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A new class of distribution function based on the symmetric densities is introduced, these transformations also
produce nonnormal distributions and its pdf and cd f can be expressed in parametric form. This class of distri-
butions depend on the two parameters, namely g and h which controls the skewness and the elongation of the
tails, respectively. This class of skewed distributions is a generalization of Tukey’s g — h family of distributions.
In this paper, we calculate a closed form expression for the density and distribution of the Tukey’s g — h family
of generalized distributions, which allows us to easily compute probabilities, moments and related measures.
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1. Introduction

On many occasions, statistical data show asymmetry, indicating some kind of skewness. This is
of the case of actuarial and financial data, which have characteristic asymmetrically distributed
structures with extreme values yielding heavier tails. For example, the probability distributions of
financial asset returns are not normally distributions, but usually have asymmetry and leptokurto-
sis. The most important and useful characteristic of the Tukey's: family of distributions is

that it covers most of the pearsonian family of distributions, and also can generate several known
distributions, for example lognormal, Cauchy, Exponential, Chi-squared (see Martinez & Iglewicz
(1984)). Tukey'se — i family of distributions has been used in the context of statistical, simulation
studies that include such topics as financial markets Badrinath & Chatterjee (1988), Mills (1995),
and Badrinath & Chatterjee (1991) have usedglamd/ to model the return on a stock index, also

the return on shares in several markets. Dutta & Babbel (2004) showed that the skewed and lep-
tokurtic behavior ofL.ZBOR was modeled effectively using the distributign- 2. Dutta & Babbel

(2005) usedez and /# to model interest rates and options on interest rates, while Dutta & Perry
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(2007) used thg — & to estimate operational risk; Tang & Wu (2006) studied the portfolio manage-
ment. Jiménez & Arunachalam (2011) provided the explicit expressions of skewness and kurtosis
for VaR andCVaR calculations. They propose the use of Tukey’s clasgi@ld/ transformations
applied to the normal distribution to capture these distributional features.

In this paper, we propose a generalization of Tukgysh family of distributions, when the
standard normal variate is replaced by a continuous random vafiabigh mean O and variance
1. The attraction of this family of distribution is that from a symmetric variate with probability
density function(pdf), a large class of distributions can be generated with the parangedeich
which controls the skewness and the elongation of the tails. This new class of distribution allows
us to models with large kurtosis measures and will useful in financial and other application in
asymmetrical distributions.

The paper is organized as follows: Section 2 presents the Tugey's family of generali-
zed distributions. Section 3 presents its statistical propepi#scumulative distribution function
(cdf), expressions for theth moment and quantile-based measures of skewness and kurtosis are
derived. Section 4 introduces very briefly thgeneralized distribution and its moments. Section
5 explains the adjustment methodology based on real data, i.e., we demonstrate pewithan
be used to simulate or model combined data sets when only the mean, variance, skew, and kurtosis
associated with the underlying individual data sets are available. Finally, conclusion are presented.

2. Tukey’'sg— h family of generalized distributions

Tukey (1977) introduced a family of distributions by two nonlinear transformations calleg-tie
distributions, which is defined by

Y =Ty4(Z) :; (exp{gZ} — 1) exp{hZ?/2} withg#0,h € R (2.1)

where the distribution of is standard normal. When these transformations are applied to a con-
tinuous random variable normalizéd, i.e., with mean 0 and variance duch that itpdf” fi(-) is
symmetric about the origin and/f Fy(-), the transformatiorfy ,(U) is obtained, which henceforth

will be termed Tukey's — 4 generalized distribution:

Y = T, u(U) :é (exp{gU} — 1) exp{hU?/2} with g # 0,k € R. (2.2)

The parameterg and/ represent the skewness and the elongation of the tails of the Tukeyis
generalized distribution, respectively.

