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Abstract

We study the dynamics of a network consistind\Nodliffusively coupled, stable-limit-cycle oscillators on
which individual frequencies are parametrizedday k= 1,...,N. We introduce a learning rule which
influences thew by driving the system towards a consensual oscillatory state in which all oscillators
share a common frequenay. We are able to analytically calculat&. The network topology strongly
affects the relaxation rate but not the ultimate consensgalVe report numerical simulations to show
the learning mechanisms at work and confirm our theoretical assertions.

Keywords:mixed canonical-dissipative systems, diffusive coupling, Laplacian matrix, algebraic connec-

tivity.

1. Introduction

In his famous monograph).l. Blekhman presents
a general formulation of synchronization problems
using the following dynamical system:

X (Xi; ax) + Fe(Xa, - -, XN, ),
U (Xq,..., XN, U),

Xk =
o )
whereXy = (X¢1, ..., Xkn), Fk= (F1,-..,Fn,) and

U = (Uy,...,Uy) areny— andv—dimensional vec-
tor fields, respectively. They are sets of fixed
parameters ok elements. Thdv and U deter-
mine the connections between the local dynamics
X, k=1,...,N. The mathematical formulation in
Egs.(1) covers a broad class of interacting dynamical

systems, ranging from coupled pendulums to com-
plex networks. In this article, we generalize Eps.(1)
by proposing the following system:

X = XX, @) +Fe(Xe, ..., XN, U),
l:'lk = U(le"'7XN7u)7 (2)
W = Q(X1,...,XN,Qk),

where Qg = (Q1,...,Qks) is a sk—dimensional
vector field determining the dynamics of what was
beforehand parameters, and what now becomes state
variablesax. Indeed, Eqgs.(2) allow the parameters
wx in Egs.(1) to evolve in time according £o, and
thus to become variables of the system.

Our basic mativation originates from a recent
papef where L. Righetti et al. show how to im-
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plement what they call a Dynamic Hebbian Learn-
ing (DHL) process by perturbing nonlinear paramet-
ric oscillators with an external time-dependent sig-
nal. As a paradigmatic illustration, they consider an
non-autonomous parametric Hopf oscillator (HO),
defined in its phase space by the following system
of equations:

X = 4wy+ (1-x2—y?)x+esin(Qt),
y = —owx+(1- x2 Y?) Y, (3)
w = ssin(@(t))sm(Qt)

wheree is a small positive constant, $i@t) exter-
nally perturbs the basic dynamics of the HQ is

a positive constant), and whefgt) := arctar(%).
This is a particular case of Egs.(2) where the system
is reduced to only one local dynamics (the Hopf os-
cillator), where the connection is given by the per-
turbing periodic signal, and where the third line of
Egs.(3) determines the dynamics on the frequency
parameterw which is now to be seen as a variable.

The DHL process manifests itself by the fact that
the frequency of the underlying H@ asymptoti-
cally approximate®2, which is the frequency of the
external input signal. In other words, the external
signal ‘plastically’ deforms the original limit cycle
dynamics. We speak about plasticity to reflect the
fact that, once this deformation is realized, it sub-
sists even if the external input is removed. This
generic behavior can be qualitatively understood by
the fact that the external perturbing signal gradu-
ally affects the frequency on the limit cycle ¥
(for Egs.(3),-Z = {(x,y) € R?|x?+y? = 1}), but
leaves the shape d¥ essentially invariant.

The main aim of the present paper is to substi-
tute in Egs.(3) the role played by the external sig-
nal by the dynamics delivered by other limit cycle
oscillators, and to study the resulting mutual DHL
process. More generally, we will consider a col-
lection { &}, of independentmixed canonical-
dissipative system@®ICD),2 4 ®which exhibit limit
cycles.% and different individuaty, k=1,2,...,N
on %. The action of the dissipative mechanism is
to stabilize the orbits o¥, and the canonic part of
the vector field (i.e. its Hamiltonian part) is respon-
sible for the circulation on the limit cycles. In our

class of models the mutual interactions between the
Oy are characterized by:

a)a network.#” of diffusively coupledy - i.e. the
row elements of the associated Laplacian coupling
matrix of the network add up to zero.

b) a dynamic Hebbian learning mechanism
(DHL). We allow the ax to behave as addi-
tional variables and implement couplings between
these variables and the whole dynamics. Quali-
tatively speaking, the DHL coupling rule essen-
tially affects the frequency on the limit cycleg;
while keeping the shape d¥ approximately un-
changed.

