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Abstract

The hazard rate order between two weighted distributions with a given weight function is considered as a new
stochastic order called weighted hazard rate order. The influences of biased sampling methods on properties of
the hazard rate order are usefully pointed out with this weighted order. We first obtain some basic properties
of the weighted hazard rate order and then develop some useful preservation properties of it with respect to
monotone transformations, mixture of distributions, convolution of distributions, order statistics and residual
lifetime of distributions. A few examples are also presented to show the usefulness of the results achieved in
the paper.
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1. Introduction

Weighted distributions are useful to fit to data in situations where the original distribution of the
data is naturally unobserved. Patil and Rao [19] identified various situations in which weighted dis-
tributions are applicable. Over the past years, weighted distributions have been intuitively used in
applied probability and statistics to investigate some statistical properties and inference procedures.
For some recent works in applied probability we refer the readers to Unnikrishnan and Sunoj [21],
Navarro et al. [16], Alavi and Chinipardaz [1], Li et al. [12] and Izadkhah et al. [7]; and for some
recent works in applied statistics we refer the readers to Cutillo et al. [5], Feizjavadian and Hashemi
[6] and Karimi and Alavi [9] among others. In particular, reliability analysis of the weighted distri-
butions has received much attention in the literature in the recent past decades (see, for instances,
Nanda and Jain [15], Navarro et al. [17], Bartoszewicz and Skolimowska [3], Błazej [4] and Kayid
et al. [11]). In reliability and survival analysis, when data are unknowingly sampled from a weighted
distribution as opposed to the parent distribution, the survival function, the hazard rate function, and
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the mean residual life function may be underestimated or overestimated depending on the form of
the weight function.

In the current investigation we study some basic properties of the hazard rate order of weighted
distributions including some useful preservation properties that are ordinarily considered in the
study of the well-known stochastic orders in the literature. The paper is organized as follows. In
section 2, we introduce some notations and preliminaries as they are needed throughout the paper.
In section 3, we discuss some characterizations of the weighted hazard rate order, some interrela-
tions of this stochastic order and some connections of this stochastic order with other well-known
stochastic orders. A number of preservation properties of the weighted hazard rate order under some
reliability operations such as monotonic transformation, mixture, and convolution are obtained in
Section 4. In that section, preservation properties of the weighted hazard rate order under order
statistics and under residual lifetime of distributions are studied. Throughout the paper, we will use
the terms “increasing” and “decreasing” in place of non-decreasing and non-increasing, respec-
tively. We also assume that all ratios, integrals and expectations exist and they are well defined wher-
ever they appear. We will take u(x) = 1, for all x≥ 0, and u(x) = 0, for all x < 0. Set R= (−∞,+∞)

and R+ = (0,+∞).

2. Notations, terminology, and preliminaries

Let X be a univariate random variable (rv) with distribution function (df) F and probability density
function (pdf) f . Then, the weighted version of X with a non-negative weight function w for which
0 < E[w(X)]< ∞, is denoted by Xw which has the pdf

fw(x) =
w(x) f (x)
E[w(X)]

,

and its df is given by

Fw(x) =
∫ x

−∞

w(u)
E[w(X)]

dF(u)

=
E(w(X)|X ≤ x)

E[w(X)]
F(x).

Let Y be a random variable with df G and pdf g, and also let F̄ = 1−F and Ḡ= 1−G be the survival
functions of X and Y, respectively. When X and Y are absolutely continuous random variables the
supports of them are given by SX = {x ∈ R : f (x) > 0} and SY = {y ∈ R : g(y) > 0}, respectively.
Suppose that Xw and Yw are weighted versions of X and Y, respectively. Then, their survival func-
tions are, respectively, given by

F̄w(x) =
BX(x)F̄(x)
E(w(X))

, Ḡw(y) =
BY (y)Ḡ(y)
E(w(Y ))

and their distribution functions are, respectively, given by

Fw(x) =
AX(x)F(x)
E(w(X))

, and Gw(y) =
AY (y)G(y)
E(w(Y ))

,
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where AX(x) = E(w(X) | X ≤ x) and BX(x) = E(w(X) | X > x), which are given by

AX(x) =
1

F(x)

∫ x

−∞

w(u) f (u)du, and BX(x) =
1

F̄(x)

∫
∞

x
w(u) f (u)du,

for all x ∈ R. Similarly, AY and BY are defined. The weighted distribution with weight function
w(x) = x is called length-biased distribution. Here, we list some important weight functions used in
the literature (cf. Patil et al. [18]).

