
Networks of Mixed Canonical-Dissipative Systems

and Dynamic Hebbian Learning

Julio Rodriguez 1 2, Max-Olivier Hongler 1
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Abstract

We study the dynamics of a network consisting ofN diffusively coupled, stable-limit-cycle oscillators on
which individual frequencies are parametrized byωk, k = 1, . . . ,N. We introduce a learning rule which
influences theωk by driving the system towards a consensual oscillatory state in which all oscillators
share a common frequencyωc. We are able to analytically calculateωc. The network topology strongly
affects the relaxation rate but not the ultimate consensualωc. We report numerical simulations to show
the learning mechanisms at work and confirm our theoretical assertions.

Keywords:mixed canonical-dissipative systems, diffusive coupling, Laplacian matrix, algebraic connec-
tivity.

1. Introduction

In his famous monograph,1 I.I. Blekhman presents
a general formulation of synchronization problems
using the following dynamical system:

ẋk = Xk(xk;ωk)+Fk(x1, . . . ,xN,u),
u̇k = U(x1, . . . ,xN,u),

(1)

whereXk = (Xk,1, . . . ,Xk,nk),Fk = (Fk,1, . . . ,Fk,nk) and
U = (U1, . . . ,Uν) arenk− andν−dimensional vec-
tor fields, respectively. Theωk are sets of fixed
parameters ofsk elements. TheFk and U deter-
mine the connections between the local dynamics
Xk, k = 1, . . . ,N. The mathematical formulation in
Eqs.(1) covers a broad class of interacting dynamical

systems, ranging from coupled pendulums to com-
plex networks. In this article, we generalize Eps.(1)
by proposing the following system:

ẋk = Xk(xk,ωk)+Fk(x1, . . . ,xN,u),
u̇k = U(x1, . . . ,xN,u),
ω̇k = Ωk(x1, . . . ,xN,ωk),

(2)

where Ωk = (Ωk,1, . . . ,Ωk,sk) is a sk−dimensional
vector field determining the dynamics of what was
beforehand parameters, and what now becomes state
variablesωk. Indeed, Eqs.(2) allow the parameters
ωk in Eqs.(1) to evolve in time according toΩk, and
thus to become variables of the system.

Our basic motivation originates from a recent
paper2 where L. Righetti et al. show how to im-
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plement what they call a Dynamic Hebbian Learn-
ing (DHL) process by perturbing nonlinear paramet-
ric oscillators with an external time-dependent sig-
nal. As a paradigmatic illustration, they consider an
non-autonomous parametric Hopf oscillator (HO),
defined in its phase space by the following system
of equations:

ẋ = +ωy+
(
1−x2−y2

)
x+ ε sin(Ωt),

ẏ = −ωx+
(
1−x2−y2

)
y,

ω̇ = ε sin(θ(t))sin(Ωt),
(3)

whereε is a small positive constant, sin(Ωt) exter-
nally perturbs the basic dynamics of the HO (Ω is
a positive constant), and whereθ(t) := arctan(y(t)

x(t) ).
This is a particular case of Eqs.(2) where the system
is reduced to only one local dynamics (the Hopf os-
cillator), where the connection is given by the per-
turbing periodic signal, and where the third line of
Eqs.(3) determines the dynamics on the frequency
parameterω which is now to be seen as a variable.

The DHL process manifests itself by the fact that
the frequency of the underlying HOω asymptoti-
cally approximatesΩ, which is the frequency of the
external input signal. In other words, the external
signal “plastically” deforms the original limit cycle
dynamics. We speak about plasticity to reflect the
fact that, once this deformation is realized, it sub-
sists even if the external input is removed. This
generic behavior can be qualitatively understood by
the fact that the external perturbing signal gradu-
ally affects the frequencyω on the limit cycleL

(for Eqs.(3),L :=
{
(x,y) ∈ R

2 |x2 +y2 = 1
}

), but
leaves the shape ofL essentially invariant.

The main aim of the present paper is to substi-
tute in Eqs.(3) the role played by the external sig-
nal by the dynamics delivered by other limit cycle
oscillators, and to study the resulting mutual DHL
process. More generally, we will consider a col-
lection {Ok}

N
k=1 of independentmixed canonical-

dissipative systems(MCD),3 4 5 which exhibit limit
cyclesLk and different individualωk, k= 1,2, . . . ,N
on Lk. The action of the dissipative mechanism is
to stabilize the orbits onLk, and the canonic part of
the vector field (i.e. its Hamiltonian part) is respon-
sible for the circulation on the limit cycles. In our

class of models the mutual interactions between the
Ok are characterized by:

a)a networkN of diffusively coupledOk - i.e. the
row elements of the associated Laplacian coupling
matrix of the network add up to zero.
b) a dynamic Hebbian learning mechanism
(DHL). We allow the ωk to behave as addi-
tional variables and implement couplings between
these variables and the whole dynamics. Quali-
tatively speaking, the DHL coupling rule essen-
tially affects the frequency on the limit cyclesLk

while keeping the shape ofLk approximately un-
changed.