In this paper, fo: # 0, we assume that the random variablénas a Generalized Error Distri-
bution of parametea, denotedV ~ GED(a ), with pdf given by

1 ula
fU(U,a):mexp{—‘X‘ }, UER,O<GS1, (23)

r(a)
I(3a)
thenU ~ N(0,1) and whena = 1 thenU ~ Laplac 0,‘/7E , which are symmetric with stan-
dardized skewness of zero and standardized kurtosis of 3,aedctively. Also, we present for
h = 0 five special cases of the Tukeys- & distributions, wherlV ~ GED (%), U~ GED(1),

U ~ Logistic (O, “75') , the hyperbolic secant (HyperSec) and the hyperbolic cosecant (HyperCsc).

whereA = andrl () is the gamma functiony is a tail-thickness parameter. When= %
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When we assumé = 0 in (2.2) the Tukey's — & generalized distribution reduces to
1
Tgo(U) = é(exp(gU )—1) (2.4)

which is said to belukey’s g generalized distribution. WhenU ~ GED (3) its distribution also
known as the family of lognormal distributions, because they have a lengthening of the tails than
the standard normal distribution and they are skewed as well.

Similarly, wheng goes to 0 the Tukey’s — & generalized distribution is given by
Tos(U) = U exp{hU?/2} (2.5)

known as theTukey’s h generalized distribution. This distribution has the characteristic of being
symmetrical but with tails heavier than the distribution of a random varigbigith increasing
value of the parametér.

If we wish to model an arbitrary random varialfeusing the transformation given in (2.2), we
introduce two new parameters (location) andB (scale) and propose the following model

X =A4+BY with Y =T, 4(U). (2.6)
We must estimate four parameters that satisfy either of the following relationships:
x, =A+ By, and x1-p, =A — Bexp{—gu,}y,. (2.7)
wherep > 0.5 andx, is the p—th quantile of the random variable, such that
x, =Inf{x|P[X <x] > p} =sup{x|P[X <x] < p}.

Quantilep—value is the median, quartiles, eighth digit. Hoaglin et al. (1985) refer to them as the let-
ter values, respectively, for the (median),F (fourths),E (eighths), etc. The estimation of param-
eters of Tukey’'sg — i family of generalized distributions can be obtained using the method of
moments Majumder & Ali (2008) or with the method of quantiles proposed by Hoaglin (1985).

3. Statistical properties of the Tukey’'s g — i family

In this section we discuss the statistical properties Tukey'% family of generalized distributions.

3.1. Density function

In Jiménez (2004) using the inverse function theorem provides the following relation
d 1 1

dp"? " Fy(up) ~ fu(up)

wherep is the only number that satisfié (1,) = p and fy(-) is thepdf of the continuous random

variableU. Thepdf for the Tukey'sg — i generalized distribution is obtained by using the following
result

(F Y (Fo () = (3.2)

Ju (up) e 8 —1
tan(Vp) =t~ wherever |hlu,——— < 1, (3.2
g p Tg/7h (up) p g

wherey, andu, denote thep—th quantile of the transformatioli = 7, ,(U) and the continuous
random variabld/, respectively. From equation (2.7) and using the expression (3.1) (Jiménez &
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Martinez (2006)) obtainethe pdf for the random variable X as follows:

fX(xp) = fx(4 +BJ’p) = E{-‘tgﬁ()’p)' (3.9

The parameteg controls the skewness with positive valueg @fenerate positive skewness and
negative values generate negative skewnesgan@ corresponds to symmetry.

3.2. Cumulative distribution function

We now proceed to find thelf of the Tukey'sg — 4 family of generalized distributions, denote by
Fqx (v) . The following equality can be easily verified :

/a o () dit — / Tihl(b) for ()du=Fy (T, 0)) ~ Fo (T, (@) (3.4)

To (a)
wherenghl(-) is the inverse of the transformation given in (2.2) &pd-) is thecdf of the continuous

random variabld/.

There is no explicit form for the inverse of the transformatior7gf(U). However we get the
inverse transformation when= 0 org = 0 as given below,

o If 1 =0thenT,o(U) is given by (2.4) and

- 1
Too ) =3 In(1+2y), g > -1 (3.5)
e If g=0thenTy,(U) is given by (2.5), it must be
hY? =h[To,(U))* = hU?exp{hU?}, (3.6)

the expression (3.6) is of the form= wexp{w}, wherew = ¥ (z) is the Lambert’s function.
Then the solution of (3.6) is given by

hU? =W (hy?) = Ton () = % W (hy2). (3.7)

The basic properties of the functid#i(z) are given in Olver et al. (2010).

Though the inverse of the transformation Bf,(U) cannot be evaluated analytically, it can be
evaluated numerically.