• w(x) = xβ , x ∈ R+, β ∈ R+.

• w(x) = eβx, x ∈ R, β ∈ R.
• w(x) = β x, x ∈ R, β ∈ R+.

• w(x) = x+1,αx+β , x ∈ R+, α,β ∈ R+.

• w(x) = (αx+β )/(δx+ γ), for all allowable values α,β ,δ and γ.

• w(x) = H(x), where H is the df of a rv Z.
• w(x) = H̄(x), where H̄ is the sf of a rv Z.
• w(x) = u(β − x), x ∈ R, β ∈ R such that F(β )> 0.
• w(x) = 1−u(β − x), x ∈ R, β ∈ R such that F̄(β )> 0.

Note that when the weight function w(x) = xβ is chosen, the rv Xw is said to have a size-biased
distribution of order β . When w(x) = u(β − x), the rv Xw is equal in distribution with (X | X ≤ β )

and when w(x) = 1−u(β −x) the Xw is equal in distribution with (X | X > β ). Therefore, the study
of truncated distributions can be considered under the framework of the weighted distributions. The
following stochastic orders are defined according to Shaked and Shanthikumar [20]. Let X and Y
be two univariate non-negative rv’s with absolutely continuous df’s F and G, sf’s F̄ = 1−F and
Ḡ = 1−G, and pdf’s f and g, respectively. Also, let r and s be the hazard rate (hr) functions of X
and Y, respectively. Suppose that SX = SY = R+.

• X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y ) if g(x)/ f (x)
is increasing in x ∈ R+.
• X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if F̄(x)≤

Ḡ(x), for all x ∈R+, or equivalently if E(φ(X))≤ E(φ(Y )), for all increasing functions φ .

• X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if r(x) =
f (x)/F̄(x) ≥ g(x)/Ḡ(x) = s(x), for all x ∈ R+, or equivalently if Ḡ(x)/F̄(x) is increasing
in x ∈ R+.

• X is said to be smaller than Y in the reversed hazard rate order (denoted by X ≤rh Y )
if f (x)/F(x) ≤ g(x)/G(x), for all x ∈ R+, or equivalently if G(x)/F(x) is increasing in
x ∈ R+.

• X is said to be smaller than Y in the mean residual life order (denoted by X ≤mrl Y ) if
E(X− x | X > x)≤ E(Y − x | Y > x), for all x ∈ R+.

The above stochastic orders are connected to each other as follows:

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y

⇓ ⇓

X ≤rh Y =⇒ X ≤st Y
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Two aging classes of life distributions are defined below.

• The lifetime rv X with hazard rate r(x) = f (x)/F̄(x) is said to be IFR (DFR) whenever
h(x) is increasing (decreasing) in x ∈ SX , or equivalently if F̄ is a log-concave (log-convex)
function on SX .

• The lifetime rv X with reversed hazard rate r̃(x) = f (x)/F(x) is said to be DRHR whenever
r̃(x) is decreasing in x ∈ SX , or equivalently if F is a log-concave function on SX .

Next, we give some other notions which are needed among the paper.

Definition 2.1: A function φ : A→R is dispersive on the interval A⊆R if φ(x)−x is increasing in
x on A.

Definition 2.2: A function h : [0,∞)→ R is said to be star-shaped if for all 0 ≤ λ ≤ 1 and x ≥ 0,
h(λx)≤ λh(x). It is well-known (e.g., Marshall and Olkin [13], p.453) that h is star-shaped if, and
only if, h(0)≤ 0 and h(x)/x is increasing for x ∈ R+.

Definition 2.3: A non-negative measurable function h(x,y) is said to be totally positive of order 2
(abbreviated by T P2) in (x,y)∈ A×B, if h(x1,y1)h(x1,y2)≥ h(x2,y1)h(x1,y2), for every x1 ≤ x2 ∈ A
and y1 ≤ y2 ∈ B, where A and B are two subsets of R.