The DHL process and the resultinglasticity’ of

the dynamics confers a fundamentally different per-
spective compared to the abundantly studied syn-
chronization networks of limit cycle oscillators. In-
deed, interactions of the DHL type offer the possibil-
ity to drive the dynamics into a global (identical for
all oy), stable oscillatory state which, once reached,
remains “frozen” even when the interactions are re-
moved. This final oscillatory behavior shared by all
Oy will be called theconsensual oscillatory statén

this context, a (non-exhaustive) list of issues to be
addressed in this paper will read:

1) How to calculate the frequenaey. characteriz-
ing the final consensual state ?

2) How does the consensual frequency depend on
the Laplacian matrix associated to the network ?

3) How does the network influence the conver-
gence rate towards the the final consensual state?

In section 2 we propose the construction of an an-
alytically soluble class of coupled oscillators with
mutual interactions leading to a DHL rule. A
paradigmatic illustration of this class of dynamics is
thoroughly studied in section 3, where explicit and
fully analytical answers to questions 1) to 3) can be
given. Future research perspectives and conclusion
will be found in section 5.

2. Construction of a DHL network dynamics

The collection{ & }r_; of oscillators will be chosen
to belong to the class of mixed canonical-dissipative
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systems which we briefly expose in 2.1.

2.1. Mixed canonical-dissipative systems

A member of our collectiod &}, will be defined
as:

: JH oH
o=ty + Ok(Hi) s
Ok
v — JHk OHy
Yk Wy % + gk(Hk) )
N—— N————
conservative evolutiondissipative evolution
4

whereHy : R? — R* are evaluated dk, yk) andgy :

Rt — R, k=1,...,N. TheH functions areC? and
positive definite and play the role of Hamiltonians
(i.e. energy). Subsequently, we shall assume that
Hk(x.y) = &k uniquely defines a set of closed (con-
centric) curves% &) in R? surrounding the origin.
The gk functions areC!, and gk(Hk(x.y)) are non-
conservative terms which, according to the value of
Hy, feed or dissipate energy from the Hamiltonian
system. In particular, if(Hkoxy)) vanishes for
Hik(xy) = &k, the dynamics is purely conservative
(i.e. only thecanonical part drives the dynamics)
and we have:

Hi(xyk) = &k defines thdimit cycle % (&)

with
L&) = {(%y) € R?|Hiixy) = &} -

The stability of theZ (&) will be determined by:

ok(Hk) > 0 in % _
g(H) <0inR2\ A Zk(4) is stable
Ok(Hi) < 0in % '
g(HO > 0inR2\ g~ k@ isunstable
(6)
where % stands for the interior of% &%), (i.e.

= {(xy) € R?|Hk(xy) < &}). Therefore, for

ok(8k) = 0 and when%(4) is stable, the energy-
type controlgk(Hk(x.)) drives all orbits towards the
stable limit cycle% &), which is hence an attractor.

The system defined by Egs.(4) belongs to the gen-
eral class of mixed canonical-dissipative dynamics
(MCD) (Ref. 3, 4 and®). Subsequently, we shall use
the short hand notation:

OH OHy

— 1 2K | g (H) X

Pl (X, Yk, @) i= +0x Em + ok(Hx) %
OHy JH

QX Vi ) 1= — o + G (Hi) =—

R E

with evaluation atxy,yx). Observe that in Egs.(4),
we restrict ourselves to MCD for whidly, are con-
stant. Having defined the individual dynamics, we
can characterize their interactions.

