
A generalization of Tukey’s g−h family of distributions
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A new class of distribution function based on the symmetric densities is introduced, these transformations also
produce nonnormal distributions and its pdf and cd f can be expressed in parametric form. This class of distri-
butions depend on the two parameters, namely g and h which controls the skewness and the elongation of the
tails, respectively. This class of skewed distributions is a generalization of Tukey’s g−h family of distributions.
In this paper, we calculate a closed form expression for the density and distribution of the Tukey’s g−h family
of generalized distributions, which allows us to easily compute probabilities, moments and related measures.
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1. Introduction

On many occasions, statistical data show asymmetry, indicating some kind of skewness. This is
of the case of actuarial and financial data, which have characteristic asymmetrically distributed
structures with extreme values yielding heavier tails. For example, the probability distributions of
financial asset returns are not normally distributions, but usually have asymmetry and leptokurto-
sis. The most important and useful characteristic of the Tukey’sg− h family of distributions is
that it covers most of the pearsonian family of distributions, and also can generate several known
distributions, for example lognormal, Cauchy, Exponential, Chi-squared (see Martı́nez & Iglewicz
(1984)). Tukey’sg−h family of distributions has been used in the context of statistical, simulation
studies that include such topics as financial markets Badrinath & Chatterjee (1988), Mills (1995),
and Badrinath & Chatterjee (1991) have used theg andh to model the return on a stock index, also
the return on shares in several markets. Dutta & Babbel (2004) showed that the skewed and lep-
tokurtic behavior ofLIBOR was modeled effectively using the distributiong− h. Dutta & Babbel
(2005) usedg and h to model interest rates and options on interest rates, while Dutta & Perry
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(2007) used theg−h to estimate operational risk; Tang & Wu (2006) studied the portfolio manage-
ment. Jiménez & Arunachalam (2011) provided the explicit expressions of skewness and kurtosis
for VaR andCVaR calculations. They propose the use of Tukey’s classicalg andh transformations
applied to the normal distribution to capture these distributional features.

In this paper, we propose a generalization of Tukey’sg− h family of distributions, when the
standard normal variate is replaced by a continuous random variableU with mean 0 and variance
1. The attraction of this family of distribution is that from a symmetric variate with probability
density function(pd f ), a large class of distributions can be generated with the parametersg andh
which controls the skewness and the elongation of the tails. This new class of distribution allows
us to models with large kurtosis measures and will useful in financial and other application in
asymmetrical distributions.

The paper is organized as follows: Section 2 presents the Tukey’sg− h family of generali-
zed distributions. Section 3 presents its statistical properties:pdf, cumulative distribution function
(cd f ), expressions for thenth moment and quantile-based measures of skewness and kurtosis are
derived. Section 4 introduces very briefly theg generalized distribution and its moments. Section
5 explains the adjustment methodology based on real data, i.e., we demonstrate how theg− h can
be used to simulate or model combined data sets when only the mean, variance, skew, and kurtosis
associated with the underlying individual data sets are available. Finally, conclusion are presented.

2. Tukey’s g−h family of generalized distributions

Tukey (1977) introduced a family of distributions by two nonlinear transformations called theg−h
distributions, which is defined by

Y = Tg,h(Z) =
1
g
(exp{gZ}−1)exp{hZ2/2} with g 6= 0 ,h ∈ R (2.1)

where the distribution ofZ is standard normal. When these transformations are applied to a con-
tinuous random variable normalizedU , i.e., with mean 0 and variance 1, such that itspdf fU(·) is
symmetric about the origin andcdf FU(·), the transformationTg,h(U) is obtained, which henceforth
will be termed Tukey’sg−h generalized distribution:

Y = Tg,h(U) =
1
g
(exp{gU}−1)exp{hU2/2} with g 6= 0 ,h ∈ R. (2.2)

The parametersg andh represent the skewness and the elongation of the tails of the Tukey’sg−h
generalized distribution, respectively.

In this paper, forh 6= 0, we assume that the random variableU has a Generalized Error Distri-
bution of parameterα , denotedU ∼ GED(α), with pdf given by

fU (u,α) =
1

2λΓ(α +1)
exp

{
−
∣∣∣

u
λ

∣∣∣
1
α
}
, u ∈R,0< α ≤ 1, (2.3)

whereλ =
√

Γ(α)
Γ(3α) andΓ(·) is the gamma function,α is a tail-thickness parameter. Whenα = 1

2

thenU ∼ N (0,1) and whenα = 1 thenU ∼ Laplace
(

0,
√

2
2

)
, which are symmetric with stan-

dardized skewness of zero and standardized kurtosis of 3 and 6, respectively. Also, we present for
h = 0 five special cases of the Tukey’sg− h distributions, whenU ∼ GED

(
1
2

)
, U ∼ GED(1) ,

U ∼ Logistic
(

0,
√

3
π

)
, the hyperbolic secant (HyperSec) and the hyperbolic cosecant (HyperCsc).
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When we assumeh = 0 in (2.2) the Tukey’sg−h generalized distribution reduces to

Tg,0(U) =
1
g
(exp(gU)−1) (2.4)

which is said to beTukey’s g generalized distribution. WhenU ∼ GED
(1

2

)
its distribution also

known as the family of lognormal distributions, because they have a lengthening of the tails than
the standard normal distribution and they are skewed as well.