3. Basic properties

Firstly, we introduce the weighted hazard rate order and then we study some basic properties of
this stochastic order. We also give an example of special weighted distributions. The role of the
hazard rate function is well-known in reliability and survival analysis as the hazard rate is very
useful in the study of systems. The hazard rate order is also of interest in risk theory and survival
analysis. On the other hand, there are situations that lifetime data are not recorded according to the
original distribution but according to a weighted distribution. Therefore, it is a natural extension to
consider the hazard rate comparison of the weighted distributions instead of the comparison based
on the original distributions. This results in establishing a more flexible comparison of lifetime
random variables based on the hazard rate function in the sense that observations are not identically
distributed as they are coming from the weighted version of the underlying parent distribution. We
consider the following definition.

Definition 3.1: The lifetime random variable X is said to be smaller than the lifetime random vari-
able Y in the weighted hazard rate order with weight function w (denoted by X ≤(w)

whr Y ) whenever
Xw ≤hr Yw.

Equivalent conditions for the weighted hazard rate order are stated in the next result. We omit
the proof of this result as it is straightforward.

Proposition 3.1: X ≤(w)
whr Y holds if, and only if, one of the following conditions holds:

(i). BX (x)
BY (x)

≤ r(x)
s(x) , for all x ∈ R+.

Published by Atlantis Press 
Copyright: the authors 

79



Stochastic Properties of the Weighted Hazard Rate Order

(ii).
∫ +∞

x w(u)dW (u,x)≥ 0, for all x ∈ R+, where dW (u,x) = [g(u) f (x)−g(x) f (u)]du.

We now establish an interrelation property of the weighted hazard rate order by considering dif-
ferent weight functions. Before stating this result, we need the following technical lemma which is
presented without proof.

Lemma 3.1. Let (Xw)φ be the weighted version of Xw with the weight function φ such that 0 <

E(φ(Xw)) < +∞. Then, by taking v(x) = φ(x)w(x), Xv and (Xw)φ are identical distribution, i.e.
Xv

st
= (Xw)φ .

The following theorem strengthens the result of Theorem 9(a) of Bartoszewicz and Skolimowska
[3]. The readers are also referred to see Theorem 3.2(b) in Misra et al. [14].

Theorem 3.1. Given two weight functions w and v, X ≤(w)
whr Y implies X ≤(v)

whr Y, provided that
v(x)/w(x) is increasing in x, for all x for which w(x)> 0.

Proof. Note that X ≤(w)
whr Y means Xw ≤hr Yw. Because φ(x) = v(x)/w(x) is increasing in x thus

Theorem 9(a) of Bartoszewicz and Skolimowska [3] provides that (Xw)φ ≤hr (Yw)φ . By Lemma 3.1
it follows that (Xw)φ and (Yw)φ are identical in distribution with Xv and Yv, respectively. Hence, we
arrive at Xv ≤hr Yv which means that X ≤(v)

whr Y.

The next result reveals the connection between the whr order and the hr order. It is directly seen
from Theorem 3.1 that if we take w as a constant function and v as an increasing function and also
if we take v as a constant function and w as a decreasing function, then we derive the following
corollary. Note that the result of Corollary 3.1 is known in the literature (see for instances Theorem
2.1 of Nanda and Jain [15], Theorem 9(a) of Bartoszewicz and Skolimowska [3] and Theorem 3.2(b)
of Misra et al. [14]).

Corollary 3.1: (i) If v is increasing, then X ≤hr Y implies X ≤(v)
whr Y. (ii) If w is decreasing, then

X ≤(w)
whr Y implies X ≤hr Y.

As a useful result, when dealing with increasing weight functions, the whr order is weaker than the
hr order whereas with a decreasing weight function the whr order is stronger than the hr order. This
means that the monotonicity of the weight function is important to establish connections between
the whr order and the hr order.

Remark 3.1: It is noticeable here that since X ≤lr Y yields X ≤hr Y thus in view of Corollary 3.1(i),
if w is increasing, then X ≤lr Y implies X ≤(w)

whr Y. Moreover, because X ≤hr Y gives X ≤mrl Y and

also gives X ≤st Y, therefore appealing to Corollary 3.1(ii) if w is decreasing, then X ≤(w)
whr Y implies

X ≤mrl Y and furthermore X ≤(w)
whr Y implies X ≤st Y.