2.2. Network of diffusively coupled oscillators

The interactions between the MCD given by Eqgs.(4)
will be realized via a simply connected netwark
with N vertices and without loops (i.e. its adjacent
matrix A is such that, for the}'th edgeAjj=0and
A j € {01} for j #i, j=1,...,N). LetL be the
associated Laplacian matrix, namdly.= A — D,
whereD is the diagonal matrix witlD; ; being the
degree of edgé. Accordingly, we now consider the
dynamics:

% = R(oYoak) + Cx
Yo = Q%Yo wx) +  Cuy (6)
| ——— ——
MCD diffusive coupling
with Cyx andCyy reading as:
N
Cix: —81 xy ZLk’ij’
N
Cuy = &(xy) Y kY
j; '
where 0< g(x,y) < &, | = 1,2 not simultaneously

vanishing andk:= (Xg,...,Xn), Y= (Y1,---,YN)-

Finally, we now introduce the DHL process into the
dynamics.
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2.3. Dynamic Hebbian learning for mixed
canonical-dissipative systems

Directly inspired by Eqgs.(3) we now propose our

generalized DHL in the context of Egs.(6). For
k=1,...,N, the dynamical system is given by:
X% = B Yk o)+ Cix,
Yo = Qu(X;Yk )+ Cyy, %
W = Kk[Dy Gx— Dx Gy,

DHL mechanism

with Dy andDx reading as:

N oH:
Dy:=ni(xy) 5 =7,

j=1 yJ

N OH;
Dx:=na(xy) 3 —XJ

J

where 0< Kg < K is a set of learning coupling
strengths, and & n;(x,y) < n, | =1,2 are not si-
multaneously vanishing.

Observe at this point that the dynamics defined by
Egs.(7) exhibits the salient features of the basic
model given by Egs.(3). We have:

« whenCyx = Cyy = 0, and for appropriate choices
of the gk(Hk(x.y)) terms, (see Eq.(5)), the local
dynamics exhibits a stable limit cyclg;,

« on the limit cycle.%;, the local dynamics obeys a
(conservative) canonical Hamiltonian motion,

« a DHL-type mechanism explicitly affects the fre-
quencyay of the orbits on%.

For simplicity and without lost of generality, from
now on we shall systematically maka(x,y) =

£(xy) =1 andni(x,y) = n2(x,y) = 1in Eqgs.(7).

Proposition 1. Let Ky > O for all k in the system
defined by Egs. (7). Then:

N
J:= — 8
k; K ®)

is a constant of the motion.

Proof.

N N
= Z Dkax— Z Dkay

™Mz
e
|

AV T\J "N
= 2 iy L 2 i 2 Lk
%1 K& 517 ke

= 0

where the last equality identically vanishes due to
the diffusive character of the coupling mattix
0

Proposition 2. Assume that we have a col-
lection of identical MCD systems (i.e. gHe
H for all k) admitting, in absence of coupling,
the same stable limit cycle, ;= %&) for all
k (i.e. for a fixed energy levef, common to
all oscillators, we suppose thatyx@:)) = 0 for

all k). Then, the synchronized orbit given by
Z(t) = (Xs(t),ys(t), ax Xs(t),ys(t), ) € RN,
with w, = constantand with:

Ok(H (s0.50)) = Gk (&c) = 0, )

is an exact solution of the dynamical system defined
by Eqgs.(7).