Similarly, wheng goes to 0 the Tukey’sg−h generalized distribution is given by

T0,h(U) =U exp{hU2/2} (2.5)

known as theTukey’s h generalized distribution. This distribution has the characteristic of being
symmetrical but with tails heavier than the distribution of a random variableU with increasing
value of the parameterh.

If we wish to model an arbitrary random variableX using the transformation given in (2.2), we
introduce two new parameters,A (location) andB (scale) and propose the following model

X =A+BY with Y =Tg,h(U). (2.6)

We must estimate four parameters that satisfy either of the following relationships:

xp =A+Byp, and x1−p =A−Bexp{−gup}yp. (2.7)

wherep > 0.5 andxp is thep−th quantile of the random variableX , such that

xp = inf{x|P[X ≤ x]> p}= sup{x|P[X < x]≤ p}.

Quantilep−value is the median, quartiles, eighth digit. Hoaglin et al. (1985) refer to them as the let-
ter values, respectively, for theM (median),F (fourths),E (eighths), etc. The estimation of param-
eters of Tukey’sg − h family of generalized distributions can be obtained using the method of
moments Majumder & Ali (2008) or with the method of quantiles proposed by Hoaglin (1985).

3. Statistical properties of the Tukey’s g−h family

In this section we discuss the statistical properties Tukey’sg−h family of generalized distributions.

3.1. Density function

In Jiménez (2004) using the inverse function theorem provides the following relation

(
F−1

U
)′
(FU (up)) =

d
d p

up =
1

F ′
U (up)

=
1

fU (up)
(3.1)

wherep is the only number that satisfiesFU (up) = p and fU(·) is thepdf of the continuous random
variableU. Thepdf for the Tukey’sg−h generalized distribution is obtained by using the following
result

tg,h(yp) =
fU (up)

T ′
g,h (up)

whenever |h|up
e−gup −1

g
< 1, (3.2)

whereyp andup denote thep−th quantile of the transformationY = Tg,h(U) and the continuous
random variableU , respectively. From equation (2.7) and using the expression (3.1) (Jiménez &
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Martı́nez (2006)) obtainedthe pdf for the random variable X as follows:

fX(xp) = fX(A+Byp) =
1
|B| tg,h(yp). (3.3)

The parameterg controls the skewness with positive values ofg generate positive skewness and
negative values generate negative skewness andg = 0 corresponds to symmetry.

3.2. Cumulative distribution function

We now proceed to find thecdf of the Tukey’sg−h family of generalized distributions, denote by
Fg,h (y) . The following equality can be easily verified :

∫ b

a
tg,h (u)du =

∫ T−1
g,h (b)

T−1
g,h (a)

fU (v)du = FU

(
T−1

g,h (b)
)
−FU

(
T−1

g,h (a)
)
, (3.4)

whereT−1
g,h (·) is the inverse of the transformation given in (2.2) andFU(·) is thecdf of the continuous

random variableU.

There is no explicit form for the inverse of the transformation ofTg,h(U). However we get the
inverse transformation whenh = 0 or g = 0 as given below,

• If h = 0 thenTg,0(U) is given by (2.4) and

T−1
g,0 (y) =

1
g

ln(1+gy) , gy >−1. (3.5)

• If g = 0 thenT0,h(U) is given by (2.5), it must be

hY 2 =h [T0,h(U)]2 = hU2exp
{

hU2} , (3.6)

the expression (3.6) is of the formu=wexp{w}, wherew=W(z) is the Lambert’s function.
Then the solution of (3.6) is given by

hU2 =W
(
hy2) ⇒ T−1

0,h (y) =
√

1
h

W (hy2). (3.7)

The basic properties of the functionW(z) are given in Olver et al. (2010).

Though the inverse of the transformation ofTg,h(U) cannot be evaluated analytically, it can be
evaluated numerically.