We present the following example to accommodate some special weighted distributions.

Example 3.1. Let X ≤(w)
whr Y hold for w(x) = xα ,w(x) = eαx,w(x) =αx,w(x) = u(α−x),w(x) = 1−

u(α− x), each in one time. Then, according to Theorem 3.1 X ≤(v)
whr Y holds with v(x) = xβ ,v(x) =

eβx,v(x) = β x,v(x) = u(β − x),v(x) = 1− u(β − x), respectively, whenever α ≤ β . Let X ≤(w)
whr Y

hold with w(x) = αx + β . Then, using Theorem 3.1 X ≤(v)
whr Y holds with v(x) = δx + γ, when
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αγ ≤ βδ . As another application of Theorem 3.1 suppose that Z1 and Z2 are two non-negative
random variables with df’s H1 and H2 and sf’s H̄1 and H̄2, respectively. Let X ≤(w)

whr Y hold with
w(x) = H1(x). Then, X ≤(v)

whr Y holds with v(x) = H2(x), whenever Z1 ≤rh Z2. Moreover, if X ≤(w)
whr Y

holds with w(x) = H̄1(x), then X ≤(v)
whr Y holds with v(x) = H̄2(x), when Z1 ≤hr Z2.

4. Preservation properties

In this section, we mainly investigate the problem of preservation of the weighted hazard rate order
under reliability operations of monotonic transformation, mixture and convolution. Afterward, we
study some properties of the weighted hazard rate order in the context of order statistics and the
residual lifetime. We give some illustrative examples to show the usefulness of the results and in
parallel we discuss some useful conclusions which will be resulted from our findings.

4.1. Monotone transformation

We discuss here the closure property of the weighted hazard order under monotonic transformation.
This result strengthens Theorem 1.B.2 of Shaked and Shanthikumar [16] to the case where the
weighted distributions stand in place of the original distributions.

Theorem 4.1. If φ is a strictly increasing and left continuous function and if w(φ(x))/w(x)
increases in x on {x : w(x)> 0}, then X ≤(w)

whr Y implies φ(X)≤(w)
whr φ(Y ).

Proof. First, let v be a weight function of the form v(x) = w(φ(x)). Then, in view of assumption, by
Theorem 3.1, Xw ≤hr Yw implies Xv ≤hr Yv. Because φ is strictly increasing thus Theorem 1.B.2 in
Shaked and Shanthikumar [20] provides that φ(Xv)≤hr φ(Yv). On the other hand, an application of
Theorem 1 in Bartoszewicz [2] yields φ(Xv)

st
= (φ(X))w and also φ(Yv)

st
= (φ(Y ))w. Thus, it follows

that (φ(X))w ≤hr (φ(Y ))w, which means φ(X)≤(w)
whr φ(Y ).

We consider the following conclusion of Theorem 4.1 dealing with special weighted distributions.

Corollary 4.1: Suppose that φ is strictly increasing and left continuous and let one of the following
conditions hold:

(i). w(x) = xβ ,β ∈ R+, provided that φ is a star-shaped function.
(ii). w(x) = β x,β > 1, provided that φ is a dispersive function.
(iii). w(x) = eβx,β ∈ R+, provided that φ is a dispersive function.
(iv). w(x) = u(β − x),β ∈ R+, provided that φ(x)≤ x, for all x≥ 0.
(v). w(x) = 1−u(β − x),β ∈ R+, provided that φ(x)≤ x, for all x≥ 0.
(vi). w(x) = H(x) where H is df of some non-negative rv Z, provided that φ(Z)≤rh Z.
(vii). w(x) = H̄(x) where H̄ is sf of some non-negative rv Z, provided that φ(Z)≤hr Z.

Then, X ≤(w)
whr Y implies φ(X)≤(w)

whr φ(Y ).

4.2. Mixture of distributions

Consider a family of survival functions {F̄(· | θ), θ ∈ χ} where χ is a subset of the real line R. Let
f (· | θ) be the associated pdf of this parametric family and let X(θ) denote a random variable with
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pdf f (· | θ). For any random variable Θi with support in χ , and with distribution function Hi, and
density function hi, we denote by X(Θi) the random variable that has survival function F̄i given by

F̄i(x) =
∫

χ

F̄(x | θ) dHi(θ), x ∈ R, i = 1,2. (4.1)

In this case, X(Θi) is called a mixture of X(θ) of the family {F̄(· | θ), θ ∈ χ} with respect to
Θi for each i = 1,2. Before presenting the first result we state the following lemma which is an
extended version of Theorem 1.B.12 in Shaked and Shanthikumar [20]. We omit its proof as it is
easily derived.