Proof. For the synchronized orbit, we haxgt) =
Xs(t), Yk(t) = ys(t) and ax(t) = ax(t) for all k. The
diffusive nature of the coupling implies that the
termsCyx = Cyy = 0 and thereforey(t) = 0. Hence,
the ax(t) are all the same constadt. 0

So far, we have introduced a globally non-
conservative dynamical system given by Egs.(7) for
which an explicit orbit#(t) is known. In addition,
our dynamics possesses one constant of malion
given by Eq.(8). One may now question whether the
orbit .7(t) corresponds to a stable solution of the
globally non-conservative dynamics. As usual, lin-
earizing the dynamics aroungd’(t) provides infor-
mation regarding its stability - this will be explicitly
performed in section 3 for systems with an underly-
ing circular symmetry. To make headway, assume
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that.”(t) is indeed a stable solution of the dynam-
ics given by Egs.(7) and that we he}\iewldm(t) =

for all k. Hence,w. corresponds to theonsensual
frequency on the common limit cycle 4. In this
case, Proposition 1 and 2 provide explicit answers
to questions 1) and 2) raised in the introduction. In-
deed, Eq.(8) enables us to write:

it lim a(t) =

then ZKk Z Kk

ard therefore, we end with:

(10)
1
KJ

From EQq.(10), we conclude that the consensual fre-
guencya. depends on the distribution of initial
conditions w(0) and on the coupling strength Ky

for k=1,...,N, but it doesnot depend on the cou-
pling matrix L and therefore not on the topology

of the coupling network. However, we shall see
that L directly affects the convergence rate towards
the consensual orhi#’(t).

3. Network of coupled Hopf oscillators

In this section, we focus on a situation whélie=H

for all kand where the underlying Hamiltonian reads
asH(x,y) = H(x2+y?) = H(r?). The circular sym-
metry implies that the consensual limit cyctg is a
circle and the circulation is a uniform rotation with
the consensual frequency given by Eq.(10). Due to
the cylindrical symmetry, it is advantageous to ex-
press the dynamics in polar coordinates:

e = 2(1—rdr+ ; Lijrjcos(g— @)
j=

. N

& = —Zwk—i(z kifjsin(g— @)

. N N B

W = (z (Z kinrjsin(@ — (p)))

=1 j
(11)

Note that in the non-parametric case (i.e. when
wx(t) = wx), the phase dynamics in Egs.(11) coin-
cides with the Kuramoto model in the presence of a
general coupling network as discussecfinHere,
the exact solution of Egs. (11) on which perturba-
tions will now be added, simply reads as:

Fpe(t) = (rs(t), Bs(t), w(t), ..., rs(t), Bs(t), ws(t))
= (1, —2axt, G, ..., 1, —2at, ) € R3N,
(12)
Rearranging the variables in Egs.(11) by using the
permutation 8k — 1) +n+— N(n—1) +k (k =
1,...,N n=123) and linearizing around’(t)

enables us to write:
p L—4ld @) ©) P
o | = @) L —21d o
£ £
(13)

O —-2|KIL O
where Id is the identity matrix/K] is a diago-
nal matrix withK1,K>,...,Ky on the diagonal and
wherep := (p1,...,pn), 0 = (1,...,0y) ande :=
(&1,...,&n) are perturbations. To fulfill the conser-
vation law given by Eq.(8), we further impose the
that:

N £(0)
>k O
(14)

To explicitly exhibit the influence of the network,
we take a case whet§ := K for all k. SincelL is
symmetric, there exists an orthogonal ma¥fisuch
that V'LV is a diagonal matri¥A] with its spec-
trum {A}p_; on the diagonal. The network being
connected, there exists a uniqjiesuch thatj; is
zero and the rest of the spectrum is strictly nega-
tive. Without lost of generality, we assume = O.
Changing the basis of the system by means of a
(3 x 3)-bloc matrix withV " on its diagonal gives

2)

p A]-4d O O
5 ( 0 A —2id

0 -2K[A] O

(hereKis constant for ak).
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The upper left(N x N)-bloc in Egs.(15) hadl real Figure 1).
negative eigenvalues, and the rest of the system is
described by the following2 x 2)-blocs:

S . A 2 &
( E: ) = ( KA 0 ) ( 3 > (16) Al to All Crystal

Fork =1, we have:
All to One

01=-2¢ £=0. Fig. 1. Three types of network topologies with respective

Fiedler numberZ.y: "All to All" (| Faa = —5), “Crystal”
(Zcry = —3) and "All to One” (Fa0 = —1).
This is a direct consequence of the conservation law
Eq.(8) and the restriction imposed by Eq.(14). For

k1 the eigenvalues of the System 16 are: The learning mechanism can be observed in Figures