3.3. Measures of skewness and kurtosis

Since the transformation given in (2.2) is simply a quantile-based distribution, we use quantile-based
measures of skewness(SK) and kurtosis(KR). For 0.5< p < 1 the measure proposed by Hinkley
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(1975) is given bya

SK2(p) =
UHSp/LHSp −1
UHSp/LHSp +1

=
exp{gup}−1
exp{gup}+1

= tanh
{g

2
up

}
, (3.8)

whereUHSp = xp −x0.5 andLHSp = x0.5−x1−p, denote thep-th upper half-spread andlower half-
spread, respectively (Hoaglin et al. (1985)). Note that this expression only depends on the parameter
g. For fixedp one can have values ofSK2(p) varying values ofg as is illustrated in Figure 1
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Fig. 1. Measure of skewnessSK2(p)

WhenU ∼ GED
(

1
2

)
we use the measure of skewness given in Groeneveld & Meeden (1984) to

obtain

SK3 =
1−exp

{
−1

2
g2

1−h

}

2Φ
(

g√
1−h

)
−1

=
1−exp

{
−1

2
g2

1−h

}

tanh
{√

2
π

g√
1−h

} .

Herewe use the expression given in Tocher (1964). Note that this last expression depends on two
parametersg, h which is zero wheng = 0. Also Groeneveld & Meeden (1984) present four proper-
ties that any reasonable coefficient of skewness must satisfy.

Furthermore, assuming thatU ∼ GED
(

1
2

)
measure of kurtosis presented in Hogg (1974) we

would read

KR2(p;q) =
U p −Lp

Uq −Lq
,

where

U s −Ls =
1
s

[
µg,hΦ(δ2s)+

Φ(δ2s)−Φ(δ1s)

(1−h)(δ2s −δ1s)
−µg,hΦ(δ ∗

2s)+
Φ(δ1s)−Φ(δ ∗

2s)

(1−h)
(
δ1s −δ ∗

2s
)
]

=
µg,h

s
(Φ(δ2s)−Φ(δ ∗

2s))+
1/s

1−h

[
Φ(δ2s)−Φ(δ1s)

δ2s −δ1s
+

Φ(δ1s)−Φ(δ ∗
2s)

δ1s −δ ∗
2s

]
,

aSK1 andKR1 are the standardized values for skewness and kurtosis, respectively.
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where

δ1s =
√

1−hzs, δ2s = δ1s +
g√

1−h
, δ ∗

2s = δ1s −
g√

1−h

Making use of the measure for kurtosis in Crow & Siddiqui (1967) forp > q > 0.5 we have

KR3
(

p;q
)
=

{
sinh(gup)
sinh(guq)

exp
{ h

2

(
u2

p −u2
q
)}

if g 6= 0,
up
uq

exp
{ h

2

(
u2

p −u2
q
)}

if g = 0.

3.4. Moments of the Tukey’s g−h family of generalized distribution

The next two propositions spell out the moments of the Tukey’sg−h family of generalized distri-
butions. The corresponding proofs are given Appendix A.

Proposition 3.1. The m−th power the Tukey’s g−h family of generalized distribution is given by

Y m =T m
g,h(U) =

m
gm−1

m−1

∑
k=0

(−1)k
(

m−1
k

)
Tg̃,h̃(U), m ≥ 1, (3.9)

where g̃ = (m− k)g and h̃ = mh.

Proposition 3.2.
Let U be a continuous random variable with pdf fU (u) and cdf FU (u). If F ′

U (u) is never zero,
then F−1

U (u) is differentiable and satisfies

µ ′
n = E(Un) =

∫ ∞

−∞
wn fU (w)dw =

∫ 1

0

[
F−1

U (q)
]n dq, (3.10)

where q is the unique value that satisfies FU (uq) = q.

Proposition 3.3.
Let Y = Tg,h(U) be transformation given in (2.2), then the n−th moments of the random variable

Y are given by

µ ′
n =





2
gn

n
∑

k=0
( 1)k (n

k
) ∞∫

0
cosh(g̃u)exp

{
1
2h̃u2

}
fU(u)du if g 6= 0,

[1+( 1)n]
∞∫

0
un exp

{
1
2 h̃u2

}
fU (u)du if g = 0,

(3.11)

where g̃ = (n− k)g and h̃ = nh.

Proof. Using the expression (3.10) wheng 6= 0 we obtain

E(Y n) =
∫ 1

0
Y n

q dq =
∫ ∞

−∞
yntg,h (y)dy =

∫ ∞

−∞
yn

fU
(

T−1
g,h (y)

)

T ′
g,h

(
T−1

g,h (y)
)dy.

