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Abstract

The purpose of this paper is to provide a valid Edgeworth expansion for the parametric bootstrap t-statistic
of a linear regression process whose error terms are stationary, Gaussian, and strongly dependent time series.
Under some sets of conditions on the spectral density function and the parametric values, an Edgeworth expan-
sion of the bootstrap t-statistic of arbitrarily large order of the process is proved to have an error of o(n1−s/2)
where s is a positive integer. The result is similar to the Edgeworth expansion obtained by Andrews and Lieber-
man [2002], which was established for the parametric bootstrap t-statistic of the plug-in maximum likelihood
(PML) estimators of stationary, Gaussian, and strongly dependent processes, but without the linear regression
component.
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1. Introduction

Consider a linear regression model {Xt = Ztβ + εt , t ≥ 1}, where β is a p vector of deterministic
but unknown real numbers, {Zt ∈ Rp, t ≥ 1, p ≥ 1} are non-stochastic regressors, and the error
terms {εt , t ≥ 1} are stationary, Gaussian, and strongly dependent discrete time series. The process
{εt , t ≥ 1} is assumed to have mean zero and and spectral density fθ (λ ) for λ ∈ (−π,π), where
θ = (θ1,θ2, . . . ,θr)

′ ∈ Rr and

fθ (λ ) = O(|λ |−2d−δ ) (1.1)

as |λ | ↓ 0,∀δ > 0, d ∈ (0,1/2), and θ1 = d, referred to as the ”long-memory parameter” of the
process (see Andrews and Lieberman [2002], pages 4-5).
Let X= (X1,X2, . . . ,Xn)

′ be an observed sample of size n and E = (ε1,ε2, . . . ,εn)
′ be the correspond-

ing error terms, where for each i = 1,2, ...,n,Xi = Ziβ +εi. We note that the covariance matrix of X
is the same as the covariance matrix of E .
Let µ = (µ1,µ2, . . . ,µn) be the true mean of X. Then, the least square estimate (LSE) β̂ =(

β̂1, β̂2, . . . , β̂p

)
of β is given by β̂ =V−1

∑
n
t=1 XtZt , where V = ∑

n
t=1(ZtZ′t) is a p×p matrix. Thus,

an estimator of µ is µ̂ = (µ̂1, . . . , µ̂n), where µ̂t = Z′t β̂ , t = 1,2, ...,n. Let Z denote the design matrix
given by Z = (zi j) for i = 1, ...,n and j = 1, ..., p. We shall assume that the rank of Z is p. We note
that the matrix V is symmetric and positive definite.
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The n× n (Toeplitz) covariance matrix corresponding to fθ (λ ) is denoted by Tn( fθ ) and has
( j,k) element defined by:

Tn( fθ ) j,k =
∫

π

−π

ei( j−k)λ fθ (λ )dλ . (1.2)

The log-likelihood function is

Ln(θ ,µ) =−
n
2

ln(2π)− 1
2

ln(det(Tn( fθ )))−
1
2
(X−µ)′T−1

n ( fθ )(X−µ). (1.3)

We refer to Ln(θ , µ̂), where µ̂ is replaced for µ in (1.3) above, as the plug-in log-likelihood (PLL)
function. Let Qn = ZV−1Z′ and let Mn = In−Qn, where In is the n×n identity matrix. It is easy to
verify that the matrices Mn and Qn have the following properties: a) Both Mn and Qn are symmetric.
b) X′Mn = (X− µ̂)′. c) If U = X−µ , then MnX = MnU . d) There exists an n×p matrix E such that

Qn = EE′ (1.4)

Using these properties the PLL function can now be written as

Ln(θ , µ̂) =−
n
2

ln(2π)− 1
2

ln(det(Tn( fθ )))−
1
2

X ′MnT−1
n ( fθ )MnX . (1.5)

A plug-in maximum likelihood (PML) estimator is an element of the parameter space that
maximizes the PLL function (1.5) above. Andrews and Lieberman [2002] (Lemma 9(b), page
29), have established a valid asymptotic expansion for the parametric bootstrap t-statistic of the
error term {εt , t ≥ 1} given above. In this paper we extend this work of Andrews and Lieberman
[2002] and obtain an asymptotic expansion of the parametric bootstrap t-statistic of the processes
{Xt = Ztβ + εt , t ≥ 1} described above by imposing an additional condition on the regression coef-
ficients and a mild additional condition on the spectral density function.
This paper is an outgrowth of a study first reported by Aga and Sun [2007], which provides higher
order improvements of parametric bootstrap confidence intervals of the same model described
above. The preliminary results needed and the underlying assumptions of the current paper are
contained in Aga and Sun [2007]. Those that are relevant to our discussion are presented here for
convenience. We provide a rigorous treatment of the asymptotic expansion of the bootstrap t-statistic
in this piece.
The remainder of the paper proceeds as follows. Section 2 provides three assumptions and some
preliminaries. Section 3 presents and proves the main Edgeworth expansion result.