3.3. Measures of skewness and kurtosis

Since the transformation given in (2.2) is simply a quantile-based distribution, we use quantile-based
measures of skewne§SK) and kurtosigKR). For 05 < p < 1 the measure proposed by Hinkley
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(1975) is given b¥

SK2(p)

UHS,/LHS,—1 exp{gu,}—1 g
UHS,/LHS, +1  explgu,} 11 {30} 39

whereUHS,, = x, —xo5 andLHS, = xo5 — x1_p,, denote the-th upper half-spread andlower half-
spread, respectively (Hoaglin et al. (1985)). Note that this expression only depends on the parameter
g. For fixedp one can have values 6K> (p) varying values of as is illustrated in Figure 1

Values of SK, (5)

Fig. 1. Measure of skewnes&,(p)

WhenU ~ GED (%) we ue the measure of skewness given in Groeneveld & Meeden (1984) to
obtain

Herewe use the expression given in Tocher (1964). Note that this last expression depends on two
parameterg, # which is zero wherg = 0. Also Groeneveld & Meeden (1984) present four proper-
ties that any reasonable coefficient of skewness must satisfy.

Furthermore, assuming that ~ GED(%) measire of kurtosis presented in Hogg (1974) we
would read

. :Up_zp
KRZ(p!q) Uq_zq’
where
_ 1 D (&) — P (Os) oy, P(0s) —P (%)
Usm Lo =5 |Hen®(020) =8 5 5~ Hen®(03) T3 (81, — 62)]

(o)~ (5y)) + 11 | Kol 202

agK1 andK R, are the standardized values for skewness and kurtosis, respectively.
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where

N _ g « _ 5 8
é.I.Y_ 1 hZSu 62S_5l¥+m7 6Zv_6.|.Y m

Making use of the measure for kurtosis in Crow & Siddiqui (1967)7#or ¢ > 0.5 we have

ki)~ { o oA ) e 70
exp{h(—1Z)}  ifg=0

3.4. Moments of the Tukey's g — i family of generalized distribution

The next two propositions spell out the moments of the Tukey'sh family of generalized distri-
butions. The corresponding proofs are given Appendix A.

Proposition 3.1. The m—th power the Tukey’s g — h family of generalized distribution is given by

m

m_1 K {Mm— 1
=T U) = k; (—1) < . )ng(U), m>1, (3.9

where = (m —k)g and h = mh.

Proposition 3.2.
Let U be a continuous random variable with pdf f; (u) and cdf F; (u). If F{; (u) is never zero,
then F;* (u) is differentiable and satisfies

00 1
p=EW) = [ wihymdw= [ 7 @) da (3.10)
where q is the unique value that satisfies Fy (uy) = q.

Proposition 3.3.
LetY = Ty, (U) be transformation given in (2.2) then the n—th moments of the random variable
Y are given by

H, = o _ (3.11)
[+ (-1)"] [ u" exp{%huz} fu(u)du ifg=0,
0
where & = (n—k)g and h = nh.
Proof. Using the expression (3.10) wher# O we obtain
n ! n ° n ° n fU (nghl (y))
() = [pdg= [ viamdy= [ =L
—o —o0 Tng (Tng (y))
Making the following change of variable
u=T, ' (y) dy——— Y (3.12)
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and using the expression (3.9) we have

n n—1

o k; (—1) <n ) 1) /:: T () fur(u)du
:5 i (1) <Z> ./Ooo cosh(gu) exp{ %Zuz}fy(u)du,

E(Y") =

whereg = (n—k)g andh = nh. In the latter term, we used tha («) is a function symmetrical
about the origin. O

3.4.1. Special cases of moments

In general, when the continuous random variatilés symmetrically distributed about the origin,
then the moment generating functiomg /) can be written as follows

My(r) =E(¢V) = 2 / cosh(tu) fiy (u)du, (3.13)
0
and the characteristic function for the random varidblis given by
Wy (1) = E (") = 2 / cos(tu) fi (u)du, (3.14)
0

wherei is the imaginary quantity whose value is equalfe 1. Since thatfy () is an even function,
then the Fourier integral representationfpf(z) may be written as

fu (u) :/OOOA (¢t)cos(ut)dt, with A(t) :7—1THJU (¢).

