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Abstract 

   Recognition of characteristic patterns is proposed in this paper in order to diagnose the presence of 
electromechanical faults in induction electrical machines. Two common faults are considered; broken rotor bars and 
mixed eccentricities. The presence of these faults leads to the appearance of frequency components following a 
very characteristic evolution during the startup transient. The identification and extraction of these characteristic 
patterns through the Discrete Wavelet Transform (DWT) have been proven to be a reliable methodology for 
diagnosing the presence of these faults, showing certain advantages in comparison with the classical FFT analysis 
of the steady-state current. In the paper, a compilation of healthy and faulty cases are presented; they confirm the 
validity of the approach for the correct diagnosis of a wide range of electromechanical faults. 

Keywords: electric machines, fault diagnosis, wavelet transform, broken bars, eccentricities. 

1. Introduction 

Electrical induction machines (also known as 
asynchronous machines) are deeply spread in many 
industrial applications. Unforeseen faults in these 
machines might lead to high costs, since they are often 
critical elements in those processes in which they 
operate. Due to this, the diagnosis of the possible faults 
occurring in these devices has become a topic of special 
interest and concern in the industrial environment [1] 
within the context of current concern on diagnosis 
issues [2]. The development and optimization of 
diagnosis techniques being able to detect the possible 
failures in an earlier stage have been the motivation of 
many works in the literature during these last few years. 
Studies on the occurrence of electromechanical faults in 
asynchronous machines [1] show a significant 
percentage of faulty events related to the rotor, such as 
rotor asymmetries (rotor bar breakages, cracked end 
rings…) and various modalities of eccentricities (static, 
dynamic or mixed eccentricities); they have been deeply 
analyzed in the literature due to their particular hazard 

caused by the progressive propagation or the possibility 
of rotor to stator rub [3-5]. 
These faults cause some effects in the different 
electromechanical quantities of the machine (currents, 
vibrations, fluxes, torque…) which may help to 
diagnose the presence of the corresponding failure. In 
fact, some studies have investigated the effect that each 
particular fault provokes on the different electrical 
quantities, trying to obtain the most suitable for 
diagnosing the presence of each failure, according to its 
sensitivity, non-invasive nature and other criteria. 
The most common approach for the diagnosis of most 
of the faults (for instance, rotor asymmetries, different 
types of eccentricities or inter-turn short-circuits) in the 
industrial environment is based on the analysis of the 
current demanded by the machine; this quantity can be 
measured in a non-invasive way, this is, without 
interference on the usual operation of the machine. 
Moreover, the equipment required for capturing the 
current signal is very simple and also the software 
needed for its computation. 
The traditional diagnosis method is focused on applying 
the Fourier transform to the current demanded by the 
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machine during its steady-state operation. Under ideal 
operation and healthy condition, this should be a pure 
sinusoidal signal, so the Fourier analysis would reveal 
the presence of a single frequency component at the 
supply frequency. Nevertheless, even under healthy 
condition, this spectrum is usually polluted by other 
frequencies caused by the slotting, non-ideal winding 
distribution, perturbations in the operation of the 
machine, noises, transient oscillations or even rotor 
imperfections due to the manufacturing process [6-7].  

In the case of a machine with rotor asymmetries or a 
machine with certain level of eccentricity, some 
particular frequency components appear in the Fourier 
spectrum of the steady-state current. Many authors have 
studied the frequencies amplified by the presence of 
these faults; these works have led to expressions that 
have become very common in the industrial 
environment for diagnosis purposes; for instance, in the 
case of rotor bar breakages, the main frequencies 
amplified by the presence of the fault are given by (1) 
(where s is the slip (

s

s
n

nns −= ( ns=synchronous 

speed and n=speed) and f is the supply frequency (50 Hz 
in Europe)) and they are known as sideband components 
[4]. These components are shown in Figure 1, 
corresponding to a loaded machine with two broken 
bars. Analogue expressions are obtained for the case of 
static, dynamic or mixed eccentricities.   

 
                                 )21( sff ⋅±⋅=SC                         (1) 

 
 
 
 
 
 
 
 
 

Fig. 1.  FFT of the steady state current for a loaded machine 
with two broken bars. 

