obtained between them. 
Nevertheless, the convergence time in binary coding 
was 10 percent faster. One particular important part of 
this algorithm is the design of the fitness function. This 
function or cost function defines/fixes indirectly the 
robot behavior [9]. This function is a particular type of 
objective function that quantifies the optimality of a 
solution in Genetic Algorithms. The input data for the 
fitness function are based on measurements of robots’ 
parts orientation, location and displacement. In the 
fitness function we don’t define any behavioral 
locomotion exactly, like a robot kinematics. On the 
other hand, we define a function that satisfies the target 
or destination without any details. 

[ VV 5,5 +−

 
 

 

Fig. 2. Robot hinges connection to CNN 

Fig. 3. Template Encoding in an Array List 

 
 

] We need the robot to escape from a position without any 
specific direction. For this purpose, we must define a 
simple function for measuring the length between the 
central point (i.e. the gravity center) of the robot and the 
initial position. In this example, we didn’t define any 
detail for the locomotion behavior. After generating new 
chromosomes, we obtain the corresponding fitness 
value by applying the fitness function. The main point 
on applying the fitness function is that this function is 
not a real time procedure and that the result from the 
fitness calculation will be only ready after a certain 
period of time beyond the time the wave effect will act 
on robot hinges/actuators. In fact, one cycle of time (i.e. 
one period of the wave acting on the actuator) is not 
sufficient for measuring with good accuracy the position 
in space of the robot. Many cycles of the wave 
generated are necessary to be applied to robot actuators. 
By measuring some robot parameters like the position 
of the robot central point, the robot angle (related to the 
global coordinates of the system) and so on, the fitness 
function is quantified. In the initial state of the training 
phase the algorithm selects some randomly generated 
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chromosomes. There is no rule for evaluating how many 
chromosomes should be generated in the initial 
population. This number varies depending upon the 
complexity of the problem [10]. Some authors have 
defined 100 generations of chromosomes/genes for the 
initial state [10-12]. After each generation, a fitness 
function is used to evaluate the cost of chromosomes in 
the simulator leading to maximum efficiency. During 
our computations, each evaluation took approx. 3 
seconds and the program spent approx. 60 seconds to 
evaluate appropriated chromosomes. After this step, 
both chromosomes and fitness values will be sorted with 
the aim/goal of minimizing the fitness values in a link 
list. The next step concerns the crossover (i.e. both 
selection and breed) of chromosomes. Our experiments 
have shown that 50% of the best chromosomes are 
fitting for the crossover. It was found that this range has 
a good probability to generating the better 
chromosomes. In each step, we randomly select 2 
chromosomes in this range for the crossover process. 
Many evaluations have shown that the use of the “two-
point” technique for the crossover is the best solution. In 
this process we define two points (randomly) on the 
selected chromosomes; the contents of the 
chromosomes between these two points are exchanged 
(Fig. 4). In Fig. 4 P1 and P2 are two randomly selected 
points. S1 and S2 are two selected 
parents/chromosomes. The crossover leads to two new 
“children” (see Ch1 and Ch2 in Fig. 4) with new 
properties. During the trial and error process, we 
obtained that the good probability for mutation is 
around 10%. This rate is essential for avoiding the local 
minimum trap. In the long term, this rate of the mutation 
increases the quality of chromosomes in the list [13]. 
 
 
 
 
 
 

S1  1.2  2.0     -0.3 2.1    1.01   1.7  1.03 2.22 2.0 
S2 3.1 1.2 0.5  -1.3 1.73   0.2  -1.0 1.31 0.0 

 
 
 

Ch1  1.2  2.0     0.5  -1.3 1.73   0.2  1.03 2.22 2.0 
Ch2 3.1 1.2 -0.3 2.1    1.01   1.7  -1.0 1.31 0.0 

 
 

      
 

Fig. 4. Two-Point Crossover Method for Template ‘A’ 