The DHL process and the resulting “plasticity” of
the dynamics confers a fundamentally different per-
spective compared to the abundantly studied syn-
chronization networks of limit cycle oscillators. In-
deed, interactions of the DHL type offer the possibil-
ity to drive the dynamics into a global (identical for
all Ok), stable oscillatory state which, once reached,
remains “frozen” even when the interactions are re-
moved. This final oscillatory behavior shared by all
Ok will be called theconsensual oscillatory state. In
this context, a (non-exhaustive) list of issues to be
addressed in this paper will read:

1) How to calculate the frequencyωc characteriz-
ing the final consensual state ?
2) How does the consensual frequency depend on
the Laplacian matrix associated to the network ?
3) How does the network influence the conver-
gence rate towards the the final consensual state?

In section 2 we propose the construction of an an-
alytically soluble class of coupled oscillators with
mutual interactions leading to a DHL rule. A
paradigmatic illustration of this class of dynamics is
thoroughly studied in section 3, where explicit and
fully analytical answers to questions 1) to 3) can be
given. Future research perspectives and conclusion
will be found in section 5.

2. Construction of a DHL network dynamics

The collection{Ok}
N
k=1 of oscillators will be chosen

to belong to the class of mixed canonical-dissipative
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systems which we briefly expose in 2.1.

2.1. Mixed canonical-dissipative systems

A member of our collection{Ok}
N
k=1 will be defined

as:

Ok





ẋk =

ẏk =

+ωk
∂Hk
∂yk

−ωk
∂Hk
∂xk︸ ︷︷ ︸

conservative evolution

+

+

gk(Hk)
∂Hk
∂xk

,

gk(Hk)
∂Hk
∂yk

,
︸ ︷︷ ︸

dissipative evolution

(4)
whereHk : R

2 →R
+ are evaluated at(xk,yk) andgk :

R
+ → R, k = 1, . . . ,N. TheHk functions areC2 and

positive definite and play the role of Hamiltonians
(i.e. energy). Subsequently, we shall assume that
Hk(xk,yk) = Ek uniquely defines a set of closed (con-
centric) curvesLk(Ek) in R

2 surrounding the origin.
The gk functions areC1, andgk(Hk(xk,yk)) are non-
conservative terms which, according to the value of
Hk, feed or dissipate energy from the Hamiltonian
system. In particular, ifgk(Hk(xk,yk)) vanishes for
Hk(xk,yk) = Ek, the dynamics is purely conservative
(i.e. only thecanonicalpart drives the dynamics)
and we have:

Hk(xk,yk) = Ek defines thelimit cycleLk(Ek)

with

Lk(Ek) :=
{
(x,y) ∈ R

2 |Hk(x,y) = Ek
}

.

The stability of theLk(Ek) will be determined by:

gk(Hk) > 0 in Ak

gk(Hk) < 0 in R
2\Ak

⇒ Lk(Ek) is stable,

gk(Hk) < 0 in Ak

gk(Hk) > 0 in R
2\Ak

⇒ Lk(Ek) is unstable,

(5)
where Ak stands for the interior ofLk(Ek), (i.e.
Ak := {(x,y) ∈ R

2 |Hk(x,y) < Ek}). Therefore, for
gk(Ek) = 0 and whenLk(Ek) is stable, the energy-
type controlgk(Hk(xk,yk)) drives all orbits towards the
stable limit cycleLk(Ek), which is hence an attractor.

The system defined by Eqs.(4) belongs to the gen-
eral class of mixed canonical-dissipative dynamics
(MCD) (Ref. 3, 4 and5). Subsequently, we shall use
the short hand notation:

Pk(xk,yk,ωk) := +ωk
∂Hk

∂yk
+gk(Hk)

∂Hk

∂xk
,

Qk(xk,yk,ωk) := −ωk
∂Hk

∂xk
+gk(Hk)

∂Hk

∂yk
,

with evaluation at(xk,yk). Observe that in Eqs.(4),
we restrict ourselves to MCD for whichωk are con-
stant. Having defined the individual dynamics, we
can characterize their interactions.