 
   This classical approach based on the steady-state 
analysis of the current, has some drawbacks reported by 
several authors [6-7]; for instance, when the machine is 
unloaded or lightly loaded, the diagnosis of rotor 
asymmetries or even eccentricities can become specially 

difficult due to the low value of the slip [6-7], causing 
that the frequency components used for the diagnosis 
overlap the frequency of supply (f) (Figure 2(a)). 
Moreover, other common phenomena such as load 
fluctuations or voltage oscillations can introduce 
frequencies very close to those amplified by the 
previous faults, leading to confusion or even to a wrong 
diagnosis (Figure 2(b)). 
 
 
 
 
 
 
 
 
 
                      (a)                                          (b) 

Fig. 2.  FFT of the steady state current for: (a) unloaded 
machine with two broken bars (b) healthy machine with 
fluctuating load torque. 

Due to all these facts, some authors have proposed the 
study of the transient processes of the machine as an 
alternative way to obtain additional information which 
could complement that provided by the steady-state 
methods. In this context, the study of the current during 
the connection process of the machine (startup transient) 
has drawn most of the attention [7-12]. The implicit 
common basis of these methods is the detection of the 
evolution during that transient of certain characteristic 
components created by the corresponding fault. 
   In this context, a new methodology based on the 
application of the Discrete Wavelet Transform (DWT) 
to the startup current, and the subsequent study of the 
wavelet signals resulting from the transform was 
proposed recently [7-12]; these signals enable not only 
the mere detection, but also the extraction of the 
evolution during the transient of the components created 
by each fault, arising characteristic patterns that could 
be used for the reliable diagnosis of the fault. The 
further automatic recognition of these patterns, using 
modern image recognition algorithms would enable the 
on-line diagnosis of the corresponding fault as well as 
the quantification of the degree of severity.  
   The aim of this paper is to review the proposed 
diagnosis methodology, presenting a compilation of 
different cases. These experimental cases are referred to 
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a 1.1 kW machine operating under various conditions 
and with different faults. In some of the presented cases, 
the classical diagnosis method, currently used in the 
industrial environment and based on the application of 
the FFT to the steady-state current, is not suitable or 
leads to a confusing diagnostic. Moreover, 
computational aspects of the diagnosis algorithm are 
analyzed, emphasizing the issues for its practical 
implementation. The results show the validity of the 
method for a reliable fault diagnosis. This might lead to 
the possible future implementation of portable condition 
monitoring devices based on this methodology. 
 

2. Electromechanical faults during the startup 

Two main faults are considered in the paper; broken 
rotor bars and mixed eccentricities (combination of 
static and dynamic eccentricities). 

2.1. Broken rotor bars 

The presence of broken rotor bars introduces, in the 
steady-state current spectrum, two sideband components 
around the supply frequency (f=50Hz), with frequencies 
given by (1). During the startup transient, the slip s 
changes from 1 to a value very close to 0. As the slip s 
varies, the frequency of the component with negative 
sign in (1) (left sideband component) also changes; it 
decreases first from a value equal to the supply 
frequency f to 0 Hz and it increases again up to reaching 
a value very close to the supply frequency f [7]. Its 
amplitude also evolves in a very characteristic way [8]. 
The extraction of that characteristic transient waveform 
has revealed as a reliable way for diagnosing the 
presence of the asymmetry in the machine. 
 

2.2. Mixed eccentricities 

Some authors [3] have deduced a general expression for 
the frequencies amplified by mixed eccentricities:  
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⎥
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smffecc

11                  (2) 

where p= number of pole pairs and m=1,2,3… 
 
     As it was proven in previous works [9], the slip 
variation during the startup leads to a particular 
evolution of the frequency components created by the 

eccentricity. For m=p/2, considering f=50Hz, two 
frequency components with very characteristic 
evolutions appear; one of them evolving during the 
transient from 50 Hz to almost 25 Hz and the second  
changing from 50 Hz to around 75 Hz [9]. This 
variation, totally different from that for the broken bars, 
can be also used for the diagnosis of the eccentricity. 
 