2. Assumptions

In addition to the assumptions I-VI of Andrews and Lieberman [2002], we shall impose the fol-
lowing assumptions A1-A3 on the spectral density function, the regression coefficients and the
parameter space Θ.
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A1. There exists a compact subset Θ0 of Θ and a constant δ > 0 such that the true value θ0 lies in
the interior of Θ0 and fθ (λ )> δ for all θ ∈Θ0 and λ ∈ (−π,π).
A2. The design matrix Z is chosen in such a way that for the matrix

E = (ei j), i = 1, ...,n, j = 1, ..., p (2.1),

defined by (1.4) above, there exists a constant M < ∞ such that |ei j| ≤ M√
n for 1≤ i≤ n, 1≤ j ≤ p.

A1 requires fθ to be bounded away from zero. This indeed is not a severe restriction on fθ because
for most practical examples of stationary, Gaussian, strongly dependent time series, it is always pos-
itive. For the most popular ARFIMA(p,d,q) process for instance, the spectral density function fθ is

given by fθ (λ ) =
σ2

ε

2π

|Ψ(eiλ )|2
|Φ(eiλ )|2 |1− eiλ |−2d , where θ = (σ2

ε ;d;Φ1,Φ1, ...,Φp;Ψ1, ...,Ψq). [Brockwell
and Davis (1991), Equation (13.2.18).] Clearly, fθ is positive for this particular model.
A2 puts a restriction on the design matrix Z. It is mainly this assumption that enables us to extend
the results of Andrews and Lieberman [2002] and that of Lieberman et al. [2003] to our current
regression model. Theorem 4.2 and Lemmas 4.4-4.5 of Aga and Sun [2007], which are cited in
the proof of Theorem 3.1 of section 3 below, are extensions of Theorem 3 and Lemmas 3 and 5,
respectively, of Andrews and Lieberman [2002], with a unit vector en of theirs replaced by matrix E
defined in (1.4) above, further complicating the proof of the extension. This complication is resolved
partly by making use of Lemma 4.4 of Aga and Sun [2007], which in turn makes use of mainly A2,
but also A1.
One drawback of the result of this paper (and that of Aga and Sun [2007]) is the somewhat severe
restriction imposed on the design matrix by A2. While Lemma 3.1, page 620 of Aga and Sun [2007]
provides a useful example of a design matrix that satisfies this assumption, it is generally unknown
whether or not the results of this paper will go through without it.
To state the third assumption we need to introduce the following notations. Let ν = (r1,r2, ...,rq)

′

denote a q-vector of positive integers each less than or equal to d = dim(θ). We write the real valued
q-th order partial derivative of the PLL function indexed by ν as

Ln,ν = DνLn(θ , µ̂) =
∂ q

∂θr1 . . .∂θrq

Ln(θ , µ̂) = Fn,ν(θ)+X ′MnBn,ν(θ)MnX (2.2)

where

Fn,ν(θ) =−
1
2

Dν ln(det(Tn( fθ ))) =
b

∑
k=1

aktr(
pk

∏
j=1

T−1
n ( fθ )Tn(gθ ,k, j)) (2.3)

and

Bn,ν(θ) =−
1
2

DνT−1
n ( fθ ) =

b

∑
k=1

ak(
pk

∏
j=1

T−1
n ( fθ )Tn(gθ ,k, j)T−1

n ( fθ ) (2.4)

for some constants b, ak, and pk that depend on ν and with gθ ,k, j being certain partial derivatives of
the spectral density with respect to the components of θ of order q or less. Equations (2.2), (2.3),
and (2.4) are the same as those of equations (8.1) and (8.2) of Andrews and Lieberman [2002]
except that our Mn is different from theirs and that we used the estimator µ̂ of our sample X instead
of their sample mean which they denoted by X̄n.
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We shall introduce some more notations. Let Vn(θ) = (Ln,ν(1)(θ), . . . ,Ln,ν(d)(θ)), where each vector
ν( j) is of the same form as ν defined in (2.2)-(2.4) above. Vn(θ) is what we shall call a vector of
log-likelihood derivatives (LLDs). Let Wn(θ) = n−1/2(Vn(θ)−EθVn(θ)). Without loss of generality
we may assume that EθVn(θ) = 0. Let Dn(θ) = E[Wn(θ)Wn(θ)

′] and D(θ) = limn→∞ Dn(θ).