Making the following change of variable

u =T−1
g,h (y) du =

dy

T ′
g,h

(
T−1

g,h (y)
) , (3.12)
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and using the expression (3.9) we have

E(Y n) =
n

gn−1

n−1

∑
k=0

(−1)k
(

n−1
k

)∫ ∞

−∞
Tg̃,h̃(u) fU (u)du

=
2
gn

n

∑
k=0

(−1)k
(

n
k

)∫ ∞

0
cosh(g̃u)exp

{
1
2

h̃u2
}

fU (u)du,

where g̃ = (n− k)g and h̃ = nh. In the latter term, we used thatfU(u) is a function symmetrical
about the origin.

3.4.1. Special cases of moments

In general, when the continuous random variableU is symmetrically distributed about the origin,
then the moment generating function(mg f ) can be written as follows

MU(t) = E
(
etU)= 2

∫ ∞

0
cosh(tu) fU(u)du, (3.13)

and the characteristic function for the random variableU is given by

ΨU(t) = E
(
eitU)= 2

∫ ∞

0
cos(tu) fU(u)du, (3.14)

wherei is the imaginary quantity whose value is equal to
√
−1. Since thatfU (u) is an even function,

then the Fourier integral representation offU (u) may be written as

fU (u) =
∫ ∞

0
A(t)cos(ut)dt, with A(t) =

1
π

ΨU (t) .

Using the Fourier frequency convolution theorem we can write

2
∫ ∞

0
cos(gt) fU(t)e−

|h|
2 t2

dt = F

[
fU(t)exp

{
−|h|

2
t2
}]

=
1√

2|h|π
exp

{
− g2

2|h|

}
∗F [ fU(t)] ,

where ∗ denotes convolution. The expression (3.13) allows us to obtain the moments of Tukey’s
g−h distribution. However moments of some orders do not exist for a certain range of values of the
parameterh, considering that we have the following cases:

(1) Supposing thatU ∼ GED
(

1
2

)
andh < 1

n , we have

E(Y n) =





1

gn
√

1−nh
n
∑

k=0
( 1)k(n

k
)
MU

(
n−k√
1−nh g

)
g 6= 0

1+( 1)n

2
n
2

[
1− h̃

] n+1
2

Γ(n)
Γ(n/2)

g = 0
(3.15)

whereMU(t) is the mg f of a standard normal random variable andΓ(·) is the Gamma
function. This expression is consistent with those obtained by Martı́nez & Iglewicz (1984).
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(2) WhenU ∼ GED(1) andh < 0, we haveb

µ ′
n =





1
gn

√
π

n|h|

{
n−1
∑

k=0
( 1)k(n

k
)[

exp

{
α2

n,k
2

}
Φ( αn,k)+

exp

{
β2

n,k
2

}
Φ(βn,k)

]
+2( 1)ne

1
n|h| Φ

( √
2

n|h|

)}
, g 6= 0,

1+( 1)n

2
√

n|h|

( √
2

n|h|

)n
e

1
n|h|

n
∑

k=0

(n
k
)(
−1
)k [Γ

( k+1
2

)

−
∫ 1

n|h|
0 u 1

2(k−1)e−u du
]
, g = 0,

(3.16)

whereαn,k andβn,k are the larger and smaller roots respectively, of the quadratic equation

n |h| r2−2
(
n− k

)√
n |h|gr+

(
n− k

)2g2−2= 0. (3.17)

Expression (3.16) was wrongly calculated in Klein & Fischer (2002).

From the preceding equations we obtain the expected valueµ for g 6= 0:

(1) Assumes thatU ∼ GED
(

1
2

)
. Using the expression (3.15) withn = 1 for calculatedE[Y ],

then we must

E [Y ] =
1

g
√

1−h

(
e

1
2

g2

1−h −1

)
. (3.18)

(2) Assuming in the expression (2.6) that the variableU ∼ GED(1) , h < 0 and using the
expression (3.16) withn = 1, we obtain

µL
g,h =

1
g

√
π
|h|

[
e

1
2α2

1,0Φ( α1,0)+ e
1
2β2

1,0Φ(β1,0)−2e
1
|h| Φ

( √
2
|h|

)]
, (3.19)

whereα1,0 andβ1,0 be the larger and smaller roots of the quadratic equation given in (3.17),
respectively.