3. Discrete Wavelet Transform (DWT) 

The main idea that underlies the application of the DWT 
is the dyadic band pass filtering process carried out by 
this transform. Provided a certain sampled signal s= (i1, 
i2, …iN) , the DWT decomposes it onto several wavelet 
signals (an approximation signal an and n detail signals 
dj) [7, 13]. A certain frequency band is covered by each 
wavelet signal; the wavelet signal reflects the time 
evolution of the frequency components of the original 
signal s which are contained within its associated 
frequency band [7, 14]. 
   More concretely, if fs (samples/s) is the sampling rate 
used for capturing s, then the detail signal dj contains 
the information concerning the signal components with 
frequencies included in the interval: 
 
                     f(dj)∈[2-(j+1)⋅fs , 2-j⋅fs] Hz.                         (3) 
 
The approximation signal an covers the low frequency 
components of the signal, belonging to the interval: 
 
                      f(an)∈[ 0, 2-(n+1)⋅fs] Hz                            (4) 
 
Therefore, the DWT carries out the filtering process 
shown in Figure 3. Note that the filtering is not ideal, a 
fact leading to a certain overlap between adjacent 
frequency bands [7, 12, 15]. This causes some distortion 
if a certain frequency component of the signal is close to 
the limit of a band. 
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Fig. 3.  Filtering process performed by the DWT. 

Due to the automatic filtering performed by the wavelet 
transform, the tool provides a very attractive flexibility 
for the simultaneous analysis of the transient evolution 
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of rather different frequency components present in the 
same signal. At the same time, in comparison with other 
tools, the computational requirements are low. In 
addition, the DWT is available in standard commercial 
software packages. 
 

4. Practical algorithm for the diagnosis 
methodology 

Let i(t) denote the startup current signal, i.e, the current 
demanded by the machine during the connection 
process (startup transient). In the case of healthy 
machine, this is a 50 Hz (supply frequency) sinusoidal 
signal whose amplitude decreases progressively from an 
initial value towards the steady-state value. This signal 
is given by (5), where Î(t) is the RMS value of the 
current. 

                                                                                   (5) 

In the case of a faulty machine, fault-related frequency 
changing components coexist during the transient, 
together with the fundamental current component i(t). 
Usually, they have much lower amplitude in comparison 
with i(t). This is the case of broken rotor bars. When 
this fault is present, several components appear, with 
characteristic variations in frequency and amplitude 
during the startup. The most relevant used for the 
breakage diagnosis is the Left Sideband Component 
(LSC), whose frequency is given by (6). 

                             )21( sf ⋅−⋅=LSCf                               (6) 

As justified in previous works [8], the theoretical 
waveform of this component during the transient is 
according to that shown in Figure 4. As observed, the 
frequency evolution of this component is in agreement 
with that described before; first, it decreases from the 
supply frequency (f=50 Hz) to 0 Hz and later it 
increases towards the steady-state value (near 50 Hz). 
Therefore, the frequency evolution of the LSC is 
constricted to a certain frequency band ([0-50] Hz).  The 
amplitude of the LSC has also a characteristic evolution, 
being always much lower than i(t). 
 
 
 
 

Fig. 4.  Transient evolution of the LSC during the startup. 

In the case of mixed eccentricities, two relevant fault-
related components coexist with the fundamental 
component i(t). In this case, their frequency evolutions 
are rather different, as commented in Section 2.2, but 
they have also lower amplitude than i(t). 
The objective of the DWT-based algorithm is to 
perform a band pass filtering of the startup current 
signal (ist(t)= i(t) + fault-related components)). In this 
way, since the signal i(t) is a pure 50 Hz component, 
whereas the fault-related components evolve in different 
frequency bands, the DWT  enables their separation, 
being able to diagnose the presence of the 
corresponding fault. Moreover, due to the time-
frequency decomposition carried out by the DWT, 
characteristic patterns appear in the time-frequency 
plane, which are caused by the evolution of fault-related 
components. These patterns are different for each type 
of fault, thus becoming reliable indicators of the 
presence of the corresponding fault. 
According to these comments, the complete sequence of 
steps for the practical application of the diagnosis 
algorithm is shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

          Fig. 5.  Scheme for the diagnosis algorithm. 