A3. The matrices Dn(θ) and D(θ) are non-singular.

3. Edgeworth expansion of the bootstrap t-statistic

As a way of introducing the bootstrap t-statistic, we first define the parametric bootstrap sample and
formulate the general set up of bootstrap confidence intervals and tests. (a) By definition, the para-
metric bootstrap sample X∗ = (X∗1, ...,X

∗
n) has conditional distribution given X that is the same as

the distribution of the original sample except that the true parameters are (θ̂n, µ̂) rather than (θ0,µ).
That is, X∗ consists of Gaussian strongly dependent linear regression random variables with mean
µ̂ and spectral density f

θ̂n
(λ ) conditional on the original sample X. (b) The bootstrap sample mean

µ̂∗ is defined by µ̂∗ = (µ̂∗1 , ..., µ̂
∗
n ), where, for t = 1, ...,n, µ̂∗t = Z∗

′
t β̂ ∗, β̂ ∗ = V ∗−1

∑
n
t=1 X∗t Z∗t , and

V ∗ = ∑
n
t=1(Z

∗
t Z∗

′
t ). (c) The bootstrap PLL function Ln(θ , µ̂

∗) is defined in the same way as the PLL
function Ln(θ , µ̂) (see (1.5) above) but with X∗ and µ̂∗ replacing X and µ̂ , respectively. (d) Let Θ∗

denote the set of solutions in the parameter space Θ to the first order conditions for the bootstrap
PLL function. The bootstrap estimator θ̂n

∗
can now be defined as that value of θ that maximizes the

bootstrap PLL function Ln(θ , µ̂
∗). Observe that the true parameter of the bootstrap sample is θ̂n,

and hence θ̂ ∗n is a PML estimator of θ̂n.
Let θh denote some element of Θ, the parameter space. Let θ0,r, θh,r, and θ̂n,r denote the r-th ele-
ments of θ0, θh, and θ̂n, respectively. Let Σr,r(θ̂n) denote the (r,r)-th element of Σ(θ̂n). Let zα denote
the 1−α quantile of the standard normal distribution. We define the bootstrap t statistic to be

T ∗n (θ̂n,r) =

√
n(θ̂ ∗n,r− θ̂n,r)

Σ
1/2
r,r (θ̂ ∗n )

(3.1).

where θ̂ ∗n,r denotes the r-th element of θ̂ ∗n .
We now state a condition, known as Condition Cs, on the parametric values [See Andrews and
Lieberman [2002], page 14]. The condition is used in the proof of Theorem 3.1 below.
Condition Cs. Given some integer s ≥ 3, the sequence of estimators {θ̄n : n ≥ 1} is said to sat-
isfy Condition Cs if for all ε > 0 and all compact subsets Θc of Θ, supθ0∈Θc

Pθ0(||θ̄n − θ0|| >
n−1/2ln(n)ε) = o(n1−s/2) as n→ ∞

Another drawback of the results of this paper (apart from that of A2, as discussed in section 2 above)
is that the PML estimators are required to satisfy Condition Cs, which implies that these estima-
tors are consistent. The same drawback occurs in the works of Aga and Sun [2007], Andrews and
Lieberman [2002], and in those of Bhattacharya and Gosh [1978]. While Andrews and Lieberman
[2002] Lemma 1, page 14, shows that there exists a sequence of estimators that satisfies this con-
dition, it is generally unknown whether or not the result of this paper and those of others are valid
without it.
The next lemma is a key ingredient in the proof of the main result of the paper. First we introduce
some additional notations.
Let Φ(·) denote the distribution function of the standard normal distribution. Define Dω,η =

∂ q

∂ωη1 ...∂ωηq
, for η = (η1, ...,ηq). Let κn,s(θ)η denote the η cumulants of Vn(θ) when θ is the true
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value, where s is as in Condition Cs. By definition, κn,s(θ)η = i−qDω,η ln(ϕn(ω,θ))|ω=0, where
i =
√
−1. The vecttor κn,s(θ) is composed of elements κn,s(θ)η for vectors η of dimension q ≤ s.

