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Abstract 

The estimation of cost and production functions in economics usually relies on standard specifications which are 
less that satisfactory in numerous situations. However, instead of fitting the data with a pre-specified model, 
Artificial Neural Networks (ANNs) let the data itself serve as evidence to support the model’s estimation of the 
underlying process. In this context, the proposed approach combines the strengths of economics, statistics and 
machine learning research and the paper proposes a global approximation to arbitrary cost and production 
functions, respectively, given by ANNs. Suggestions on implementation are proposed. All relevant measures such 
as Returns to Scale (RTS) and Total Factor Productivity (TFP) may be computed routinely. 

Keywords: Neural networks, Econometrics, Production and Cost Functions, RTS, TFP. 

1. Introduction 

Many decisions in economics and business depend on 
accurate approximations of the cost and production 
functions. See Ref. 1. Commonly used specifications 
such as the Cobb-Douglas or the Translog are intuitively 
appealing and computationally straightforward. 
However, they are often less than satisfactory because 
they attempt to explain the complex variation in cost or 
production with a quite simple mathematical function 
despite the fact the real – world data are much more 
complicated. As a result, their explanatory power is 
often quite low. On the contrary, the nonparametric 
feature of Artificial Neural Networks (ANNs) makes 
them quite flexible and attractive in modeling economic 
phenomena where the theoretical relationship is not 
known a priory. See Ref. 2. Thus, instead of fitting the 
data with a pre-specified model, ANNs let the data itself 
serve as evidence to support (or reject) the model’s 
estimation of the underlying process.  

 
 
ANNs have found numerous applications in finance. 

See Refs. 4-6. However, with the exception of very few 
papers (see, for instance Refs. 7-10) limited research on 
pure economic modeling has been done.  

This paper combines tools from the statistical 
community with ANN technology. It proposes new 
flexible cost and production functions, respectively, 
which are based on ANNs allowing for multiple 
outputs. Contrary to widely used local approximations 
like the Translog, the generalized Leontief or the 
symmetric McFadden form, the proposed flexible 
functions are global approximations to the unknown 
functions. See Refs 11-13, respectively. The Fourier 
flexible form is also a global approximation but it 
requires an excessive number of parameters. See Refs 
14-15. The ANN flexible forms provide better 
approximation and use fewer parameters. See Ref. 16. 
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2. Elements of Neural Networks 

Neural networks are “data-driven, self-adaptive 
nonlinear methods that do not require specific 
assumptions about the underlying model”. See Ref. 2. 
By combining simple units with multiple intermediate 
nodes, ANNs can approximate any smooth nonlinearity. 
See Ref. 17. As demonstrated in Refs. 17-18, NNs have 
the ability to approximate a large class of functions 
while keeping the number of free parameters to a 
minimum. 

In mathematical terms, ANNs are collections of 
transfer functions that relate an output variable Y  to 
certain input variables 1' [ ,..., ]nX X X= . The neural 
network architecture employed here is a single-layer 
feedforward network (single-layer perceptron). In our 
network design, the second (hidden) layer applies a 
linear transformation to the input variables thus 
providing the interface between the network and the 
data. The output layer is non-linear, supplying the 
approximation to the unknown function by combining 
non-linearly the intermediate variables. See Ref. 19.  
More specifically, the input variables are combined to 
form m  intermediate variables 1,..., mZ Z  where: 

 

, 1,...,i iZ X i m!!= = ! ! !!!"#$!!

where n
i R! " are parameter vectors. The intermediate 

variables are, thus, combined nonlinearly to produceY :  

1

( )
m

i i
i

Y Z" #
=

=# !! ! "%$!

where #  is an activation function, the i" ’s are 
parameters and m  is the number of intermediate nodes 
For various activation functions see Ref. 19. 

3. The Cost Function 

In economics, the cost function is a function of input 
prices and output quantity and its value expresses the 
cost of producing that output given the input prices. Let 

np R" denote a price vector corresponding to n  
factors of production, and Jy R+"  the output vector. In 
economics, it is typically assumed that the cost function 
depends upon the price and output vectors, respectively. 
The neural cost function has the form: 

0
1

ln ( , ) (ln ln ) ln
m

k k k
k

C p y p y p" " # ! $ %
=

= + $ + $ + $# !!"&$!

where ( , )C p y  is the cost function, 
, ,n J

k k ka R R R! $" " " and nR% "  are parameters, 
and m  is the number of intermediate nodes. For vectors 
a  andb , a b$  denotes the inner product. Of course, the 
cost function depends also on the values of the 
parameter vector [ , , , ]k k kP a ! $ %= . A procedure for the 
empirical estimation of the parameters will be 
developed in Sec. 3.3. In the intermediate sections, we 
will show how to derive relevant economic measures 
from the neural cost function assuming that the 
parameter vector is known. 