Lemma 4.1. Let X1 and X2 be two independent random variables. Then X1 ≤(w)
whr X2 if, and only if,

E(α1(X1)w(X1))E(α2(X2)w(X2)) ≤ E(α1(X2)w(X2))E(α2(X1)w(X1)) for all functions α1 and α2

such that α2 is non-negative and α1/α2 and α2 are increasing.

Next, the preservation property of the whr order is established under mixture of a family of
distributions. This extends the result of Theorem 1.B.14 of Shaked and Shanthikumar [16] to the
context of weighted distributions.

Theorem 4.2. Let w be a weight function such that E[w(X(θ))] is increasing in θ , let

X(θ1)≤(w)
whr X(θ2), for all θ1 ≤ θ2 ∈ χ, (4.2)

and also let

Θ1 ≤hr Θ2. (4.3)

Then, X(Θ1)≤(w)
whr X(Θ2).

Proof. Suppose that (α1,α2) is an arbitrary pair of functions satisfying conditions of Lemma 4.1.
Set ηi(θ) = E(αi(X(θ))w(X(θ))), for i ∈ {1,2} and θ ∈ χ. Using Lemma 4.1, (4.2) provides that
η1(θ1)η2(θ2)≤ η1(θ2)η2(θ1), for all θ1 ≤ θ2 ∈ χ, which means that η1/η2 is increasing. Denoting
by Xw(θ) the weighted version of X(θ) with weight function w, it is not hard to see that η2(θ) =

E(α2(Xw(θ)))E(w(X(θ))), for each θ ∈ χ. Because of (4.2), Xw(θ) is stochastically increasing in
θ , i.e., for any increasing function α2, E(α2(Xw(θ))) increases in θ . Therefore, by assumption η2

is non-negative and increasing. Now, applying Theorem 1.B.14 of Shaked and Shanthikumar [20]
with the pair (η1,η2) to (4.3) provides that E(η1(Θ1))E(η2(Θ2))≤ E(η1(Θ2))E(η2(Θ1)). Noting
the fact that E(ηi(Θ j)) = E(αi(X(Θ j))w(X(Θ j))), i, j ∈ {1,2}, in which the expectations are with
respect to Θ j and X(Θ j), respectively, a further application of Lemma 4.1 completes the proof.

In the context of Theorem 4.2 it is worth saying that when w is an increasing function and X(θ1)≤st

X(θ2), for all θ1 ≤ θ2 ∈ χ, then by definition E[w(X(θ1))]≤ E[w(X(θ2))], for all θ1 ≤ θ2 ∈ χ, i.e.,
E[w(X(θ))] is increasing in θ ∈ χ. We now consider the following example.

Example 4.1. Consider the proportional hazard rate family of X(θ) with survival function F̄(x|θ) =
[F̄(x)]θ , θ ∈ χ = (0,∞). Obviously, this family is stochastically increasing in θ with respect to the
hr order, i.e., X(θ1) ≤hr X(θ2), for all θ1 ≤ θ2 ∈ χ. If w is an increasing weight function, then
according to Corollary 3.1 it holds that X(θ1)≤(w)

whr X(θ2), for all θ1 ≤ θ2 ∈ χ. In addition, because
the family of X(θ) is stochastically increasing thus E[w(X(θ))] is increasing in θ ∈ χ. Hence
according to Theorem 4.2, if Θ1 ≤hr Θ2, then X(Θ1)≤(w)

whr X(Θ2).
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In Theorem 4.2, by making a stronger stochastic comparison in (4.3) we could get the preservation
property of the weighted hazard rate order under mixture without considering any condition on the
weight function. The following result clarifies the issue.

Theorem 4.3. Let w be any arbitrary weight function such that

X(θ1)≤(w)
whr X(θ2), for all θ1 ≤ θ2 ∈ χ, (4.4)

and also let

Θ1 ≤lr Θ2. (4.5)

Then, X(Θ1)≤(w)
whr X(Θ2).