1. Capture of the startup current signal 
The current demanded by the machine during the startup 
transient ist(t) can be easily captured with very simple 
equipment such a Hall sensor or a current probe. In 
addition to the simplicity of the required equipment, the 
capture of this quantity can be carried out in a non-
invasive way, this is, without interfering the normal 
operation of the machine. This is a crucial advantage for 
many industrial processes, whose interruption might 
lead to disastrous consequences. For the application of 
the methodology, taking into account the Mallat 
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algorithm and the Nyquist criterion, a sampling 
frequency fs around 5000 samples/second is enough, as 
justified in previous works [12]. 
Regarding the length of the current register, it should 
cover the whole duration of the startup. This depends on 
the motor size, the inertia or the motor-load group and 
other parameters. 
  
2. Application of the DWT 
The next step consists of the application of the DWT to 
the captured current signal ist(t). The mathematical 
expression for the one-dimensional DWT 
decomposition of the signal ist(t) is given by (7). 

      (7) 
1

1
...)( ddati nn

n

j i

j
i

i

n
ist +++=⋅+⋅= ∑∑∑

=

(t)ψ(t) j
i

n
i βϕα

j
i

n
i βα ,  are the scaling and wavelet coefficients, φ n(t) is 

the scaling function at level n and ψ j(t) the wavelet 
function at level j; n is the decomposition level; an is the 
approximation signal at level n and dj the detail signal 
at level j [7,13]. 
This decomposition can be carried out with commercial 
software packages easily available, a fact increasing the 
industrial applicability of the diagnosis approach. In this 
work, the MATLAB Wavelet Toolbox was used. 
For the DWT application two main parameters must be 
selected: 

- Type of mother wavelet (and, depending on the 
case, order of the mother wavelet). 

- Number of decomposition levels. 
In Section 7, a deeper analysis on the guidelines for the 
selection of DWT parameters is presented. 
 
3. Qualitative recognition of the fault-related patterns in 
the wavelet signals. 
Once the DWT-based method has been applied, the aim 
is to identify possible patterns appearing in the wavelet 
signals. The recognition of a characteristic pattern 
associated with a particular fault enables the diagnosis 
of the presence of that fault in the machine.  
An important advantage lies in the fact that, whereas in 
the classical approach (FFT spectrum of the steady-state 
current) other phenomena might introduce frequency 
components masking completely the fault-related 
frequencies, in the case of the DWT approach, if these 
phenomena are present, they are circumscribed to 
certain frequency bands. Therefore it is always possible 
to detect, at least partially, the evolution of fault-related 
components. This is due to the time-frequency nature of 

the decomposition, which provides much more 
information than the single frequency peaks appearing 
the FFT spectrum.    
In Section 5, experimental results with real machines 
are presented. There, the patterns caused by each fault 
in the wavelet signals are accurately described.    
A further step, out of the purpose of this paper, would 
consist of the automation of the pattern-recognition 
process. This could be achieved with modern artificial 
intelligence techniques such as neural networks or fuzzy 
logic. They would enable the further implementation of 
the fault-diagnosis algorithm in portable condition 
monitoring devices. 
 
4. Computation of quantification parameters 
The qualitative recognition of characteristic patterns 
created by each fault only enables to confirm the 
presence of the corresponding fault in the machine. 
However, at this stage, the level of failure is unknown; 
the fault might be just in an incipient stage or it might 
be quite advanced in the machine. For instance, in the 
case of broken rotor bars, they could consist of an 
incipient breakage, a complete bar breakage, two broken 
bars, three broken bars…In the case of mixed 
eccentricities, the degree of failure could be also quite 
different (10% eccentricity, 20%, 30%...). Therefore, it 
becomes necessary to provide indicators for quantifying 
the degree of failure in the machine.  
As it will be seen in Section 5, the amplitudes of the 
oscillations caused by each fault in the wavelet signals 
increase when the severity of the fault does. Therefore, 
it is possible to build the quantification parameters on 
the basis of the amplitude (or the energy) of the wavelet 
signals affected by the fault. 
This quantitative approach, based on the introduction of 
quantification parameters, complements the qualitative 
perspective based on the detection of the patterns; first, 
with the pattern recognition, the fault is identified and, 
later, with the quantification parameters the degree of 
failure is determined. 
In Section 6, parameters for quantifying both studied 
faults are defined and computed for each machine. 