4. The g generalized distribution

Theg generalized distribution given by equation (2.4) is a nonlinear transform of a continuous ran-
dom variableU and is parameterized byg. This subfamily contains distributions whose skewness
increases when the value of the parameterg increases. This subfamily of distributions to help them
get to have great importance in the statistical analysis to be a suitable means to study skewed distri-
butions. Its distributional form includes only the parameterg which fixes the amount and direction
of skewness.

bAppendix B contains the respective proof of this expression.
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Now, we give below an empirical rule for a random variableX which can be expressed as (2.6)
with Y = Tg,0(U),

xp −θ
x0.5−θ

=
θ − x0.5

θ − x1−p
for all p > 0.5. (4.1)

In particular, the expression (4.1) is satisfied if

θ = A−sgn(g)
B
|g| , (4.2)

where sgn(·) denote the signum function. The constantθ relates to the location and scale para-
meters, known as “threshold parameter” and was given by Hoaglin et al. (1985). Takingh = 0 in
expression (3.2) and replacing the expression (3.5) we get that

tg,0 (y) =
1

1+gy
fU
(

ln(1+gy)
g

)
, gy >−1. (4.3)

Moreover, if we solve for the variabley in equation (2.7) by substituting the expression given
in (4.3), we obtain

tg,0
(

x−A
B

)
= fU

(
1
g

ln

(
1+

x−A
B/g

))[
1+

x−A
B/g

]−1 x−A
B/g

>−1

Since g ∈ R then

tg,0
(

x−A
B

)
=





B
g

fU
(

1
g

(
ln(x−θ)− ln

(
B
g

)))

x−θ
if g > 0

B
|g|

fU
(

1
|g|

(
ln
(

B
|g|

)
− ln(θ − x)

))

θ − x
if g < 0

(4.4)

where B
|g| > 0, for simplicity and without loss of generality we assumeg > 0 and we replace the

expression (4.2) and if we use the result given in (3.3), which relates thepdf of X andY = Tg,h(Z)
on the quantiles, we can rewrite (4.4) as follows

fX (x) =
1

g(x−θ)
fU
(

1
g
(ln(x−θ)−µ∗)

)
x > θ , (4.5)

where µ∗ = ln
(

B
g

)
. We say that the random variableX has a log-symmetric distribution with

threshold parameterθ , scale parameterµ∗ and shape parameterg, denoted byX ∼ LS
(
µ∗,g,θ

)
. If

θ = 0 we denote byX ∼ LS
(
µ∗,g

)
. Thecdf of the random variableX given by

FX (x) =FU

(
1
g
(ln(x−θ)−µ∗)

)
, x > θ . (4.6)

Expression (4.5) allows us to obtain the followingpdf associated with the Tukey’sg function.
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4.1. Special cases

(1) If U ∼ GED
(

1
2

)
andg 6= 0, we have that

fX (x) =
1√

2πg(x−θ)
exp

{
−1

2

(
ln(x−θ)−µ∗

g

)2
}
, (4.7)

whereµ∗ = ln(µX −θ)− 1
2g2 andx> θ . Note that whenθ = 0 the last expression coincides

with the pdf of the classic Log Normal random variable. In this case, we say thatX is
Log-Normal distributed with three parametersµX , g and θ . Many practical applications
of this distribution are discussed in the literature, for example, Aitchison & Brown (1963)
and Crow & Shimizu (1988).

(2) WhenU ∼ GED(1) and 0< g <
√

2
n , theresulting distribution is given by thepdf

fX (x) =
β

2(ε −θ)

{( x−θ
ε−θ
)β−1

, θ < x < ε
( ε−θ

x−θ
)β+1

, x ≥ ε ,
(4.8)

whereβ =
√

2
g and(ε −θ) = (µX −θ)

(
1− 1

β2

)
. Note again that this expression coincides

with thepdf of log-Laplace with three parametersµX , g andθ .
(3) If U ∼ Logistic

(
0,λ−1

)
, 0< g < λ

n andλ = π√
3
, thenthepdf of X can be expressed as

fX (x) =
π

ε −θ

[
π
α

x−θ
ε −θ

]α−1[
1+

π
α

x−θ
ε −θ

]−2α
, (4.9)

whereα = λ
g y (ε −θ) = (µX −θ)sin

(√
3g
)
. Note that this expression coincides with the

pdf of three parameters Log-Logistic (µX , g andθ ).

Taking the expectation of the linear transformation given in equation (2.6) we obtain

E(X −θ) =
B
g
E
[
egU]= B

g
MU (g) ⇒ B =g

E(X)−θ
MU (g)

,

whereMU(g) is themg f of the random variableU . Thenth moment of the random variableX could
be obtained using the formula

E [(X −E [X ])n] = µn (X) = exp{nµ∗}
n

∑
k=0

(−1)k
(

n
k

)
MU (g̃)Mk

U (g) ,

note that these expressions do not depend on the parameterθ . Thus, the standardized values for
skewness and kurtosis corresponding to linear transformation given by equation (2.6) withY =

Tg,0(U) can be expressed as

SK1(X) =
MU (3g)−3MU (2g)MU (g)+2M3

U (g)
[
MU (2g)−M2

U (g)
] 3

2

, (4.10)