Proof. In view of the proof of Theorem 4.2, X(Θ1) ≤(w)
whr X(Θ2) holds if and only if∫

χ
hi(θ)φ(x,θ) dθ is T P2 as a function of i∈ {1,2}, and of θ ∈ χ, where hi is the pdf of Θi, i = 1,2.

As discussed there, because of (4.4), φ is T P2 in (x,θ) ∈R+×χ and because of (4.5), hi(θ) is T P2

in (i,θ)∈ {1,2}×χ. An application of the well-known general composition formula of Karlin [10]
completes the proof.

4.3. Convolution of distributions

Here we discuss the preservation property of the weighted hazard rate order under the convolution
of distributions. This extends Lemma 1.B.3 of Shaked and Shanthikumar [20] to a more general
setting arising from the weighted distributions.

Theorem 4.4. Let w(x) be increasing and log-convex for x ≥ 0 and let Y be a non-negative IFR
random variable which is independent of X1 and X2. If X1 ≤(w)

whr X2 then X1 +Y ≤(w)
whr X2 +Y.

Proof. Assume that (α1,α2) is a pair of functions admitting the stated conditions of Lemma 4.1.
Denote ηi(x) = E

(
αi(x+Y )w(x+Y )

w(x)

)
, for i = 1,2. Because Y is IFR, we have Y + x1 ≤hr Y + x2,

for all x1 ≤ x2 ∈ R+. Now, since w is increasing, by Corollary 3.1(i) it follows that Y + x1 ≤(w)
whr

Y + x2, for all x1 ≤ x2 ∈ R+. Using Lemma 4.1 it follows that η1(x1)η2(x2) ≤ η1(x2)η2(x1), for
all x1 ≤ x2 ∈ R+, which is equivalent to η1/η2 being increasing. By assumption w(x+ y)/w(x) is
increasing in x ≥ 0, for all y ≥ 0, and also we know that α2 is non-negative and increasing. This
readily concludes that η2 is non-negative and increasing. As X j, j = 1,2 is independent of Y, we
can write for any i, j ∈ {1,2}

E(αi(X j +Y )w(X j +Y )) = E(E(αi(X j +Y )w(X j +Y ) | X j))

= E(ηi(X j)w(X j)),

which by a further application of Lemma 4.1 to X1 ≤(w)
whr X2 completes the proof.

We now extend Theorem 4.4 to the case of higher order convolutions.

Theorem 4.5. Let w be an increasing log-convex function and let (Xi,Yi), i = 1,2, ...,n, be indepen-
dent pairs of random variables such that Xi ≤(w)

whr Yi, i = 1,2, ...,n. If Xi,Yi, i = 1,2, ...,n, are all IFR,
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then
n

∑
i=1

Xi ≤(w)
whr

n

∑
i=1

Yi.

Proof. We prove the theorem by induction. Obviously, the result is true for n= 1. Assume the result
is true for p = n−1; that is

n−1

∑
i=1

Xi ≤(w)
whr

n−1

∑
i=1

Yi.

Because of the closure property of the IFR random variables under convolution, ∑
n−1
i=1 Yi is IFR itself

and also because Xn is independent of both ∑
n−1
i=1 Xi and ∑

n−1
i=1 Yi, using Theorem 4.4 we get

n

∑
i=1

Xi =

(
n−1

∑
i=1

Xi +Xn

)

≤(w)
whr

(
n−1

∑
i=1

Yi +Xn

)

≤(w)
whr

(
n−1

∑
i=1

Yi +Yn

)
=

n

∑
i=1

Yi,

where the last inequality follows because Xn ≤(w)
whr Yn, and because ∑

n−1
i=1 Yi is independent of both Xn

and Yn. Theorem 4.4 was applied once again.

In the following example, we consider some well-known weight functions introduced before that
are increasing and log-convex. Hence, they are applicable in Theorems 4.4 and 4.5.

Example 4.2. The weight functions w(x) = eβx,β ∈ R+, w(x) = β x,β ∈ (1,∞), and w(x) = 1−
u(β − x),β ∈ R, are each increasing and log-convex in x ∈ R+.