Using the Fourier frequency convolution theorem we can write

2 [ costen fule 5 =3 [fu(t)eXp{—%tz}] - ZTh|7T exp{—%} 3o l0)],

where x denotes convolution. The expression (3.13) allows us to obtain the moments of Tukey's
g— h distribution. However moments of some orders do not exist for a certain range of values of the
parameter, considering that we have the following cases:

(1) Supposing thal/ ~ GED (3) andh < %, we have

0

RN

1 “ n n—
e 3 O ()
E(Y") = 1+ (-1)" I (n)

(3.15)
I T (n/2) £

=0

28 (1

where My (¢) is the mgf of a standard normal random variable and) is the Gamma
function. This expression is consistent with those obtained by Martinez & Iglewicz (1984).
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(2) WhenU ~ GED (1) andh < 0, we havé

D (-a, 1)+

)

=Q
"k-
§| b N——

exp{
Hy = s DFIT (ks
e Z -1 M (%)

1
0" % u} g=0,

wherea, ; andf, ; are the larger and smaller roots respectively, of the quadratic equation

n|h|r2—2(n—k)\/n|h|gr+(n—k)2g2—2:0. (3.17)
Expression (3.16) was wrongly calculated in Klein & Fischer (2002).
From the preceding equations we obtain the expected yafoeg + 0:

(1) Assumes thal/ ~ GED(%) . Using the expression (3.15) with= 1 for calculatedE[Y],
then we must

Nl
g

._.

E[Y] = g\/1_<e 2h-1>. (3.18)

(2) Assuming in the expression (2.6) that the variable- GED (1), h < 0 and using the
expression (3.16) with = 1, we obtain

ot 10(:])( 010)-1-@2510‘13([310) zemq)( ﬁ)] (3.19)

wherea g andp o be the larger and smaller roots of the quadratic equation given in (3.17),
respectively.

1/m
L
P = g\

4. Theg generalized distribution

Theg generalized distribution given by equation (2.4) is a nonlinear transform of a continuous ran-
dom variableU and is parameterized ky This subfamily contains distributions whose skewness
increases when the value of the parametiercreases. This subfamily of distributions to help them

get to have great importance in the statistical analysis to be a suitable means to study skewed distri-
butions. Its distributional form includes only the parameterhich fixes the amount and direction

of skewness.

bAppendix B contains the respective proof of this expression.
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Now, we give below an empirical rule for a random variaklvhich can be expressed as (2.6)
with Y = T, o(U),

) —
Xp _ 6-x0s5 forall p > 0.5.
X05 — 6 6 —X1-p

(4.1)
In particular, the expression (4.1) is satisfied if

6 =4 sgrg) % (4.2

where sgi) denote the signum function. The const#&htelates to the location and scale para-

meters, known as “threshold parameter” and was given by Hoaglin et al. (1985). Takiryin
expression (3.2) and replacing the expression (3.5) we get that

hol) ~5 ('””;gy)), @>-1 (43)

Moreover, if we solve for the variable in equation (2.7) by substituting the expression given
in (4.3), we obtain

(5 G m]

Sinee g € R then

10 <x;A> _ )z . (; (In zE)@_ |n(9—x))) (4.4)

where‘ P> 0, for smplicity and without loss of generality we assume- 0 and we replace the

expression (4.2) and if we use the result given in (3.3), which relatgsdthef X andY = T, ,(Z)
on the quantiles, we can rewrite (4.4) as follows

fr(x) = - )fU ( (In(x—0)— u*)> x>0, (4.5)
where u* = In (g)' We sy that the random variabl& has a log-symmetric distribution with

threshold parameted, scale parametqr™ and shape parametgrdenoted byX LS(
6 = 0 we denote byx ~ LS(u*,g). Thecdf of the random variablé given by

Fie (x) =Fy (;:,L (In(x—8) - u*)> ,

Expression (4.5) allows us to obtain the followingf associated with the Tukeyisfunction

u.g,0). If

x>0, (4.6)
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4.1. Special cases
(1) If U ~ GED(3%) andg # 0, we have that

B 1 C1/Inx—8)—p\?
) exp{ 5 (P )} @

wherep* =In(uy —6) — %gz andx > 8. Note that wher® = 0 the last expression coincides
with the pdf of the classic Log Normal random variable. In this case, we say.Jhiat
Log-Normal distributed with three parameteug, g and 8. Many practical applications
of this distribution are discussed in the literature, for example, Aitchison & Brown (1963)
and Crow & Shimizu (1988).