2.2. Network of diffusively coupled oscillators

The interactions between the MCD given by Eqs.(4)
will be realized via a simply connected networkN

with N vertices and without loops (i.e. its adjacent
matrix A is such that, for thejth edge,A j, j = 0 and
Ai, j ∈ {0,1} for j 6= i, j = 1, . . . ,N). Let L be the
associated Laplacian matrix, namelyL := A− D,
whereD is the diagonal matrix withD j, j being the
degree of edgej. Accordingly, we now consider the
dynamics:

ẋk =

ẏk =

Pk(xk,yk,ωk)

Qk(xk,yk,ωk)︸ ︷︷ ︸
MCD

+

+

Ckx

Cky︸ ︷︷ ︸
diffusive coupling

(6)

with Ckx andCky reading as:

Ckx := ε1(x,y)
N

∑
j=1

Lk, jx j ,

Cky := ε2(x,y)
N

∑
j=1

Lk, jy j ,

where 06 εl (x,y) < ε , l = 1,2 not simultaneously
vanishing andx := (x1, . . . ,xN), y := (y1, . . . ,yN).

Finally, we now introduce the DHL process into the
dynamics.
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2.3. Dynamic Hebbian learning for mixed
canonical-dissipative systems

Directly inspired by Eqs.(3) we now propose our
generalized DHL in the context of Eqs.(6). For
k = 1, . . . ,N, the dynamical system is given by:

ẋk =

ẏk =

ω̇k =

Pk(xk,yk,ωk)+ Ckx,

Qk(xk,yk,ωk)+ Cky,

Kk[Dy Ckx−Dx Cky],︸ ︷︷ ︸
DHL mechanism

(7)

with Dy andDx reading as:

Dy := η1(x,y)
N

∑
j=1

∂H j

∂y j
,

Dx := η2(x,y)
N

∑
j=1

∂H j

∂x j
.

where 06 Kk 6 κ is a set of learning coupling
strengths, and 06 ηl (x,y) 6 η , l = 1,2 are not si-
multaneously vanishing.
Observe at this point that the dynamics defined by
Eqs.(7) exhibits the salient features of the basic
model given by Eqs.(3). We have:

• whenCkx = Cky = 0, and for appropriate choices
of the gk(Hk(xk,yk)) terms, (see Eq.(5)), the local
dynamics exhibits a stable limit cycleLk,

• on the limit cycleLk, the local dynamics obeys a
(conservative) canonical Hamiltonian motion,

• a DHL-type mechanism explicitly affects the fre-
quencyωk of the orbits onLk.

For simplicity and without lost of generality, from
now on we shall systematically makeε1(x,y) =
ε2(x,y) = 1 andη1(x,y) = η2(x,y) = 1 in Eqs.(7).

Proposition 1. Let Kk > 0 for all k in the system
defined by Eqs. (7). Then:

J :=
N

∑
k=1

ωk(t)
Kk

(8)

is a constant of the motion.

Proof.

N
∑

k=1

ω̇k
Kk

=
N
∑

k=1
DyCkx−

N
∑

k=1
DxCky

= Dy
N
∑

k=1

N
∑
j=1

Lk jx j −Dx
N
∑

k=1

N
∑
j=1

Lk jy j

= Dy
N
∑
j=1

x j

N
∑

k=1
Lk j −Dx

N
∑
j=1

y j

N
∑

k=1
Lk j

= 0.

where the last equality identically vanishes due to
the diffusive character of the coupling matrixL.

Proposition 2. Assume that we have a col-
lection of identical MCD systems (i.e. Hk ≡
H for all k) admitting, in absence of coupling,
the same stable limit cycleLc := Lk(Ec) for all
k (i.e. for a fixed energy levelEc common to
all oscillators, we suppose that gk(Ec)) = 0 for
all k). Then, the synchronized orbit given by
S (t) := (xs(t),ys(t),ωc, . . . ,xs(t),ys(t),ωc) ∈ R

3N,
with ωc = constantand with:

gk(H(xs(t),ys(t))) = gk (Ec) = 0, (9)

is an exact solution of the dynamical system defined
by Eqs.(7).

Proof. For the synchronized orbit, we havexk(t) =
xs(t), yk(t) = ys(t) andωk(t) = ωc(t) for all k. The
diffusive nature of the coupling implies that the
termsCkx=Cky= 0 and thereforeω̇k(t) = 0. Hence,
theωk(t) are all the same constantωc.