4.4. Order statistics

In this subsection, we develop the weighted hazard rate order between two probability distributions
to the weighted hazard rate order among orders statistics arising from two random samples of the
probability distributions. This is a generalization of Theorem 1.B.34 of Shaked and Shanthikumar
[20] to the case where the weighted distributions stand in place of the original distributions. Before
stating the result we present the following useful lemmas. In what follows, let X1,X2, ..,Xn be a ran-
dom sample of absolutely continuous random variables from F and let X1w,X2w, ...,Xnw be another
random sample of absolutely continuous random variables from Fw. Denote by Xi:n and (Xw)i:n the
ith order statistics in these two samples, respectively, for each i = 1,2, ...,n. The following lemma
states that the order statistics from a random sample of the weighted distribution with weight w is
equal in distribution to the weighted version of the order statistics from a random sample of the
original distribution with a certain form of the weight function.

Lemma 4.2. Let v be a weight function of the form v(x) = w(x)[AX(x)]i−1[BX(x)]n−i. Then, (Xw)i:n

and (Xi:n)v are equal in distribution, i.e. (Xw)i:n
st
= (Xi:n)v.
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Proof. For each i = 1,2, ...,n and for all x ∈ R, the density function of (Xi:n)v is derived by

f(Xi:n)v(x) =
v(x) fXi:n(x)
E[v(Xi:n)]

=
n!

(n− i)!(i−1)!E[v(Xi:n)]
v(x) f (x)F i−1(x)F̄n−i(x),

and the density function of (Xw)i:n is

f(Xw)i:n(x) =
n!

(n− i)!(i−1)!
fw(x)F i−1

w (x)F̄w
n−i

(x)

=
n!

(n− i)!(i−1)!En[w(X)]
w(x) f (x)[AX(x)F(x)]i−1[BX(x)F̄(x)]n−i.

We know that (Xw)i:n and (Xi:n)v are equal in distribution if and only if

v(x) f (x)F i−1(x)F̄n−i(x) = w(x) f (x)[AX(x)F(x)]i−1[BX(x)F̄(x)]n−i

which gives the required form of the weight function v as stated.

Lemma 4.3. (Bartoszewicz and Skolimowska [3]) If v is increasing, then X ≤hr Xv.

Theorem 4.6. Let Xi ≤(w)
whr Yi, i = 1,2, ...,n and let for a fixed k ∈ {1,2, ...,n},[

AX(x)
AY (x)

]k−1[BX(x)
BY (x)

]n−k

be increasing in x ∈ [0,∞), and [AX(x)]k−1[BX(x)]n−k be decreasing in x ∈ [0,∞). Then, Xk:n ≤
(w)
whr

Yk:n.

Proof. Because Xkw’s are identically distributed we have by assumption that Xkw ≤hr Ykw, k =

1,2, ...,n. By using Theorem 1.B.34 of Shaked and Shanthikumar [16] we get (Xw)k:n ≤hr (Xw)k:n,

for each fixed k. As a result of Lemma 4.2 we can write (Xw)k:n
st
= (Xk:n)v1 and (Yw)k:n

st
= (Yk:n)v2 , in

which

v1(x) = w(x)[AX(x)]k−1[BX(x)]n−k, and v2(x) = w(x)[AY (x)]k−1[BY (x)]n−k.

Thus, it follows that (Xk:n)v1 ≤hr (Yk:n)v2 . Now, by taking v(x) = v1(x)/v2(x), which by assumption
is increasing in x, and then using Lemma 3.1 and Corollary 3.1(i) we arrive at (Xk:n)v1 ≤hr (Yk:n)v1 .

By assumption w(x)/v1(x) is increasing in x. On using Theorem 2.1 it then follows that (Xk:n)w ≤hr

(Yk:n)w which means Xk:n ≤
(w)
whr Yk:n.

To indicate the usefulness of Theorem 4.6 in recognizing weighted hazard rate order of the order
statistics we present the following example which involves truncated distributions.

Example 4.3. Assume that X1, ...,Xn and Y1, ...,Yn are two random samples from distribution func-
tions F and G, respectively, such that Xi ≤rh Yi, i = 1, ...,n. Assume that w(x) = u(β − x), in which
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β is such that F(β )> 0 and G(β )> 0. For all x≥ 0, we can get

AX(x) =

{
1 x≤ β ,
F(β )
F(x) x > β .