Factor share equations are derived by (3) via formal 
differentiation with respect to prices using Shephard’s 
lemma. See Ref. 20. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
1

ln ( , )
( , ) (ln ln )

ln

m

i k ki k k i
ki

C p y
w p y p y

p
" ! # ! $ %

=

% != = $ + $ +
% # '!

! 1,...i n= ! "($!

where iw  is the factor share with respect to the i-th 
factor. 

In order for (3) to represent a proper cost function, 
( , )C p y  must be concave in p, which is expressed by the 

condition that the Hessian matrix ( )2D C p  is negative 
semidefinite for every np R+" . Concavity is, 
traditionally, not imposed a priori but checked a 
posteriori.  

3.1.  Returns to Scale  

Returns to scale describe what happens as the scale of 
production increases. Returns to scale refers to a 
technical property of production that examines changes 
in output subsequent to a proportional change in all 
inputs. If output increases by the same proportional 
change then there are constant returns to scale (CRTS). 
If output increases by less than that proportional change, 
there are decreasing returns to scale (DRS). If output 
increases by more than that proportion, there are 
increasing returns to scale (IRS) See Ref. 21. 

The neural cost function does not place a priori 
restrictions on the behavior of returns to scale like other 
functional forms. It is known that if RTS<1 ( 1& ) the 
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production technology is characterized by decreasing 
(non-decreasing) returns to scale. For the neural cost 
function: 

1 1 1

ln ( , )
(ln ln )

ln

J J n

k ki k k
i i ki

C p y
RTS p y

y
"$ # ! $

= = =

% != = $ + $
%# ## ! ")$!!!

3.2.  Total Factor Productivity 

In economics, growth in total factor productivity (TFP) 
represents output growth not accounted for by the 
growth in inputs and presumably changes over time. See 
Ref. 22. It is often used as a proxy for technical change.    

If we modify (3) to include time ( )t  as an index of 
technical change, we have: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

0
1

ln ( , ) (ln ln ) ln
m

k k k k
k

C p y p y t p" "# ! $ & %
=
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Therefore: 

1

ln ( , )
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By definition, total factor productivity measure is given 

by lnyTFP
t

%=
%

. Since: ln ( , )/
ln ( , )/ ln
C p y t

TFP
C p y y

% %=
% %

 

it follows that: 
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Apparently, TFP as derived from the neural cost 

function is a weighted average of coefficients k

k

&
$

. The 

weights are normalized first-order derivatives of the 
activation functions at the different nodes of the neural 
network. 

3.3. Model Building  

Empirical estimation is based on the cost function and 
the system of share equations. The system is nonlinear 
in the parameters. Although the system is nonlinear in 
terms of the parameters k!  and k$  the neural cost 
function’s global approximation properties do not 

depend on this nonlinearity. As has been shown in Ref. 
16, one may select the nonlinear parameters by a 
random search procedure, fix their values at the 
outcome of the random search, and estimate the linear 
parameters by the usual econometric methods. This will 
not affect the global approximation properties of the 
network. The weights are estimated and refit from 
scratch instead of being updated from previous data 
with a learning algorithm. See Ref. 18. A modification 
of the procedure in Ref. 16 has to be followed here, 
because we have a system of equations instead of a 
single equation. The procedure is as follows: 
Step 1: Let ( )i

k!  and ( )i
k$  ( 1,.., )k m=  be drawn from a 

uniform distribution. 
Step 2: Given these parameters, estimate k"  
( 1,.., )k m=  and %  by Ordinary Least Squares 
(O.L.S.) applied to the cost function:  

1

ln ( , ) (ln ln ) ln
m

t t k t k k t t t
k

C p y p y p v'" "# ! $ %
=

= + $ + + $ +# '!!

1,..,t T= !"-$!

where T  denotes the number of observations, tp  the 
vector of factor prices of date t , and ty  the output level 
of date t. 
Step 3: Compute the residual sum of 
squares ( ) ( ) ( )( , )i i iSSR SSR ! $' . Repeat for 1,..,i I=  
and select the values !  and $  that yield the minimum 
value of ( )iSSR . 
Step 4: Estimate the following system of equations: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

,
1

ln ( , ) (ln ln ) ln
m

t t k t k k t t o t
k

C p y p y p e'" " # ! $ %
=

= + $ + + $ +# !!

! "#.a$!

,
1

(ln ln )
m

it k ki t k k t i i t
k

w p y e" ! # ! $ %
=

!= $ + + +# '!