So far, we have introduced a globally non-
conservative dynamical system given by Eqs.(7) for
which an explicit orbitS (t) is known. In addition,
our dynamics possesses one constant of motionJ
given by Eq.(8). One may now question whether the
orbit S (t) corresponds to a stable solution of the
globally non-conservative dynamics. As usual, lin-
earizing the dynamics aroundS (t) provides infor-
mation regarding its stability - this will be explicitly
performed in section 3 for systems with an underly-
ing circular symmetry. To make headway, assume
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thatS (t) is indeed a stable solution of the dynam-
ics given by Eqs.(7) and that we have lim

t→∞
ωk(t) = ωc

for all k. Hence,ωc corresponds to theconsensual
frequency on the common limit cycle Lc. In this
case, Proposition 1 and 2 provide explicit answers
to questions 1) and 2) raised in the introduction. In-
deed, Eq.(8) enables us to write:

if lim
t→∞

ωk(t) = ωc then
N

∑
k=1

ωc

Kk
=

N

∑
k=1

ωk(0)

Kk

and therefore, we end with:

ωc =

N
∑
j=1

ω j (0)
K j

N
∑
j=1

1
K j

. (10)

From Eq.(10), we conclude that the consensual fre-
quencyωc depends on the distribution of initial
conditions ωk(0) and on the coupling strength Kk

for k= 1, . . . ,N, but it does not depend on the cou-
pling matrix L and therefore not on the topology
of the coupling network. However, we shall see
that L directly affects the convergence rate towards
the consensual orbitS (t).

3. Network of coupled Hopf oscillators

In this section, we focus on a situation whereHk ≡H
for all k and where the underlying Hamiltonian reads
asH(x,y) = H(x2 +y2) = H(r2). The circular sym-
metry implies that the consensual limit cycleLc is a
circle and the circulation is a uniform rotation with
the consensual frequency given by Eq.(10). Due to
the cylindrical symmetry, it is advantageous to ex-
press the dynamics in polar coordinates:

ṙk = 2(1− r2
k)rk +

N
∑
j=1

Lk, j r j cos(φk−φ j)

φ̇k = −2ωk−
1
rk

( N
∑
j=1

Lk, j r j sin(φk−φ j)
)

ω̇k = Kk

( N
∑

l=1

( N
∑
j=1

Lk, j r l r j sin(φl −φ j)
))

.

(11)

Note that in the non-parametric case (i.e. when
ωk(t) = ωk), the phase dynamics in Eqs.(11) coin-
cides with the Kuramoto model in the presence of a
general coupling network as discussed in6. Here,
the exact solution of Eqs. (11) on which perturba-
tions will now be added, simply reads as:

Spc(t) = (rs(t),θs(t),ω(t), . . . , rs(t),θs(t),ωs(t))
= (1,−2ωct,ωc, . . . ,1,−2ωct,ωc) ∈ R

3N.

(12)
Rearranging the variables in Eqs.(11) by using the
permutation 3(k − 1) + n 7→ N(n− 1) + k (k =
1, . . . ,N n= 1,2,3) and linearizing aroundSpc(t)
enables us to write:




ρ̇
δ̇
ε̇


=




L−4Id O O

O L −2Id
O −2[K]L O






ρ
δ
ε




(13)
where Id is the identity matrix,[K] is a diago-
nal matrix withK1,K2, . . . ,KN on the diagonal and
whereρ := (ρ1, . . . ,ρN), δ := (δ1, . . . ,δN) andε :=
(ε1, . . . ,εN) are perturbations. To fulfill the conser-
vation law given by Eq.(8), we further impose the
that:

N

∑
j=1

ε j(0)

K j
= 0, (hereKk is constant for allk).

(14)
To explicitly exhibit the influence of the network,
we take a case whereKk := K for all k. SinceL is
symmetric, there exists an orthogonal matrixV such
that V⊤LV is a diagonal matrix[λ ] with its spec-
trum {λk}

N
k=1 on the diagonal. The network being

connected, there exists a uniquej such thatλ j is
zero and the rest of the spectrum is strictly nega-
tive. Without lost of generality, we assumeλ1 = 0.
Changing the basis of the system by means of a
(3× 3)-bloc matrix withV⊤ on its diagonal gives
us:




˙̃ρ
˙̃δ
˙̃ε


=




[λ ]−4Id O O

O [λ ] −2Id
O −2K[λ ] O






ρ̃
δ̃
ε̃


 .

(15)
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The upper left(N×N)-bloc in Eqs.(15) hasN real
negative eigenvalues, and the rest of the system is
described by the following(2×2)-blocs:

(
˙̃δ k
˙̃εk

)
=

(
λk −2

−2Kλk 0

)(
δ̃k

ε̃k

)
. (16)

Fork = 1, we have:

˙̃δ 1 = −2ε̃1
˙̃ε1 = 0.