5. Experimental results 

In this section the presented methodology is applied to 
the diagnosis of several machines under different fault 
and operation conditions. The tests were performed in 
the laboratory, using commercial cage motors with 4 
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poles, 28 rotor bars, rated 1.1 kW, 400V, 50 Hz, 
coupled to two different DC machines acting as loads 
(load 1 (direct coupling)  and load 2 (coupling through 
straps)). Figure 6(a) shows the motor under test.  
 
 
 
 
 
 
 
 
                      (a)                                          (b) 
Fig. 6.  (a) 1.1 kW motor under test (b) Rotor with one broken 
bar. 

A phase current was used as diagnostic signal; this 
current was captured using a 15/5, class 0.5 current 
transformer and a 1A, 60 mV shunt; the resulting 
voltage signal was captured by means a digital 
oscilloscope with a sampling frequency fs = 5000 
samples/s, and finally transferred to a PC for the 
analyses. The standard MATLAB Wavelet Toolbox was 
used for performing the DWT of the signals; 
Daubechies-44 was selected as mother wavelet. Figures 
in the next sections show the wavelet signals resulting 
from the transform, as well as their associated frequency 
bands. 

5.1. Unloaded healthy machine 

Figure 7 shows the DWT of the startup current for the 
healthy motor coupled to load 1. The wavelet signals 
resulting from the analysis (approximation and detail 
signals) do not show any significant oscillations once 
the electromagnetic transient, occurring at the beginning 
of the startup in every machine, is finished. This 
indicates the absence of any fault component, 
confirming the healthy condition of the machine. 
 
 
 
 
 
 
 
 

Fig. 7.  8-level DWT of the startup current for the unloaded 
healthy machine. 

5.2. Unloaded machine with one broken bar 

A bar breakage was artificially forced in the laboratory, 
by drilling a hole in the selected rotor bar. Figure 6 (b) 
shows the rotor after the breakage.  Figure 8 shows the 
application of the DWT for the case of a machine with 1 
broken bar and coupled to load 1. Clear oscillations 
appear in the wavelet signals resulting from the 
analysis. Moreover, they are arranged in such a way that 
they reflect the evolution in frequency of the left 
sideband component created by the breakage (first 
decreasing from the supply frequency  f towards 0 Hz 
and later increasing towards the supply frequency 
again).    

 
 

 
 
 
 
 
 
 
 
 
 

   

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 8.  8-level DWT of the startup current for the unloaded 
machine with one broken bar. 

 
If the classical diagnosis methodology, based on the 
FFT of the steady-state current, was applied in this case 
the diagnosis conclusion would not be reached. This is 
due to the fact that the machine is unloaded and, 
therefore, the slip s is very low, so the sideband 
components given by (1) overlap the supply frequency f. 
This is shown in Figure 9, where the sidebands are not 
detectable due to this fact. 
 
 
 
 
 
 
 
 
 
 

Fig. 9. FFT of the steady state current for the unloaded 
machine with one broken bar. 
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5.3. Unloaded machine with two broken bars 

Figure 10 shows the application of the diagnosis 
methodology to an unloaded machine with two broken 
bars and coupled to load 1. The conclusion is similar to 
that of the previous case; the characteristic pattern 
caused by the evolution of the left sideband is clear in 
the wavelet signals resulting from the DWT. Moreover, 
the oscillations within the signals a8, d8 and d7 have 
higher amplitudes, due to the higher degree of severity 
of the fault, in comparison with that of the previous 
case. This suggests the possibility of introducing 
parameters for quantifying the degree of severity of the 
fault based on the energy of the wavelet signals. 
 

 
 
 
 
 
 
 

Fig. 10.  8-level DWT of the startup current for the unloaded 
machine with two broken bars. 

5.4. Unloaded machine started through soft-
starter 

This test was carried out using the unloaded machine 
with one broken bar, coupled to load 2 and started by 
means of a soft starter. The soft starter controls the 
voltage supplied to the motor during the startup, 
increasing it progressively during the transient. This 
starting method is also common in the industrial 
environment. Figure 11 shows schematically the test-
bed for the experiment. Figure 12 shows the DWT 
analysis of the startup current for this case. The 
characteristic pattern caused by the evolution of the left 
sideband appears clearly, confirming also the validity of 
the approach in this situation. 
 
 
 
 
 

          Fig. 11.  Simplified scheme for the test. 