! "#.b$!

! 1,.., 1i n= ( !!!!! !
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where 0 1 1,[ , ,..., ]t t t n te e e e ( !'  is a vector random 

variable, distributed as i.i.d. (0, )N )  where /  is a 
covariance matrix. System (10a) and (10b) is linear in 
the parameters [ , ] n mR" % +"  and can be estimated 
using standard, iterative seemingly unrelated regressions 
equations technique (SURE). See Ref. 23. This is 
feasible even for extremely large systems. 
 

4. The Production Function 

Let nx R" denote an input vector corresponding to n  
factors of production, and JR+""  the output vector. 
The neural production function, for each output, has the 
form: 

 0
1

ln ( ) (ln ) ln
im

i i ki i ki i
k

Y x a x x" # ! %
=

= + $ + $#
 1,..., 1i J= ( !!! (11) 

where ( )iY x  is the production function of output i, 
, ,n n

ki ki ia R R R! %" " "  are parameters and im  is the 
number of intermediate nodes. For the last output J the 
equation governing its production process has the 
following form: 

0
1

ln ( ) (ln ) ln ln
Jm

J J kJ J kJ
k

Y x a x Y x" # ! $ (
=

= + $ + $ + $# ! "#%$!!

where ,J nR R$ (" "  are parameters, and Jm  is the 
number of intermediate nodes for output J. 

Economic theory dictates that the production 
function (11) must satisfy certain properties. For 
instance, in the first place, ( )iY x  must be increasing in x 
and ( )JY x  decreasing in Y . In addition, quasi-
concavity of ( )iY x  and ( )JY x  should also be assured. 
These assumptions are not imposed a priori but rather 
checked a posteriori. Finally, ( )JY x  must be 
homogeneous of degree one, a fact which places 
parametric restrictions on the production function. More 
precisely, homogeneity of degree one implies: 

!
1

0
J

j
j

$
=

=# !! "#&$!

4.1.  Returns to Scale 

As we have seen, returns to scale (RTS) describe what 
happens as the scale of production increases. The neural 
production function does not place a priori restrictions 

on the behavior of returns to scale. It is known that 
typically the RTS are equal to the sum of the output 
elasticities of the various inputs. Let j) denote the 

elasticity of output with respect to factor x j : 

( ) ln ( )
, 1,...,

( ) ln
jj

j j

xx Y x
j n

x Y x x
) %* %= $ = =

% %
!! "#($!

where nx R" denotes the input vector corresponding to 
n  factors of production.  

Therefore, for the neural production function RTS 
for each output are equal to: 

1

ln ( )
, 1,..., 1

ln

n
i i

j j

Y x
RTS i J

x=

%= = (
%# !! "#)$!

Consequently: 

1 1 1

(ln ) ,
imn n

i
kj ki i ki q

j k q

RTS a x! # ! %
= = =

!= $ +## # 1,..., 1, 1,...,i J j n= ( = !! "#*$!

RTS for the last output J equals to: 

 
1 1

(ln )
Jmn

J
jkJ kJ J kJ

j k

RTS a x! # !
= =

!= $ +## "

 
1

1 1 1 1

( (ln ))
i

q

mJ n n

i kj ki i ki
i j k q

a x$ ! # ! (
(

= = = =

! $ +# ## #  (17) 

4.2. Total Factor Productivity  

If we modify (11) to include time ( )t  as an index of 
technical change, the production function can be written 
as follows: 

0
1

ln ( ) (ln ) ln
im

it i ki i ki ki i
k

Y x a x t x" # ! & %
=

= + $ + + $# !

!! 1, ..., 1i J= ( ! "#,$!

         By definition Total Factor Productivity (TFP) 
measure, for each output, is given by: 

!
ln ( )it

it
Y x

TFP
t

%=
%

!!! "#-$!

Thus, it follows that:  
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1

(ln ), 1,..., 1
im

it ki ki i ki ki
k

TFP a x t i J& # ! &
=

!= $ + = (# ! "%.$!

For the last output J, we have: 

1

(ln )
Jm

Jt kJ kJ J kJ kJ
k

TFP a x t& # ! &
=

!= $ + +# !!

1

1 1

( (ln ))
imJ

i ki ki i ki ki
i k

x t$ & " # ! &
(

= =

! $ +# # ! "%#$!

We can see that, in general, TFP depends on time and 
inputs. 