KR1(X) =
MU (4g)−4MU (3g)MU (g)+6MU (2g)M2

U (g)−3M4
U (g)

[
MU (2g)−M2

U (g)
]2 . (4.11)

Note that the above expressions depend only on the parameterg.
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Then-th moment of the random variableX −θ is given by

E [(X −θ)n] =

(
B
g

)n
MU (ng) . (4.12)

When we rewrite the expression (4.12) and use properties of themg f , we obtain

E

(
en ln(X−θ )

)
= MV (n) =en ln( B

g )MU (ng) = Mln( B
g )+gU(n), (4.13)

whereV = ln(X −θ) , thenE(V ) = µV = ln
(

B
g

)
andVar(V ) = σ2

V = g2. When the relation (4.1) is

satisfied, thenh = 0 and if we assume thatθ > xmin, we can conclude that the value ofg is estimated
by g = sgn(SK1(X)) σV . HereSK1(X) denote the coefficient of skewness from the variable we want
to approximate. The scale parameter is estimated byB = gexp{E(V )}.

4.2. Approximations

We first assume the value ofθ to be negligibly small in (4.12) to obtain

E(Xn) =

(
B
g

)n
MU (ng) . (4.14)

The above expression allows to obtain the various moments about the origin of the random variable
X , when the distribution ofU includes the normal, hyperbolic secant, hyperbolic cosecant, Logistic
and Laplace, which are all symmetric with standarized skewness of zero.

In (4.14) if we letU ∼ GED
(

1
2

)
andg > 0, weobtain

E(Xn) =

(
B
g

)n
exp

{
1
2

n2g2
}
= exp

{
n ln

(
B
g

)
+

1
2

n2g2
}
. (4.15)

This expression coincides with themg f of a Normal random variable with parametersµ = ln
(

B
g

)

andσ = g. By the uniqueness of themg f , we conclude thatV = ln(X)∼ N
(

ln
(

B
g

)
,g
)
, i.e., V is

a Lognormal random variable with parametersµ = ln
(

B
g

)
andσ = g.

Similarly, we show that the relation between the random variablesX andU presented in Table 1,
for the selected set of well known symmetrical distributions.

Distribution Parameters Distribution Parameters
of the r.v. U µ , a σ , b g 6= 0 of the r.v. V µ , a σ , b
Laplace 0

√
2

2 0< g <
√

2
n Log-Laplace ln

(
B
g

) √
2

2 |g|
Logistic 0

√
3

π 0< g < π√
3n

Loglogistic ln
(

B
g

) √
3

π |g|
Normal 0 1 g > 0 Lognormal ln

(
B
g

)
g

HyperSec 0 2
π 0< g < π

2n LoghyperSec ln
(

B
g

)
2
π |g|

HyperCsc 0
√

2
π 0< g < π√

2n
LoghyperCsc ln

(
B
g

) √
2

π |g|

Table 1. Parameters of thepdf of the random variableV = ln(X)
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5. An Illustration

We consider now data concerning the circumference measures (centimeters) taken from the ankle,
chest, hip, neck and of 252 adult men. The data have been previously analyzed in Headrick
(2010) and are available for download athttp://lib.stat.cmu.edu/datasets/bodyfat. The following
table presents the statistics for these data.

Variable Mean St. Dev. SK1 KR1 JB test

Ankle 23.1024 1.6949 2.2417 14.6858 1631.8565
Chest 100.8242 8.4305 0.6775 3.9441 28.4092
Hip 99.9048 7.1641 1.4882 10.3002 647.4181
Neck 37.9921 2.4309 0.5493 5.6422 85.2964

Table 2. Summary Descriptive Statistics

By using the test proposed by Jarque & Bera (1987), the statistics in Table 2 clearly indicate that
the distribution of each of the variables can not be normal random variable. WhenU ∼ GED

(
1
2

)
,

theg and h parameter estimates result in a fitted distribution matching the sample moments

Variable A B g h Mean St. Dev. SK1 KR1

Ankle 22.7282 1.2843 0.5125 0.0376 23.1016 1.6915 2.2417 14.6858
Chest 99.9523 8.0301 0.2117 0.0082 100.8225 8.4138 0.6775 3.9441
Hip 98.9181 5.7427 0.2933 0.0846 99.9028 7.1498 1.4882 10.3003
Neck 37.8553 2.0760 0.1143 0.0871 37.9918 2.4261 0.5493 5.6422

Table 3. Estimation results

WhenU ∼ GED(1) , theg andh parameter estimates result in a fitted distribution matching the
sample moments

Variable A B g h Mean St. Dev. SK1 KR1

Ankle 22.8330 1.5613 0.3349 -0.0273 23.0878 1.6915 2.2417 14.6858
Chest 100.0895 9.6635 0.1771 -0.0721 100.8069 8.4137 0.6775 3.9441
Hip 99.1886 6.9025 0.2040 -0.0098 99.8867 7.1498 1.4882 10.3001
Neck 37.8884 2.4850 0.0856 -0.0122 37.9914 2.4261 0.5493 5.6422

Table 4. Estimation results

Inspection of these tables indicates that both the Normalg− h and Laplaceg− h pdfs provide
good approximations to the empirical data.