This is a direct consequence of the conservation law
Eq.(8) and the restriction imposed by Eq.(14). For
k 6= 1 the eigenvalues of the System 16 are:

α± =
1
2

λk±
1
2

√
λ 2

k +16Kλk.

For a simple connected graph the spectrum{λk}
N
k=1

is negatively defined7 which ensures an (exponen-
tial) asymptotic convergence to the consensual state.
More precisely, we have a stable focus forλk ∈
]−16K,0[ and a stable node forλk ∈ ]−∞,−16K[.
The relaxation time is given byτrelax = F−1, where
F is the algebraic connectivity (i.e. theFiedler
number8) of the coupling network. Remember that
F is the largest non-vanishing eigenvalue of the as-
sociated Laplacian matrix.

4. Numerical simulations

In Figures 2, 3 and 4 we report numerical simula-
tions performed with five Hopf oscillators (HO) de-
fined byH(x,y) = x2 +y2 andg(H) = 1−H. Three
different topologies of network interactions are con-
sidered: “All to All”, “Crystal”and “All to One” (c.f.

Figure 1).

All to All Crystal

All to One

Fig. 1. Three types of network topologies with respective
Fiedler numberF(·): “All to All” ( FAtA = −5), “Crystal”
(FCry = −3) and “All to One” (FAtO = −1).

The learning mechanism can be observed in Figures
2, 3 and 4, and the final consensual frequency is
given by Eq.(8). All three figures have the same
time scale, so we can fully appreciate the fact that
the convergence ratesρ(·) clearly obey:

FAtA < FCry < FAtO ⇒ ρAtA > ρCry > ρAtO.

The smaller the Fiedler number, the faster the con-
vergence, and thus the convergence rate explicitly
depends on the topology of the network.

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

8.5

9

Time

ω
k

Learning rate (five HO − All to All connected)

Fig. 2. Time evolution of the frequenciesωk(t) for five
Hopf oscillators withK1 = 1, K2 = 1

2 , K3 = 5
4 , K4 = 5,

K5 = 1
3 ω1(0) = 9, ω2(0) = 5.35, ω3(0) = 6.5, ω4(0) = 5,

ω5(0) = 7.7 and with network topology “All to All”. The
consensual frequency, given by Eq.(10), isωc = 7.
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0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

8.5

9

Time

ω
k

Learning rate (five HO − Crystal connected)

Fig. 3. Time evolution of the frequenciesωk(t) for five
Hopf oscillators withK1 = 1, K2 = 1

2 , K3 = 5
4 , K4 = 5,

K5 = 1
3 ω1(0) = 9, ω2(0) = 5.35, ω3(0) = 6.5, ω4(0) = 5,

ω5(0) = 7.7 and with network topology “Crystal”. The con-
sensual frequency, given by Eq.(10), isωc = 7.

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

8.5

9

Time

ω
k

Learning rate (five HO − All to One connected)

Fig. 4. Time evolution of the frequenciesωk(t) for five
Hopf oscillators withK1 = 1, K2 = 1

2 , K3 = 5
4 , K4 = 5,

K5 = 1
3 ω1(0) = 9, ω2(0) = 5.35, ω3(0) = 6.5, ω4(0) = 5,

ω5(0) = 7.7 and with network topology “All to One”. The
consensual frequency, given by Eq.(10), isωc = 7.

5. Conclusions and Perspectives

Among the numerous possibilities of implementing
the DHL learning rule, networks of limit cycle os-
cillators with adapting frequencies offer a yet unex-
plored research topics with a vast potential for prac-
tical applications. We are here able to explicitly ap-
preciate the interplay between the DHL learning rule

on one hand and the connectivity of the underlying
interaction network on the other hand. In particular,
the possibility to analytically calculate the consen-
sual frequency (c.f. Eq.(8)) characterizing the circu-
lation of the final common attractor, and the observa-
tion that the the topology of the network participate
only to the convergence rate are truly remarkable
features. At this preliminary stage, we do however
not yet offer a complete and mathematically rigor-
ous treatment of the rich underlying dynamics.

Several questions remain open, among them the
characterization of the basin of attractionB of the
consensual state, which could be addressed by con-
structing ad hoc Lyapunov functions. In particular,
the dependence ofB on the set of coupling param-
eters{Kk}

N
k=1, and in the case of coupling networks

which can be modeled by multi-edge graphs, remain
to be studied.
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