 

4.3.  Model Building  

Similarly to the cost function, estimation is based on the 
system of production functions (11) – (12). The system 
is highly nonlinear in the parameters. The procedure is, 
practically, the same as before: 
Step 1: Let ( )i

k! be drawn from a uniform distribution. 
Step 2: Given these parameters, estimate ( )i

k" , ( )i
k$ , 

# ( )i and  $ ( )i  by means of the system: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

0 ,
1

ln ( ) (ln ) ln
im

it t i ki i t ki t i i t
k

Y x a x x e" # ! %
=

= + $ + $ +# ! "%%a$!!

0
1

ln ( ) (ln ) ln
Jm

J t J kJ J t kJ t
k

Y x a x y" # ! $
=

= + $ + $#
,ln t J tx e(+ $ + !!! 1, ..., 1i J= ( !!!!!!!! "%%b$!

where tx  denotes the vector of inputs of date t , ty  the 
output levels of date t, 0 1 ,[ , ,..., ]t t t J te e e e !'  is a vector 
random variable, distributed as i.i.d. (0, )N ) , )  is a 
covariance matrix. The system of equations (22a) and 
(22b) is linear in the parameters ( )i

k" , ( )i
k$ , ( )i0 and 

( )i1 and can be estimated using standard, iterative 
SURE. This is feasible even for extremely large 
systems. 
Step 3: Compute the determinant of the covariance 
matrix ( )det det ( )i !) ' ) . Repeat for 1,..,i I=  and 
select the values !  that yield the minimum value of 

( )det i) . 

Step 4: For !  that yield the minimum value of ( )det i)  
re-estimate the system and keep the estimated values 
for parameters ( )i

k" , ( )i
k$ , ( )i0  and ( )i1 .  

5. Model Selection 

Although it has been demonstrated that ANNs can 
approximate any nonlinear function with arbitrary 
accuracy, no widely accepted guideline exists in 
choosing the appropriate model for empirical 
applications. See Ref. 2. Consequently, the number of 
nodes m could be selected by using the 2

adjR  criterion.   
2R  is a statistical measure of how well the 

estimated line approximates the real data point and a 
value equal to 1 indicates perfect fit to the data. In this 
framework, 2

adjR is a modification of 2R  that adjusts 
for the number of explanatory terms in a model, i.e. the 
number of independent variables and the number of 
data points. According to this very popular criterion in 
model selection one should select the number of nodes 
that maximizes the 2

adjR . When 2
adjR finds a global 

maximum, one should stop adding explanatory terms 
See Ref. 18. Alternatively, Schwartz’s criterion or 
Akaike’s criterion could be used. See Refs 24-25, 
respectively.  

Finally, it should be noted that the algorithm for 
randomly drawing parameters from a hyper-rectangle to 
estimate the cost and production functions could be 
refined by means of more sophisticated optimization 
techniques in case of very large dimensional problems.   

 

6. Empirical Results 

6.1. Data and Variables 

The data are taken from the commercial bank and bank 
holding company database managed by the Federal 
Reserve Bank of Chicago over the 1989-2000 time 
span. The dataset is based on the Report of Condition 
and Income (Call Report) for all U.S. commercial banks 
that report to the Federal Reserve banks and the FDIC. 
The output variables are: (1) installment loans (to 
individuals for personal/household expenses), (2) real 
estate loans, (3) business loans, (4) federal funds sold 
and securities purchased under agreements to resell, and 
(5) other assets. The input variables are: (1) labor, (2) 
capital, (3) purchased funds, (4) interest-bearing 
deposits in total transaction accounts and (5) interest-
bearing deposits in total non-transaction accounts. 
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6.2. Results for the Cost Function 

We followed the procedure described earlier and 
estimated the parameters[ , ] n mR2 0 34 . However, the 
desirable number of nodes m  also has to be selected 
using one of the methods described earlier. 

2
adjR criterion is depicted in Fig. 1. Schwartz’s and 

Akaike’s criteria led to similar results.  
It is clear that the 2R and 

2
adjR  find a global 

maximum for m=7 nodes. So, for an ANN with m=7 
modes and activation function 1( ) (1 )xx e5 6 67 3 the 
estimated coefficients !, # are statistically significant 
for almost all of the estimated coefficients.  

Next, the RTS are computed through equation (5) 
and are found to follow a Gaussian-like distribution 
around unity (1). This result implies, roughly speaking, 
constant RTS and can be characterized as expected (see 
Fig. 2) because, as a result of the optimization principle, 
the production function for the firm will generally 
exhibit constant RTS.   

The factor shares of the five (5) inputs were 
calculated and were found to range between 0 and 1, as 
expected.  