Figures 2 for Hip and Neck, respectively, shows such a histogram and the pdfs indicates that the
two transformations will produce similar approximations for this particular set of sample statistics.

Since the value ofh for variable Chest whenU ∼GED
(

1
2

)
is very small, we assume this param-

eter equal to zero, to illustrate the process of adjusting using Tukey’sg generalized family of distri-
butions, we assume zero to approximate g by Tukey’s generalized.

Published by Atlantis Press 
Copyright: the authors 

39



A generalization of Tukey’s g− h family of distributions

70 80 90 100 110 120 130 140 150 160
0

20

40

60

80

100

120
Hip of 252 Men: histogram

Hip (centimeters)

F
re

qu
en

cy

 

 
Histogram
Normal
Normal g−h
Laplace g−h
Kernel

(a)

25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90
Neck of 252 Men: histogram

Neck (centimeters)

F
re

qu
en

cy

 

 
Histogram
Normal
Normal g−h
Laplace g−h
Kernel

(b)

Fig.2. (a) Hip vs. Normal Distribution and estimatedpdf ’s Tukey’sg−h. (b) Neck vs. Normal Distribution and estimated
pdf ’s Tukey’sg−h

To pursue elongation in these data, we first verify whether if it satisfies the condition given
in (4.1). The value ofθ turns out to be−66.5955. Letting the parameterh equal to zero, the mean
and standard deviation of the variableZ are 5.1193 and 0.04969, respectively. The expression (2.6)
reduces to

X =
B
g

exp{gU}+θ ; (5.1)

where

g =0.04969 and B = 8.3088.

Figure 3 shows such a histogram and it is evident that the data have a slight degree of skewness to
the left, leptokurtic and do not follow the normal distribution.

As shown in Figure 3, there is a marked difference between the empirical distribution of the
data (represented by the histogram) and the normal distribution. Tukey’sg−h family of generalized
distributions better approximates the empirical.
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Fig. 3. Chest vs. Normal Distribution and estimatedpdf ’s Tukey’sg−h

In order to determine how the fitted distribution agrees with fitted date, we use the methodology
described by Hoaglin et al. (1985) to determine the sample quantiles of the formp = 2−k, k =

1,2, . . . ,8. In Table 5 we present these quantilep−values along with their estimates, calculated
using (5.1) by varying the variableU .
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p X (1) X (2) X (3) X (4) X (5)

1
256 83.4 81.0038 76.7796 78.7795 77.6844
1

128 85.1 82.3667 79.1386 80.8365 80.0255
1
64 86.7 84.0673 82.1685 83.2546 82.7684
1
32 88.2 85.6874 84.8543 85.4107 85.1965
1
16 89.2 88.2914 88.7569 88.5973 88.7254
1
8 92.1 91.3309 92.6691 91.9394 92.2918
1
4 94.2 95.0540 96.5452 95.6102 95.9715
1
2 99.6 100.5735 100.5883 100.5753 100.5787
3
4 105.3 106.2579 104.6864 105.6713 105.2917
7
8 110.1 110.2843 108.7677 109.5978 109.1998
15
16 115.3 113.6521 112.9997 113.2513 113.0733
31
32 118.5 116.5300 117.2418 116.7229 116.9047
63
64 119.8 119.0230 121.4055 120.0352 120.6461
127
128 121.6 121.1539 125.3393 123.1144 124.1705
255
256 128.3 122.8980 128.8264 125.8167 127.2879

Table 5. Observed and estimated values by the expression (5.1) for the heights of Australian athletes

The columns of Table 5 provide the following information:

X (1) : Sample quantiles.
X (2) : Values obtained using equation (5.1) withU ∼ GED

(
1
2

)
.

X (3) : Values obtained using equation (5.1) withU ∼ GED(1).

X (4) : Values obtained using equation (5.1) withU ∼ Logistic
(

0,
√

3
π

)
.

X (5) : Values obtained using equation (5.1) withU ∼ sech
(
0, 2

π
)
.

Note that these adjustments are satisfactory for the four distributions used in the expression (5.1).
Table 6 summarize the statistical results for thepdf of each estimatedg−h.