 

 

 
 
 
 
 
 
Fig. 12. 8-level DWT of the startup current for the unloaded 
machine with one broken bar started through soft-starter. 

5.5. Machine with mixed eccentricity  

Figure 13 shows the application of the methodology for 
a machine with mixed eccentricity, considering now 6 
decomposition levels. The evolution of the 
aforementioned fault components is clearly noticed; 
there is one component whose frequency evolves from 
50 Hz to 25 Hz during the transient and a second one 
evolving from 50 Hz to 75 Hz. Therefore, a 
characteristic pattern different from that associated with 
the bar breakage arises. 
 
 
 
 
 
 
 

Fig. 13. 6-level DWT of the startup current for the machine 
with mixed eccentricity. 

6. Introduction of quantification parameters 

Once the condition of the machine has been 
preliminarily diagnosed, using the qualitative 
identification of characteristic patterns, it is necessary to 
compute the quantification parameter defined for the 
corresponding fault, in order to quantify the degree of 
failure in the machine. 
In the case of rotor asymmetries, a quantification 
parameter γasym was defined in previous works [16]. It 
was based on the energy of the wavelet signal with the 
next level higher than the signal containing the 
fundamental. This parameter is given by (8). 
 
 
                                                                                      (8) 
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where ist j is the value of the jth sample of the startup 
current signal ist(t); dnf+1(j) is the j element of the detail 
with level nf+1 (nf=level of the signal containing the 
fundamental); Ns is the number of samples of the signal, 
until reaching the steady-state and Nb is the number of 
samples between the origin of the signals and the 
extinction of the oscillations due to border effect. 
Since the quantification parameter γasym is the ratio 
between the energy of the original startup current signal 
and the energy of the detail signal used for diagnosis 
purposes and due to the fact that this detail signal 
increases its energy when the level of failure is greater, 
it is logical that the value of the fault parameter 
decreases as the level of failure increases. The reason 
for the increment in energy of the detail signal per unit 
energy of the total current signal lies on the fact that this 
signal contains the partial transient evolution of the left 
sideband component during the startup. Since when the 
machine is healthy this sideband is not present, the 
energy of this detail signal is low which implies a high 
value of the quantification parameter. On the other hand 
a faulty machine implies a high energy for the detail 
signal and, therefore, a low value of the parameter. 
 According to the experience achieved by tests carried 
out in motors with this range of powers (few kW), a 
value for γasym higher than 40 dB is indicative of a 
healthy condition in the machine. Values between 30 dB 
and 40 dB mean that a partial breakage or one broken 
bar is present in the machine. Values around 30 dB or 
lower are usually obtained when at least two bars are 
broken.  
Table I shows the results obtained when computing this 
indicator for different cases tested, as well as the 
deviations with respect the healthy condition for each 
machine. The values obtained confirm the ranges 
commented above. 
In the case of mixed eccentricities, a quantification 
parameter γmecc could be also defined, based on the 
energy of the approximation signal with the next level 
higher than that containing the fundamental component. 
This parameter would be according to (9). 
 
 
                                                                                      (9) 
 
 

  where ist j is the value of the j sample of the current 
signal; an(j) is the j element of the order n 
approximation signal; Ns is the number of samples of 
the signal, after finishing the first 10 cycles in the 
steady-state regime and Nb is the number of samples 
between the origin of the signals and the extinction of 
the oscillations due to border effect. 

Table 1.  Computation of the indicator γasym for 
each case tested and deviation with respect the 
healthy condition (∆γasym). 