3. Training Algorithm and Simulation Results 

One of the most important parts of this research is 
simulating both robot and environment. Some authors 
have implemented the robot and a virtual world by 
simulation of dynamic rigid bodies [14, 15]. The robot 
which depends on the physical parameters is 
implemented in a specific environment. Each part of the 
robot has a mass, a center of mass, an elasticity 
parameter, and both dynamic and static friction 
coefficients. Fig. 5 shows the implementation of a 
“snake robot” made up of joints with 2 degrees of 
freedom. The hinges do not have any limitation in 
rotation. Nevertheless, applying limitation in the 
rotation range is possible for each joint separately. 
According to Fig. 2, each column of the CNN processor 
is connected to robot actuators. Hence, each actuator of 
the robot should be connected to one of the columns 
separately. Since the robot actuators’ response time is 
not equal for all of them we do assume/take the 
maximum delay for sending the wave on the robot 
actuators. This delay interval is essential for the robot 
locomotion/movement. The goal of the learning process 
is finding optimum templates for moving the robot 
according to our desires. Finding these templates for a 
specific movement mechanism/pattern is essential and 
suitable for the use in a multi layer tasks manager or 
controlling unit. We are able to use these templates for a 
low level robotics activity. When a high level controller 
sends commands to the robot for performing a specific 
task another controller needs to manage some low level 
skills like running, turning, jumping and so on, which 
are necessary to ensure the realization of the high level 
task [2, 3, 16, 17]. Therefore, by understanding some 
robot properties the high level task management is very 
simple in the high level controller. In the above 
referenced evaluation, authors have tried to find lateral 
undulation locomotion for a snake robot. Each hinge has 
two degree of freedom (2-DOF) and can turn in 2 
directions. With the method based on genetic 
algorithms, an optimum template is obtained to make 
the robot moving or acting according to our desires. The 
most important point in this learning method is that we 
don’t predefine any robot kinematics for 
movement/locomotion in the fitness function. The 
fitness function is a simple and important function 
which defines the robot behavior in the environment. 
Complicated rules and equations in the fitness function 
cannot improve the robot behavioral performance; a 
simple definition can result to a best robot behavior. 
Eqs. (2) define the fitness function used for the snake 
robot lateral undulation locomotion shown in Fig. 5. 

 

P1 P2 

Bias 
Template ‘A’     
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the fitness function shows that the robot must 
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After a first generation of 100 chromosomes, the 
robot learns to move in the lateral undulation with a 

Y 

X 

Fig. 5. Snake robot lateral undulation 
locomotion 

Fig. 6. Wave generated for lateral undulation
locomotion 
(2.a)
corresponding set of CNN templates, which are 
obtained by the evolution method. These templates are 
shown in Eq. (3). A task manager in the high level can 
select a best template for performing a specific task by 
(2.b)

the robot. On the other hand, each set of templates 
corresponds to a specific robot movement/locomotion. 
In another evaluation we define a fitness function 
(2.c)

according to Eq. (4). This function is defined for robot 
rectilinear locomotion with a minimum sidle. According 
(2.d)
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to this equation, each term must be close to zero. The 
first term (RMS) shows that the robot must have a 
minimum deviance to the ‘x’ axis. The second term 
(AVG) shows that the robot should not be away from 
this axis. The last term (DIST) shows that the robot must 
crawl on the ‘x’ axis. After each breed, a new 
chromosome is added to the chromosome population. 
After checking of new chromosomes by the fitness 
function, they will be sorted in a population list ordered 
by the best fitness. According to the evolution theory, 
after many generations, some chromosomes (“children”) 
can inherit good properties from others (“parents”) 
which are best and fit chromosomes.  

After nearly 790 chromosome generations the robot 
would have learned to move with the highest speed. 
With Eq. (5), the CNN processor can generate a hinge 
wave according to Fig. 7. This wave is optimum for the 
robot rectilinear locomotion using an evolution 
algorithm. Fig. 8 shows the robot during the simulation 
in rectilinear locomotion. Fig. 9 is the plot of the time 
evolution of the fitness function obtained after 790 
generation of chromosomes; the robot has learned the 
best movement and locomotion. The extension of this 
architecture or learning method to another kind of robot 
is possible. By connecting the CNN outputs to 
unknown/arbitrary robot actuators, the robot can learn 
any locomotion. Due to the high capacity of CNN, we 
can connect the CNN output to the robot hinges 
actuators by any arrangement and structure. The results 
are same although both learning and optimization times 
might change. 

   
DIST

AVGRMSFitness 1
××= 

 

 Fig. 7. Wave generated for rectilinear 
locomotion 
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Fig. 10 shows a spider robot with 4 legs and 16 

degrees of freedom. Each hinge has 2 degrees of 
freedom in rotation. A 16×16 CNN array can be used to 
drive this robot. Fig.11 shows the sequences of the robot 
locomotion after the learning process. In this test, the 
robot must turn around the ‘z’ axis. Another test in    
Fig. 10 shows the design of a 6 legs insect robot for 
locomotion learning. The robot has 12 degrees of 
freedom in hinges. In this case, the aim is moving 
around the circle with a given radius. After nearly 2500 
iterations it was found that the result converged to zero. 
The CNN templates shown in Eq. (6) are optimized for 
this purpose. The fitness function in Eq. (7) is used to 
generate the CNN output wave shown in Fig. 13. 