(2) WhenU ~ GED (1) and 0< g < ‘@, theresulting distribution is given by theif

n

__B (=
fX(x)_m { (s,

wheref} = g and(e—0) = (ux—0) (l— %) . Note again that this expression coincides
with the pdf of log-Laplace with three parameteus, g and6.
(3) If U ~ Logistic(0,A71),0< g < 2 andA = 75, thenthepdf of X can be expressed as
a-1
TT x 9} 1

ae—0

[es)

)B_l, B<x<e
)BJrl

D O

(4.8)

Y xzs?

|

=

om
)

S (x)

—2a
T[x—@] ’ (4.9)

ae—6

wherea = % y (€—6) = (ux — 8)sin(v/3g). Note that this expression coincides with the
pdf of three parameters Log-Logistigif, g and6).

Taking the expectation of the linear transformation given in equation (2.6) we obtain

E(X_Q)ZEE[egU] =§Mu(g) = B:g%’

wher My (g) is themg f of the random variabl€. Thenth moment of the random variahlécould
be obtained using the formula

B 10— ELY] = ) = expn} 3 (-1 ()Mo @t o),

note that these expressions do not depend on the parathetéus, the standardized values for
skewness and kurtosis corresponding to linear transformation given by equation (2.8) with
Tz 0(U) can be expressed as

My (3g) — 3My (2g) My (g) + 2M3 (g)

3

[My (2g) — M (2)] 2
My (4g) — 4My (3g) My (g) + 6My (22) M7 () — 3M (2)
5 .

[My (2) — M7 (g)]

Note that the above expressions depend only on the paragmeter

SK1(X) =

, (4.10)

KR1(X) =

(4.11)
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Then-th moment of the random variah¥e— 6 is given by
B n
Bl-67] = (2) My o) (4.12)
When we rewrite the expression (4.12) and use properties afigifewe obtain

E (¢00) = My () =¢""5)My (1) = My 1) 1), .

wherelV =In(X — 0), thenE(V) = py = In (g) andVar(V) = 62 = g?. When the relation (4.1) is
satisfied, theth = 0 and if we assume th&t > xmn, we can conclude that the valuegis estimated

by g = sgn(SK1(X)) oy. HereSK;(X) denote the coefficient of skewness from the variable we want
to approximate. The scale parameter is estimates bygexp{E(})}.

4.2. Approximations

We first assume the value 6fto be negligibly small in (4.12) to obtain

E(X") = (g)nMUmg)- (4.14)

The above expression allows to obtain the various moments about the origin of the random variable
X, when the distribution o/ includes the normal, hyperbolic secant, hyperbolic cosecant, Logistic
and Laplace, which are all symmetric with standarized skewness of zero.

In (4.14) if we letU ~ GED (3) andg > 0, we obtain

o (B 155 B\ 15,
E( )_<§> exp{éng}_exp{nln <§>+§ng}. (4.15)

This expression coincides with thwez /" of a Normal random variable with parameters= In (g)
ando = g. By the uniqueness of thegf, we conclude that’ = In(X) ~ N (In (f) ,g) e, Vis

a Lognormal random variable with parametgrs- In (f) ando =g.
Similarly, we show that the relation between the random variablesdU presented in Table 1,
for the selected set of well known symmetrical distributions.

Distribution Parameters Distribution Parameters

oftherv.U | u,a | o,b g#0 of ther.v. V U, a og,b
Laplace 0 @ O<g< ? Log-Laplace | In (g) @ gl
Logistic 0 2 0<g< ﬁ Loglogistic In (f) el
Normal 0 1 g>0 Lognormal In (g) g

HyperSec 0 2 | 0<g<Z | LoghyperSec| In (g) 2|q]
HyperCsc 0 ‘/?E O<g< ﬁ LoghyperCsc| In (f) % |g]

Table 1. Parameters of tipef of the random variabl& = In(X)
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5. An lllustration

We consider now data concerning the circumference measures (centimeters) taken from the ankle,
chest, hip, neck and of 252 adult men. The data have been previously analyzed in Headrick

(2010) and are available for download /atp.//lib.stat.cmu.edu/datasets/bodyfat. The following
table presents the statistics for these data.

| Variable  Mean  St.Dev. SK1 KR1 JB test|

Ankle 23.1024 1.6949 2.2417 14.6858 1631.8365
Chest 100.8242 8.4305 0.6775 3.9441 28.4092
Hip 99.9048 7.1641 1.4882 10.3002 647.4181
Neck 37.9921 24309 0.5493 5.6422 85.2964