Let κ̄n,s(θ) =
κn,s(θ)

n . By Lemma 4.5(c) of Aga and Sun [2007], the elements of κ̄n,s(θ) are O(1). Let
Pj(∆, κ̄n,s(θ)) be a polynomial in ∆ = ∂/∂ z whose coefficients are polynomials in the elements of
κ̄n,s(θ) and for which Pj(∆, κ̄n,s(θ))Φ(x) is an even function of x when j is odd and an odd function
of x when j is even for j = 1,2, ...,s−2.
Let τn(θ0) denote n1/2(θ̂n−θ0) or the t-statistic Tn(θ0,r) =

n1/2(θ̂n−θ0)

∑
1/2
r,r (θ̂n)

. Let 1
nV̄n(θ0) denote the vec-

tor 1
nVn(θ0) of normalized LLDs augmented to include the vector of expected values of all partial

derivatives with respect to θ of order s of 1
n Ln(θ0).

Lemma 3.1. For each definition of τn(θ0), there is an infinitely differentiable function F(.) that
does not depend on θ0, that satisfies F(n−1Eθ0V̄n(θ)) = 0 for all n large and all θ0 ∈Θc, and

sup
θ0∈Θc

sup
C∈Cd

|Pθ0(τn(θ0) ∈C)−Pθ0(n
1/2F(

1
n

V̄n(θ0)) ∈C)|= o(n1−s/2), (3.2)

where Cd denotes the class of all convex sets in Rd and some compact subset of the parameter space
Θ.

Proof. Let ρn(θ) =
1
n Ln(θ , µ̂). To establish (3.2) above we consider two cases. Case (1): when

τn(θ0) = n1/2(θ̂ −θ0), and case (2): when τn(θ0) = Tn(θ0,r).
Case (1). Suppose τn(θ0) = n1/2(θ̂−θ0). By Condition Cs and A3, we have infθ0∈Θc Pθ0(θ̂n ∈Θ0) =

1− o(n1−s/2), where Θ0 denote the interior of Θ and infθ0∈Θc Pθ0(
∂

∂θ
ρn(θ̂n) = 0) = 1− o(n1−s/2).

By Taylor expansion of ∂

∂θ
ρn(θ̂n) about θ0 of order s− 1, there exists θ̄n that lies between θ̂n and

θ0 such that

0 = ∂

∂θ
ρn(θ̂n) =

∂

∂θ
ρn(θ0)+∑

s−2
j=1

1
j! D

j ∂

∂θ
ρn(θ0)(θ̂n−θ0, ..., θ̂n−θ0)

+ 1
(s−1)! D

s−1 ∂

∂θ
ρn(θ̄n)(θ̂n−θ0, ..., θ̂n−θ0),

(3.3)

where D j ∂

∂θ
ρn(θ0)(θ̂n−θ0, ..., θ̂n−θ0) denotes D j ∂

∂θ
ρn(θ0) as a j-linear map, whose coefficients

are partial derivatives of ∂

∂θ
ρn(θ0) of order j, applied to the j-tuple (θ̂n−θ0, ..., θ̂n−θ0). Let,

ζ1n(θ0) =
1

(s−1)!
(Ds−1 ∂

∂θ
ρn(θ̄n)−Ds−1 ∂

∂θ
ρn(θ0))(θ̂n−θ0, ..., θ̂n−θ0), and

ζ2n(θ0) =
1

(s−1)!
(Ds−1 ∂

∂θ
ρn(θ0)−EDs−1 ∂

∂θ
ρn(θ0))(θ̂n−θ0, ..., θ̂n−θ0). (3.4)

Then, (3.3) above can be written as

0 = ∂

∂θ
ρn(θ̂) =

∂

∂θ
ρn(θ0)+∑

s−2
j=1

1
j! D

j ∂

∂θ
ρn(θ0)(θ̂n−θ0, ..., θ̂n−θ0)

+ 1
(s−1)! EDs−1 ∂

∂θ
ρn(θ̄n)(θ̂n−θ0, ..., θ̂n−θ0)+ζ1n(θ0)+ζ2n(θ0).