Subsequently, the issue of concavity is investigated. 
As it has already been mentioned, the concavity 

condition can be checked by calculating the eigenvalues 
of the Hessian matrix for each observation and 
examining if they are negative. It was confirmed that the 
vast majority of eigenvalues were negative implying 
that the cost function is, practically, globally concave 
with respect to prices, a result which is consistent with 
neoclassical economic theory. See Ref. 21.  

For each observation there were five eigenvalues 
equal to the dimension of the Hessian matrix. More 
precisely, for each observation, the four greater (in 
absolute value) eigenvalues were negative. Also, the 
lower eigenvalues for each observation have generally a 
much greater absolute value than its most positive 
eigenvalue. In total, approximately 90% of all 
eigenvalues were found to be negative. Any devation 
from this rule can be attributed to omitted variables, 
measurement errors, and inefficiency.  

A failure of the proposed functional form to comply 
with this assumption would imply empirical findings 
non-consistent with neoclassical economic theory. 
However, not all cost functions proposed, so far, in the 
empirical literature satisfy this assumption, despite it 
being dictated by neoclassical economic theory. 

Finally, in Fig. 3, the histogram of all TFP values 
(%) is depicted. We see that TFP is negative on the 
average with a longer tail to the left indicating the 
prevalence of negative technical progress for the 
organizations of the US Banking sector in the 1989-
2000 time span. 

6.3. Results for the Production Function  

The estimation procedure described earlier was used to 
estimate the parameters 8 9 1

( 1) 1

, , ,

J

i
i

J n m

a R0 : 1 7

3 3 6;
4 . 

However, a choice has to be made regarding the number 
of nodes of the neural network. The system 2

wideR  had 
a maximum for 3im 7  nodes (Fig. 4). Schwartz’s and 
Akaike’s criteria led to similar results.  

 

  Fig.1
2R and 

2
adjR and the number of number of nodes 
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Fig. 2. Histogram of RTS. 
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Fig. 3. Histogram of TFP. 
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Consequently, for the rest of our analysis of 
production functions we set 3im 7  ( 1,...,i J7 ). As it 

can be inferred from the value of the 2
wideR , the neural 

network production function provides a very good 
approximation to the actual production function. Also, 
almost all of the estimated coefficients of the production 
functions were statistically significant.  

Next, the RTS are also depicted in Fig. 5. 
     The histogram of TFP is depicted in Fig. 6. 

Finally, the hypothesis that ( )JY x  is increasing in x, 
decreasing in )(xYi , for 1,...,1 67 Ji , i j<  and the 
quasi-concavity of ( )iY x  and ( )JY x  were easily 
checked a posteriori and were found to be, in general 
terms, consistent with neoclassical economic theory. 
 

7. Conclusions  
Commonly used cost and production functions usually 
estimated by means of linearized multifactor models are 
known to be less than satisfactory in numerous 
situations. However, ANNs let the data itself serve as 
evidence to support the model’s estimation of the 

underlying process. In this context, the proposed 
procedure combines the strengths of economics, 
statistics and machine learning research.  

The paper proposed a global approximation to 
arbitrary cost and production functions, respectively, 
given by ANN specifications. All relevant measures 
such as RTS and TFP were computed routinely. The 
empirical application referred to a large panel data set 
consisting of all U.S. commercial banks that report to 
the Federal Reserve banks over the time period 1989-
2000. The results of the empirical application were, in 
general, consistent with conventional economic theory.  

In general, the proposed models are superior to 
traditionally applied techniques since they are both 
nonparametric and stochastic and offer greater 
flexibility. See further Ref. 10. Also, the proposed ANN 
approaches can learn from experience and can 
generalize, estimate, predict, with few assumptions 
about data and relationships between variables. Hence, 
ANNs have an important role when these relationships 
are unknown or non-linear as is increasingly the case in 
economic analysis, provided there are enough 
observations. See also Ref. 9.  

The proposed methodologies extended further the 
limited approaches to production theory in the sense that 
that they incorporated certain conditions dictated by 
production theory and were able to extract all relevant 
measures such as RTS and TFP. Analytically, the 
proposed models give an approximation to any cost and 
production function; they are flexible with respect to 
time as an indicator of TFP; they allow for arbitrary 
RTS; they are simple to estimate. 

Apparently, ANNs are promising alternatives to 
traditional approaches. Clearly, future research on the 
subject would be of great interest including the 
construction of an output distance function based on 
ANNs for measuring technical efficiency.   
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   Fig. 4. 2R  and the number of number of nodes 
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Fig. 5. Histogram of RTS for the Jth output 

 
    Fig.6. Histogram of TFP for the Jth output 
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Note  

All empirical results, including the ones that are not 
illustrated explicitly, are available upon request by the 
authors.  
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