Table 2. Summary Descriptive Statistics

By udng the test proposed by Jarque & Bera (1987), the statistics in Table 2 clearly indicate that
the distribution of each of the variables can not be normal random variable. WheGED (3),
theg ard i parameter estimates result in a fitted distribution matching the sample moments

| Variable A B g h Mean  St.Dev. SK1 KR1 |

Ankle  22.7282 1.2843 05125 0.0376 23.1016 1.6915 2.2417 13.685
Chest  99.9523 8.0301 0.2117 0.0082 100.8225 8.4138 0.6775 13.044
Hip 98.9181 5.7427 0.2933 0.0846 99.9028 7.1498 1.4882 10.3003
Neck 37.8553 2.0760 0.1143 0.0871 37.9918 2.4261 0.5493 5.6422

Table 3. Estimation results

WhenU ~ GED (1), theg andh parameter estimates result in a fitted distribution matching the
sample moments

| Variable A B g h Mean  St.Dev. SK1 KR1

Ankle 22.8330 15613 0.3349 -0.0273 23.0878 1.6915 2.2417 34&.58
Chest 100.0895 9.6635 0.1771 -0.0721 100.8069 8.4137 0.67754413.9
Hip 99.1886 6.9025 0.2040 -0.0098 99.8867 7.1498 1.4882 10.3001
Neck 37.8884 24850 0.0856 -0.0122 37.9914 2.4261 0.5493 5.6422

Table 4. Estimation results

Inspection of these tables indicates that both the Norgnal: and Laplacez — 4 pdfs provide
good approximations to the empirical data.

Figures 2 for Hip and Neck, respectively, shows such a histogram and the pdfs indicates that the
two transformations will produce similar approximations for this particular set of sample statistics.

Since the value of for variable Chest whetd ~ GED (%) is very small, we assume this param-
eter equal to zero, to illustrate the process of adjusting using Tukeeseralized family of distri-
butions, we assume zero to approximate g by Tukey’s generalized.
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(@) (b)

Fig. 2. (a) Hip vs. Normal Distribution and estimated”s Tukey’sg — /. (b) Neck vs. Normal Distribution and estimated
pdf's Tukey'sg — h

To pursue elongation in these data, we first verify whether if it satisfies the condition given
in (4.1). The value oB turns out to be-66.5955 Letting the paramete¥ equal to zero, the mean
and standard deviation of the varialdare 51193 and 04969 respectively. The expression (2.6)
reduces to

X= Eexp{gU}JrG; (5.1)
g

where
2=0.04969 and B =18.3088

Figure 3 shows such a histogram and it is evident that the data have a slight degree of skewness to
the left, leptokurtic and do not follow the normal distribution.

As shown in Figure 3, there is a marked difference between the empirical distribution of the
data (represented by the histogram) and the normal distribution. Tukeyidamily of generalized
distributions better approximates the empirical.

Fig. 3. Chest vs. Normal Distribution and estimageif’'s Tukey'sg —

In order to determine how the fitted distribution agrees with fitted date, we use the methodology
described by Hoaglin et al. (1985) to determine the sample quantiles of thepfesr@*, k =
1,2,...,8. In Table 5 we present these quantile-values along with their estimates, calculated
using (5.1) by varying the variablg.
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[p [ XU [ x@ XG X@ X0
55 | 83.4 | 81.0038 | 76.7796 | 78.7795 | 77.6844
55 | 85.1 | 82.3667 | 79.1386 | 80.8365 | 80.0255

86.7 | 84.0673 | 82.1685 | 83.2546 | 82.7684
88.2 | 85.6874 | 84.8543 | 85.4107 | 85.1965
89.2 | 88.2914 | 88.7569 | 88.5973 | 88.7254
92.1 | 91.3309 | 92.6691 | 91.9394 | 92.2918
94.2 | 95.0540 | 96.5452 | 95.6102 | 95.9715
99.6 | 100.5735| 100.5883| 100.5753| 100.5787
105.3 | 106.2579| 104.6864| 105.6713| 105.2917
110.1| 110.2843| 108.7677| 109.5978| 109.1998
115.3| 113.6521| 112.9997| 113.2513| 113.0733
118.5| 116.5300| 117.2418| 116.7229| 116.9047
119.8| 119.0230| 121.4055| 120.0352| 120.6461
121.1539| 125.3393| 123.1144| 124.1705
122.8980| 128.8264| 125.8167| 127.2879

e it e ENINTRN TN SR

Ho
PRIRR
[EY
N
=
»

N|NI—‘

3y

o
[EnY
N
©
w

Table 5. Observed and estimated values by the expression (Bthgfbeights of Australian athletes

The columns of Table 5 provide the following information:

1

X : Sample quantiles.