(3.5)

Note that, by definition, 1
nV̄n(θ0) is the column vector whose elements are the non-redundant com-

ponents of ∂

∂θ
ρn(θ0), D1 ∂

∂θ
ρn(θ0), ..., Ds−2 ∂

∂θ
ρn(θ0) plus the components of EDs−1 ∂

∂θ
ρn(θ0). Let
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en(θ0) = ((ζ1n(θ0)+ ζ2n(θ0))
′,0, ..,0)′ be conformable with V̄n(θ0). Equation (3.5) above can be

written as

ν(
1
n

V̄n(θ0)+ en(θ0), θ̂n−θ0) = 0, (3.6)

where ν(., .) is an infinitely differentiable function that satisfies

ν(n−1Eθ0V̄n(θ0),0) = 0, (3.7)

for all n≥ 1. (3.6) above holds because ∂

∂θ
ρn(θ̂n) = 0 and (3.7) holds because if θ̂n−θ0 = 0, then

θ̂n = θ0, and hence ∂

∂θ
ρn(θ0) =

∂

∂θ
ρn(θ̂n) = 0. From equation (3.5), we can see by inspection that

the function ν also satisfies

∂

∂x
ν(n−1Eθ0V̄n(θ0),x)|x=0 = n−1Eθ0

∂

∂θ∂θ ′
ρn(θ0) (3.8)

where x = θ̂n−θ0. Using the information matrix equality, the right hand side of (3.8) converges to
−Σ−1(θ0) as n→∞, and, hence, is negative definite for n large because the later is negative definite
by A3. Thus, since ν(n−1Eθ0V̄n(θ0),0) = 0, the Implicit Function Theorem can be applied to the
function ν(., .) at the point (n−1Eθ0V̄n(θ0),0). That is, there is an infinitely differentiable function
F(n−1V̂n(θ0)+ en(θ0)), defined near n−1Eθ0V̄n(θ0) and that does not depend on n or θ0 such that

ν(n−1V̄n(θ0)+ en(θ0),F(
1
n

V̄n(θ0)+ en(θ0))) = 0, (3.9)

where F satisfies F(1
n Eθ0V̄n(θ0)) = 0. Combining (3.5), (3.6), and (3.9) we obtain

inf
θ0∈Θc

Pθ0(θ̂n−θ0 = F(
1
n

V̄n(θ0)+ en(θ0))) = 1−o(n1−s/2). (3.10)

We now apply Lemma 6 of Andrews and Lieberman [2002], page 27, with An(θ0)= n1/2F(1
nV̄n(θ0))

and ξn(θ0) = n1/2(F(1
nV̄n(θ0)+ en(θ0))−F(1

nV̄n(θ0))) to obtain

|Pθ0(n
1/2F(

1
n

V̄n(θ0)+ en(θ0)) ∈C)−Pθ0(n
1/2F(

1
n

V̄n(θ0)) ∈C)|= o(n−(s−2)/2), (3.11)

uniformly over θ0 ∈Θc and C ∈Cdim(θ). Equations (3.10) and (3.11) now yield case (1) of the proof
of (3.2).
Case (2). Suppose τn(θ0) = Tn(θ0,r). Note that τn(θ0) is a function of θ̂n. Taking a Taylor expansion
of τn(θ0)/n1/2 about θ̂n = θ0 to order s−1, where the highest-order term involves the expectation
of the partial derivatives rather than the partial derivatives themselves, we obtain

τn(θ0) = n1/2(G̃(
1
n

V̄n(θ0), θ̂n−θ0)+ ζ̃n(θ0)), (3.12)

where G̃ is an infinitely differentiable function that does not depend on θ0, G̃(1
2V̄n(θ0),0) = 0 for

large n, ζ̃n(θ0) is the remainder term in the Taylor expansion, and ||ζ̃n(θ0)|| = O(||θ̂n − θ0||s).
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Combining (3.9) with (3.12) gives

τn(θ0) = n1/2(G̃(
1
n

V̄n(θ0),F(
1
n

V̄n(θ0)+ en(θ0))+ ζ̃n(θ0)). (3.13)

Again we apply Lemma 6 of Andrews and Lieberman [2002] with

An(θ0) = n1/2G̃(
1
n

V̄n(θ0),F(
1
n

V̄n(θ0)))

to obtain

supθ0∈Θc,C∈Cdim(θ)
| Pθ0(An(θ0))+ ζ̃n(θ0)) ∈C)−Pθ0(An(θ0)) ∈C)|= o(n1−s/2). (3.14)