Machine Condition γasym ∆γasym
1.1 kW motor 

coupled to load 1 
Healthy 47.1       - 

1.1 kW motor 
coupled to load 1 

1 broken bar, unloaded 37   -10.1 

1.1 kW motor 
coupled to load 1 

1 broken bar, 80% load 36.2   -10.9 

1.1 kW motor 
coupled to load 1 

1 broken bar, full-load 35.2   -11.9 

1.1 kW motor 
coupled to load 1 

2 broken bars, 
unloaded 

30.6   -16.5 

1.1 kW motor 
coupled to load 1 

2 broken bars, 60% 
load 

30.0   -17.1 

1.1 kW motor 
coupled to load 1 

2 broken bars, full load 30.1     -17 

1.1 kW motor 
coupled to load 2 

Healthy 44.4 - 

1.1 kW motor 
coupled to load 2 

1 broken bar, unloaded 35.6    -8.8 

1.1 kW motor 
coupled to load 2 

1 broken bar, 80% load 35.4       -9 

1.1 kW motor 
coupled to load 2 

1 broken bar, full-load 35.1     -9.3 

1.1 kW motor 
coupled to load 2 

2 broken bars, 
unloaded 

30.7   -13.7 

1.1 kW motor 
coupled to load 2 

2 broken bars, full load 31.8   -12.6 

7. Additional considerations for the application 
of the method 

The different experiments performed showed the 
suitability of the method for the diagnosis of 
electromechanical faults introducing slip-dependant 
components. Nevertheless, additional considerations 
need to be done regarding the different parameters of 
the DWT decomposition, such as the type of mother 
wavelet, the order of the mother wavelet or the number 
of decomposition levels. 
 With regards to the type of mother wavelet, the 
Daubechies family was well suited for the application of 
this method, due to its inherent properties (this family 
has well-known mathematical properties and it is 
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included in many commercial software packages, thus 
not requiring any special algorithm or custom design for 
its application), although other families (symlet, 
biorthogonal, Gaussian, and specially dmeyer) also 
enable a clear detection of the patterns, despite their 
different mathematical characteristics. As an example, 
Figures 14 (a) and (b) show the application of the 
method for the case of unloaded machine with one 
broken bar and coupled to load 2, using symlet-30 and 
dmeyer, respectively. The similarities between both 
figures are obvious, appearing the characteristic pattern 
caused by the sideband.  
 
 
 
 
 
 
 
 
 

                                     (a) 
 

 
 
 
 
 
 
 
 

                                   (b) 

Fig. 14.  8-level DWT of the startup current for the unloaded 
machine with one broken bar using: (a) symlet-30, (b) dmeyer. 

 
When using the Daubechies family, an important fact 
observed was the overlapping between the frequency 
bands associated with successive wavelet signals 
resulting from the DWT of the current. This is due to 
the fact that the wavelet signals act as non-ideal filters, 
extracting the components of the signal included within 
a certain frequency band that can overlap partially with 
the adjacent band [7, 15]. In this sense, it was observed 
that, when using a high-order Daubechies wavelet for 
signal decomposition, the overlap was smaller than 
when using a low-order one. In other words, high-order 

wavelets behave as more ideal filters, a fact that helps to 
avoid partially the overlap between frequency bands.  
   Finally, the number of decomposition levels (nd) is 
related to the sampling frequency of the signal being 
analysed (fs). For the diagnosis of broken rotor bars, this 
parameter has to be chosen in such a way that the DWT 
supplies at least three high-level signals (two details and 
an approximation) with frequency bands below the 
supply frequency f; this condition implies: 

                                     ,                      (10) 2+≥ fd nn

   being nf the level of the detail which contains the 
supply frequency, that can be calculated using (11). 
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   This condition means that the lower limit of the 
frequency band of the nf level detail is lower than the 
supply frequency. 

   Thus: 

 
                                                               (integer)       (12) 
 
   Therefore, for the previous examples, the condition 
implies: 
 
 
 
 
   Which leads to nd = 8, which is the number of levels 
selected for the diagnosis of this fault. 
   With regards the diagnosis of the mixed eccentricity, 
similar considerations lead to the following expression 
for the selection of the optimum number of levels: 
 
 
 
   In our case, this leads to nd =6 , which was the number 
of levels selected (see Fig. 13). 

8. Conclusions 

   A diagnosis methodology is presented in this paper to 
diagnose the presence of electromechanical faults in 
electrical machines. It is based on the application of the 
DWT to the stator startup current and the further 
recognition of characteristic patterns created by each 
fault in the wavelet signals. 
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Several faulty cases are presented in the paper, all them 
confirming the validity of the approach, even in some 
cases in which the classical FFT methodology, currently 
used in the industrial environment, might not lead to 
correct results. 
The method admits the quantification of the degree of 
failure using parameters based on the energy of the 
wavelet signals resulting from the analysis. 
Further work would be based on the application of 
image recognition algorithms for the automatic 
identification of these characteristic patterns, which 
could be the basis for the implementation of portable 
diagnosis devices. 
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