Fig. 8. Snake Robot rectilinear locomotion 

-5

0

5

10

15

20

25

30

35

1 67 133 199 265 331 397 463 529 595 661 727 793 859

Series1
Series2

 

 (6) 

01.4,
95.002.388.4
49.261.22.3

52.305.303.4
,

35.23.123.2
2.368.135.0

64.185.173.1
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
= ITT BA

According to Eq. (7), the fitness value has a direct 
relation with the distance between the initial position 
point (Init_Center_Pos) and the robot position 
(Robot_Pos) divided by (R). Further, this function has 
an inverse relation with the robot movement (Robot_ 
Movement). 
 

Fitness = (1 - Dist (Init_Center_Pos, Robot_Pos) / R) 
*(1/Robot_Movement) Fig. 9. Series 1 is fitness-function value; Series2 is fitness-

function minimum value, during cycle of time in learning 
process.                                                                               (7) 

 
By optimizing the robot movement/locomotion, the 

fitness value will converge to zero. For the case of an 
unstructured robot, we have designed a broken-leg 
spider. In this test, the aim is learning the robot for the 
turning left and right skill as a complete and perfect 
spider. In Fig. 14 is shown the representation of this 
type of robot. 

 Fig. 10. Learning 4-legs semi-spider robot 

R 

Path Path 

Fig. 12. Moving 6-Leg Robot, around the Circle  
 Fig. 11. 4-leg robot spider, during the turning. 
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The definition of the fitness function is a little bit 
sensitive in this case. According to Eq. (8), the fitness 
value has a direct relation with the distance between the 
initial position point (Init_Center_Pos) and the robot 
position (Robot_Pos). Further, this function has an 
inverse relation with the robot angle (Robot_Angle). 
During the optimization phase, the aim/goal is 
converging the fitness function to zero. 

 
Fitness = Dist (Init_Center_Pos, Robot_Pos) 

*(1/Robot_Angle) 
(8) 
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 (9) 

After nearly 3300 chromosome generations and 
evolution, the robot is able to turn over its Yaw axis. 
Fig. 15 shows the result of the wave pattern for 
unstructured spider turning. The usability of the 
templates in this paper can be summarized as follows. 
Templates are stored in a list/memory. By a high level 
task management templates are selected. This selection 
depends on the high level task management decision 
and the environment situation as well. Further, a factor 
of high importance is the behavioral architecture and 
behavioral programming. In fact, low level skills (e.g.  
moving forward, turning left and right, jumping and 
etc.) for insuring the control of the robot are very 
important. The choice of templates is highly influenced 
by these factors. 

 

 
 
 
 
 
 
 
 Fig. 13. Wave generated for circular locomotion Fig. 15. Wave generated for Broken-Leg Spider; Turning Skill   
 

4. Conclusion 

This paper has presented a concept based on an 
evolutionary technique for the robot locomotion 
learning. The technique proposed was a combination of 
both CNN and genetic algorithms. The motivation of 
this combination can be justified by the high accuracy 
of the CNN processors and their good computational 
speed as well. Further, the topology of CNN is flexible 
for designing neuro-evolutive systems. The genetic 
algorithm was exploited for the training process in order 
to determine the best genes according to the pre-defined 
requirements (i.e. dada requirements) for the design 
process. Two types of robots were considered (i.e. both 
structured and unstructured robots). For each of these 
types, algorithms were developed to derive the 
appropriate chromosomes from which corresponding 
templates were derived. The results in this paper have 
shown that combining the cellular neural networks 
(CNN) technology with an evolution scheme like 
genetic algorithm (GA) is very effective and suitable for 
learning the movement /locomotion of different types of 
robots (e.g. high DOF robots, symmetrical, 
unsymmetrical and defective robots). Due to the 
intrinsic characteristics of the CNN, this type of neural 
network is very close to natural processors and therefore 
is efficient for building robot controllers. During the 
training process, we found that the complexity of the 
environment (e.g. rough, bumpy, and/or scaly surfaces) 
was a key factor influencing the results. Basically, the 
technique developed in this paper provided interesting 
results with high accuracy in complex environments. 
Nevertheless, we found that the accuracy of the results 
decreases with the increasing complexity of the 
environment (e.g. ecosystem and robot environment). 
An interesting issue under investigation in subsequent 
and future works is implementing/developing methods 
of high accuracy and efficiency for robot control in very 
difficult environments.  

Fig. 14. Broken Leg Spider as an unstructured robot 
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