2, 3 and 4, and the final consensual frequency is
given by Eq.(8). All three figures have the same

1 1 time scale, so we can fully appreciate the fact that
s = E)\k 5y AZ+ 16K A the convergence ratgs, clearly obey:

Tan < Fery < Fao = PaA > Pery > PAO-

For a simple connected graph the spectlap?qa}'lz':1
is negatively definedwhich ensures an (exponen-  The smaller the Fiedler number, the faster the con-
tial) asymptotic convergence to the consensual state. vergence, and thus the convergence rate explicitly

More precisely, we have a stable focus fr € depends on the topology of the network.
| — 16K, 0[ and a stable node foy, €] — o0, —16K].
The relaxation tlme iS given bﬁelax — g—l, Where ‘ Learning r‘ate (five HO‘—AIIto All c‘onnected) ‘

Z is the algebraic connectivity (i.e. theedler
numbe?f) of the coupling network. Remember that
Z is the largest non-vanishing eigenvalue of the as
sociated Laplacian matrix.

o1
4. Numerical simulations

In Figures 2, 3 and 4 we report numerical simula-

tions performed with five Hopf oscillators (HO) de- Fig. 2. Time evolution of the frequencies(t) for five
ﬁned byH (X,y) — X2+y2 andg(H) —1—H. Thl‘ee HOpf oscillators WIthKl =1, K2 =3, K3 =2 K4 =5,

Ks =1 wi(0) =9, w(0) = 5.35,w3(0) = 6.5, wy(0) =5,
ws(0) = 7.7 and with network topology “All to All”. The
consensual frequency, given by Eq.(10)uis= 7.

different topologies of network interactions are con-
sidered: “All to All", “Crystal”and “All to One” (c.f.
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Learning rate (five HO — Crystal connected)
T T T T

Time

Fig. 3. Time evolution of the frequencies(t) for five
Hopf oscillators withK; = 1, Ko = 3, K3 = 2, K4 = 5,
Ks= 3 w1 (0) =9, w(0) = 5.35, w3(0) = 6.5, au(0) = 5,
ws(0) = 7.7 and with network topology “Crystal”. The con-
sensual frequency, given by Eq.(10)ws= 7.

Learning rate (five HO — All to One connected)
T T T T

I
Time

Fig. 4. Time evolution of the frequencies(t) for five
Hopf oscillators withK; = 1, Ko = 3, K3 = 3, K4 = 5,

Ks= 3 w1 (0) =9, w(0) = 5.35, w3(0) = 6.5, au(0) = 5,
ws(0) = 7.7 and with network topology “All to One”. The
consensual frequency, given by Eq.(10)wis= 7.

5. Conclusionsand Perspectives

Among the numerous possibilities of implementing
the DHL learning rule, networks of limit cycle os-

cillators with adapting frequencies offer a yet unex-
plored research topics with a vast potential for prac-
tical applications. We are here able to explicitly ap-
preciate the interplay between the DHL learning rule

on one hand and the connectivity of the underlying
interaction network on the other hand. In particular,
the possibility to analytically calculate the consen-
sual frequency (c.f. EqQ.(8)) characterizing the circu-
lation of the final common attractor, and the observa-
tion that the the topology of the network participate
only to the convergence rate are truly remarkable
features. At this preliminary stage, we do however
not yet offer a complete and mathematically rigor-
ous treatment of the rich underlying dynamics.

Several questions remain open, among them the
characterization of the basin of attractigf of the
consensual state, which could be addressed by con-
structing ad hoc Lyapunov functions. In particular,
the dependence o® on the set of coupling param-
eters{Ky}r_,, and in the case of coupling networks
which can be modeled by multi-edge graphs, remain
to be studied.
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