AY (x) =

{
1 x≤ β ,
G(β )
G(x) x > β .

Therefore, for all x≥ 0 and for k = n, we have[
AX(x)
AY (x)

]k−1[BX(x)
BY (x)

]n−k

=

{
1 x≤ β ,(

F(β )
G(β )

G(x)
F(x)

)n−1
x > β .

which is increasing in x≥ 0, since G(x)/F(x) is increasing from Xi ≤rh Yi, i = 1, ...,n. On the other
hand, for k = n,

[AX(x)]k−1[BX(x)]n−k =

{
1 x≤ β ,(

F(β )
F(x)

)n−1
x > β .

is decreasing in x ≥ 0. Thus, by Theorem 4.6, if (Xi | Xi ≤ β ) ≤hr (Yi | Yi ≤ β ), i = 1, ...,n; then
(Xn:n | Xn:n ≤ β )≤hr (Yn:n | Yn:n ≤ β ).

4.5. Residual lifetime

One of the important aspects of lifetime distributions is the family of the residual life distribution
which has found many applications over the years. The problem of modeling the residual lifetime
of systems and components as well as the original lifetime of those systems and components is
very important in reliability theory and survival analysis. This is because in many situations in
practice we need to evaluate the future lifetime of used systems that are still alive. Formally, let
X be a lifetime random variable with survival function F̄ . Then, the conditional random variable
Xt = (X − t | X > t), for all t that F̄(t)> 0, is well-known as the residual lifetime of X at the age t
provided that it has survived up to t. It can be easily seen that the hr function of Xt is shifted above
the hr function of X , i.e. rt(x) = r(t + x) for all x≥ 0 and t ≥ 0, where rt and r are the hr functions
of X and Xt , respectively. As an evident consequence, we have

X ≤hr Y ⇔ Xt ≤hr Yt , for all t ≥ 0. (4.6)

Suppose that (Xt)w is the weighted version of Xt with weight function w, then since the hr function
of (Xt)w is not shifted above the hr function of Xw, thus the property of (4.6) does not remain true in
general with the weighted hazard order instead of the hazard rate order. However, as the following
result demonstrates, this property is satisfied under a suitable condition.

Theorem 4.7. Let w be a log-concave weight function. Then,

X ≤(w)
whr Y ⇔ Xt ≤(w)

whr Yt , for all t ≥ 0.

Proof. By taking t = 0 in Xt ≤(w)
whr Yt we arrive at X ≤(w)

whr Y. To prove the inverse implication we first
introduce some notations. Let (Xw)t = (Xw− t | Xw > t), for all t that F̄w(t)> 0 and (Yw)t = (Yw− t |
Yw > t), for all t that Ḡw(t) > 0, which are the residual lifetimes of Xw and Yw, respectively. For
the weight function w1(x) = w(t + x), let (Xt)w1 and (Yt)w1 be the weighted versions of Xt and Yt ,

respectively. By definition, X ≤(w)
whr Y implies Xw ≤hr Yw and by (4.6) this gives (Xw)t ≤hr (Yw)t , for

Published by Atlantis Press 
Copyright: the authors 

86



Izadkhah, Amini and Mohtashami Borzadaran

all t for which F̄w(t)> 0 and Ḡw(t)> 0. Because of Lemma 2.2 in Izadkhah et al. [8], (Xw)t
st
= (Xt)w1

and (Yw)t
st
= (Yt)w1 , for all allowable t’s. Hence, it follows that (Xt)w1 ≤hr (Yt)w1 , for all t. Now, since

w is log-concave, w(x)/w1(x) =w(x)/w(t+x) is increasing in x, for all t. Therefore, using Theorem
3.1, (Xt)w ≤hr (Yt)w, for all t, which means Xt ≤(w)

whr Yt , for all t.

In the following example we consider some log-concave weight functions to be applied in Theorem
4.7.

Example 4.4. The weight functions w(x) = xβ ;β ∈ R+, w(x) = eβx;β ∈ R, w(x) = αx+β ;α,β ∈
R+, w(x) = (αx+β )/(δx+ γ);βδ ≤ αγ, w(x) = H(x), when H is DRHR, w(x) = H̄(x), when H
is IFR, and w(x) = u(β − x);β ∈ R+, are each log-concave in x.
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