Fitted distribution Mean Stan. Dev. SK1 KR1

Normalg−h 100.8222 8.3189 0.1426 2.9492
Laplaceg−h 100.8194 8.2724 0.3109 5.3597
Logistic g−h 100.8207 8.2891 0.2087 3.8893
HyperSecg−h 100.8199 8.2811 0.2534 4.5306

Table 6. Results for the estimation of Chest taken from 252 men.

These results indicate the importance of selecting a distribution on theg− h transformation,

whenU ∼ Logistic
(

0,
√

3
π

)
the sample moments are closer to the theoretical moments.
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6. Conclusion

This paper presents a generalization of the well-known Tukey’sg− h family of distributions for
fitting skewed data. We calculate explictly thecdf andpdf, and also the set of regularity properties
obtained with respect to the expected values and variances. We also present a simulation procedure
to estimate the value of the paramaterg, that is, the standard deviation of the random variable
ln(X −θ), when the parameterh goes to zero. The proposed generalization is also used to generated
a large class distributions from a symmetric density of the parametersg andh which controls the
skewness and the elongation of the tails, respectively.
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Appendix A: Proof of propositions 3.1 and 3.2

Proof. (Proposition 3.1)
We consider them−th power of the expression (2.2),

Y m =
1

gm

m

∑
k=0

(
m
k

)
(−1)k exp

{
g̃U +

1
2

h̃U2
}

=
m

gm−1

[
m−1

∑
k=0

(
m−1

k

)
(−1)k

g̃
exp

{
g̃U +

1
2

h̃U2
}
+

(−1)m

mg
e

1
2 h̃U2

]
,

where g̃ = (m− k)g andh̃ = mh, since(−1)m =−
m−1
∑

k=0

(m
k
)
(−1)k , then

Y m =
m

gm−1

m−1

∑
k=0

(
m−1

k

)
(−1)k

g̃

[
exp

{
g̃U +

1
2

h̃U2
}
− e

1
2 h̃U2

]

=
m

gm−1

m−1

∑
k=0

(
m−1

k

)
(−1)k

g̃
[exp(g̃U)−1]exp(h̃U2/2)

which is the required result.
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Appendix

Proof. (Proposition 3.2)
Suppose thatuq is the smallest number satisfyingFU (uq) = q ie q-th quantile ofU, making the

change of variable

w = uq =F−1
U (q) dw =duq =

dq
F ′

U (uq)
,

herewe use the expression given in (3.1), sinceF ′
U (w) = fU (w) , and

lim
u→−∞

FU (u) =0 lim
u→∞

FU (u) =1,

moreover given thatfU (w) is a function with domain the real line and counterdomain the infinite
interval [0,∞), we solve fordq and we obtain

∫ 1
0

[
F−1

U (q)
]n dq =

∫ ∞
−∞ wn fU (w)dw.

Appendix B: Proof of formula given in (3.16)

In this Appendix, we present the calculation details of the equation given in (3.16), using the Table
I of Fourier transforms (Oberhettinger (1973), of expression (79)) after some calculations and sim-
plifying, we get

2
∫ ∞

0
cos(g̃t) fU(t)exp

{
−|h̃|

2
t2

}
dt =

√
π

n|h|


exp





(√
2− ig̃√
2n|h|

)2


Φ

(
ig̃−

√
2√

n|h|

)

+ exp





(√
2+ ig̃√
2n|h|

)2


Φ

(
− ig̃+

√
2√

n|h|

)
 ,

where i is the imaginary quantity andΦ(·) is thecdf of a standard normal variable, then

2
∫ ∞

0
cosh(g̃t) fU(t)e−

|h̃|
2 t2

dt =
√

π
n|h|


exp





(√
2+ g̃√
2n|h|

)2


Φ

(
− g̃+

√
2√

n|h|

)

+ exp





(√
2− g̃√
2n|h|

)2


Φ

(√
2− g̃√
n|h|

)
 .

Substituting the above expression in (3.11) and simplifying we get,

µ ′
n =

1
gn

√
π

n|h|
n

∑
k=0

(
−1
)k
(

n
k

)
exp





1
2

(
g̃+

√
2√

n|h|

)2


Φ

(
− g̃+

√
2√

n|h|

)

+ exp





1
2

(
g̃−

√
2√

n|h|

)2


Φ

(
g̃−

√
2√

n|h|

)
 .

Wheng = 0 andh < 0, we have

µ ′
n =

1+
(
−1
)n

2
√

n |h|

( √
2

n |h|

)n

e
1

n|h|
n

∑
k=0

(
n
k

)(
−1
)k
[

Γ
(

k+1
2

)
−
∫ 1

n|h|

0
u

1
2(k−1)e−u du

]
.
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