Define a function F ′ by F ′(x) = (G̃(x),F(x)). Then F ′(.) is infinitely differentiable and satisfies

F ′(n−1Eθ−0V̄n(θ0)) = G̃(n−1EθV̄n(θ0),F(1
n EθV̄n(θ0))) = G̃(1

n EθV̄n(θ0),0) = 0, (3.15)

for all n large. Combining (3.14) and (3.15) gives the result of the theorem for the case τn(θ0) =

Tn(θ0,r). �
Next we introduce additional notations used in Lemma 3.2 below which in turn is used in Theorem
3.1. The lemma is just Lemma 8 of Andrews and Lieberman [2002] restated here for convenience.
For some δ > 0, let Θ+

c = {θ ∈ Rd : dist(θ ,Θc) ≤ δ} be a compact subset of Θ, the parameter
space, that is slightly larger than Θc (where dist(θ ,Θc) = inf{||θ −θc|| : θc ∈Θc}).

Lemma 3.2. Suppose supθ0∈Θc
Pθ0(θ̂n /∈ B(θ0,δ )) = o(n−(s−2)/2), where Θc is a compact subset of

Θ and δ is as in the definition of Θ+
c , and {λn(θ) : n≥ 1} is a sequence of non-random real functions

on Θ+
c that satisfies supθ∈Θ

+
c
|λn(θ)| = o(n−(s−2)/2). Then, for all ε > 0, supθ0∈Θc

Pθ0(|λn(θ̂n)| >
n−(s−2)/2ε) = o(n−(s−2)/2)).

We now present an Edgeworth expansion for the parametric bootstrap t statistic.
We first introduce some additional notations. Let H(x) = Pθ0(Tn(θ0,r) ≤ x), H̃(x) =

Φ(x) + ∑
s−2
j=1 n− j/2Pj(∆, κ̄n,s(θ0))Φ(x), H∗(x) = P∗

θ̂n
(T ∗n (θ̂n,r) ≤ x), and H̃∗(x) = Φ(x) +

∑
s−2
j=1 n− j/2Pj(∆, κ̄n,s(θ̂n))Φ(x), where H̃(x) and H̃∗(x) are formal Edgeworth expansions of H(x)

and H∗(x), respectively.

Theorem 3.1. Suppose Assumption I-VI of Andrews and Lieberman [2002] and A1-A3 hold, the
PML estimators {θ̂n ∈ Θ̂n : n ≥ 1} satisfy Condition Cs, and let s ≥ 3 be an integer. Then, for all
ε > 0,

Pθ0

(
sup
x∈R
|H∗(x)− H̃∗(x)|> n1−s/2

ε

)
= o(n1−s/2) (3.16)

uniformly over θ0 ∈Θc.

Proof. We first establish the Edgeworth expansion for the t statistic, Tn(θ0,r), which now follows
by utilizing the approximation of the t statistic by a smooth function of the LLDs given by Lemma
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3.1 above. We need to show for all ε > 0 that

supθ0∈Θc sup
x∈R
|H(x)− H̃(x)|= o(n1−s/2) (3.17).

To prove (3.17) above, we observe that,

|H(x)− H̃(x)| ≤ |H(x)−Pθ0(n
1/2F(n−1V̄n(θ0))≤ x)|+ |Pθ0(n

1/2F(n−1V̄n(θ0))≤ x)− H̃(x)|.
(3.18)

The first term of the right hand side of (3.18) is o(n1−s/2) because it is just the statement of (3.2)
proved in Lemma 3.1, and the second term is also o(n1−s/2) because it is shown in case (1) of
the proof of the lemma that n1/2F(n−1V̄n(θ0)) possesses an Edgeworth expansion with an error
o(n1−s/2), and thus (3.17) follows.
Next we establish the Edgeworth expansion of the bootstrap t statistic, T ∗n (θ̂n,r), as given in (3.16).
Let

λn(θ̂n) = supx∈R |P∗θ̂n
(T ∗n (θ̂n,r)≤ x)− [Φ(x)+∑

s−2
j=1 n− j/2Pj(∆, κ̄n,s(θ̂n))Φ(x)|. (3.19)

(3.16) now follows from Lemma 3.2 above upon checking the conditions of the lemma. The first
condition of Lemma 3.2 holds by Condition Cs and the second condition holds by (3.17) above with
Θc replaced by the compact set Θ+

c .
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