X@: Values obtained using equation (5.1) with~ GED (3).

X® : Values obtained using equation (5.1) with~ GED (1).

X@ : Values obtained using equation (5.1) with~ Logistic (0, @)

M

®: Values obtained using equation (5.1) with~ sech(0, 2).

Note that these adjustments are satisfactory for the four distributions used in the expression (5.1).
Table 6 summarize the statistical results for pig of each estimateg — /.

Fitted distribution Mean Stan. Dev. SK1 KR1

Normalg — A 1008222  8.3189  0.1426 2.9492
Laplaceg— A 100.8194  8.2724  0.3109 5.3597
Logisticg— 4 100.8207  8.2891  0.2087 3.8893
HyperSeg — 4 100.8199 8.2811  0.2534 4.5306

Table 6. Results for the estimation of Chest taken from 252 men.

These results indicate the importance of selecting a distribution org thé transformation,
whenU ~ Logistic (0, ‘é) the sample moments are closer to the theoretical moments.
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6. Conclusion

This paper presents a generalization of the well-known Tukey's: family of distributions for

fitting skewed data. We calculate explictly thé andpdf, and also the set of regularity properties
obtained with respect to the expected values and variances. We also present a simulation procedure
to estimate the value of the paramaggrthat is, the standard deviation of the random variable

In (X — 6), when the parametérgoes to zero. The proposed generalization is also used to generated

a large class distributions from a symmetric density of the paramgtansl 2 which controls the
skewness and the elongation of the tails, respectively.
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Appendix A: Proof of propositions 3.1 and 3.2

Proof. (Proposition 3.1)
We consider the:—th power of the expression (2.2),

m_im m\ . a\k ~ }N 2
Y _gmz<k>( 1) exp{gUJrth}

=0
- ’:1—1 %(m >( ~) eXp{gU—l-—hUz}+(_)e%hU2 :
g k= k g 2 mg
7 m—1
wheeg = (m —k)g andh = mh, since(—1)" = — 5 (%) (~1)*, then
k=0
m m m—1 m—1 (_1)k N 1~ , I
! gt Z < k ) F [exp{gUJr ShU }—ez }

— J— k ~
s (")) o) - yewiivy/2

which is the required result. O
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Appendix

Proof. (Proposition 3.2)
Suppose that, is the smallest number satisfyigy (u,) = g ie g-th quantile ofU, making the
change of variable

_ dq
w=u, =F;"(q dw=du, = ,
q U ( ) q F[f/ (uq)
herewe use the expression given in (3.1), sidggw) = fu (w), and

U——0o Uu—0

moreover given thafy (w) is a function with domain the real line and counterdomain the infinite
interval [0, ), we solve fordg and we obtain

fol [Fil (Q)]ndq = [Zow" fu (w)dw. O

Appendix B: Proof of formula given in (3.16)

In this Appendix, we present the calculation details of the equation given in (3.16), using the Table
1 of Fourier transforms (Oberhettinger (1973), of expression (79)) after some calculations and sim-

plifying, we get

~ o~ 2 o
2/0 Cos(§t)fU(t)exp{—%t2}dt :\/% {eXp{ (%) }q) (@\/‘%}f)

wher i is the imaginary quantity and(-) is thecdf of a standard normal variable, then

] N2 ~
2 [ cosh(an) fu(t)e 2 dr :\/% {exp{ <% ) } ’ <_g¢+Wf )

ool (758 o (5)]

Subgituting the above expression in (3.11) and simplifying we get,
~ 2 ~
“’;:i L%(_l)k<n> exp 1(g+v2 ® g2
g\ nlh| & k 2\ \/nlhl nlh|
- 2 -
+ exp 1(g—v2 O V2 .
2.\ V/nlhl n|h|

Wheng =0 andk < 0, we have

S ()5 ()
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