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	 	 	 	 	 	 Abstract	

With the advent of Taguchi’s loss function, the concept of target and sticking to the target to achieve better process 
performance has become widely accepted. In practice, while estimating process performance, the gauge measurement error 
is not taken into consideration. In the real world scenario this hardly happens since measurement errors cannot be avoided in 
most of the manufacturing processes. Ignoring this measurement error while estimating the process capability may often 
lead to unreliable/wrong decision about the capability of the process under study. Therefore, in this work we apply the 
method of Generalized Confidence Interval (GCI) to measure the process capability index ܥ௣௠ in presence of measurement 
errors. In this study, an exhaustive set of simulation has been conducted to assess the performance of the GCI method in 
terms of expected value of generalized lower confidence limit (ܮ௣௠) and Coverage Probability (CP). The efficacy of dealing 
with the measurement error has been found satisfactory in this model. Finally it can be concluded that GCI method seems to 
be quite satisfactory for measuring process capability when the measurement errors are present; as well as when 
measurement error is negligible. 
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1. Introduction 

Process Capability Indices (PCIs) have been widely used in quality assurance for quite sometimes. It is 
viewed as an aid to Total Quality Management. See Ref. 41 for details. The successes of the six-sigma 
programs in organizations like General Motors and Motorola have given a fillip to the study and use of PCIs. 
This can be gauged by the fact that there has been a very large body of literature on this subject. See Ref. 42 
and 47 for a bibliography of the recent papers. Papers dealing with PCIs have appeared in Computer Science, 
Industrial Engineering, Management Science, Operations Research, Quality Engineering, Statistics and TQM 
journals. 
 
The first PCI appearing in the literature was the potential index ܥ௣, introduced by Kane [22]. In order to 
account for the deviation of the process mean from the midpoint of the specification limits, the ܥ௣௞ index was 
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proposed by Kane [22]. For details of ܥ௣ and ܥ௣௞, see Ref. 1 for example. The ܥ௣ and ܥ௣௞ are relevant 
measures of progress for quality improvement in which reduction of variability is the guiding principle and 
process yield is the primary measure of success. Taguchi [43] has advocated a different approach to quality 
improvement in which reduction of variation from the target value is the guiding principle. Chan et al. [8] 
introduced the so-called Taguchi Capability Index (ܥ௣௠) that is measurable and directly related to the 
quadratic loss of the measured feature. When the target (ܶ) is at the mid-point of the specification limits, it is 
defined by: 

௣௠ܥ ൌ
ܮܷܵ െ ܮܵܮ

6ඥߪଶ ൅ ሺߤ െ ܶሻଶ
																																																																			ሺ1ሻ 

where USL is the upper specification limit, LSL is the lower specification limit, ߪଶ is the process variance 
and ߤ is the process mean. Later Boyles [1991] gave the general statistical methodology for capability index 
ߤ ௣௠ without the restrictive assumption ofܥ ൌ ܶ which is as follows: 

௣௠ܥ
∗ ൌ ݉݅݊ ቆ

ܮܷܵ െ ܶ

3ඥߪଶ ൅ ሺߤ െ ܶሻଶ
,

ܶ െ ܮܵܮ

3ඥߪଶ ൅ ሺߤ െ ܶሻଶ
ቇ																																						ሺ2ሻ 

 
Johnson [21] exploited the relationship between the capability index ܥ௣௠ and the expected squared loss to 
provide an intuitive interpretation of ܥ௣௠ in terms of percentage loss. Denniston [15] presents strong 
motivation for using ܥ௣௠ and shows that it can indicate the probability of meeting the customers’ product 
specification. He argues that it can be used to provide a better estimate of the cost of poor quality and hence it 
can be used to better manage products’ quality to the customer.  
 
While there is a large body of literature on PCIs, most of them do not take into account gauge measurement 
error. Measurement error cannot be avoided, even when carried out with very sophisticated and precise 
measuring instruments. McNesse and Klein [28], to the best of our knowledge, were the first researchers to 
point out that the variability is inherent in the measurement systems and sampling techniques add variability 
to the input from a process, and hence affect the process capability. Porter and Oakland [39] also emphasize 
that process capability assessment is dependent upon the measurement method. Montgomery and Runger [31] 
also dwell upon the importance of gauge capability. Persijn and Nuland [38] argue that process capability is 
meaningful only if the measurement system is capable. 
 
Levinson [25] should be credited for bringing the focus on gauge. However, it was Mittag [29] who first 
discussed the effects of measurement errors on the performance of the four most basic process capability 
indices. He showed that random and constant measurement errors can considerably falsify the results of 
process capability analysis. He argued that the accuracy of a capability analysis could be significantly 
influenced by the accuracy of the gauges. Hence, it is important to ensure gauge capability before assessing 
process capability. 

However, Mittag’s analysis is restricted to considering the effects of measurement errors only in the behavior 
of theoretical capability indices. Bordignon and Scagliarini [3] considered the effect of measurement errors on 
the properties of the index ܥ௣and ܥ௣௞when estimated from sample data. Scagliarini [40] studied the properties 
of the estimator of ܥ௣ for autocorrelated data contaminated with measurement errors. Pearn and Liao [33] 
considered estimating and testing of ܥ௣௞ in the presence of gauge measurement error. Later Bordignon and 
Scagliarini [4] focused their attention on the behavior of the estimator of ܥ௣௠ in presence of measurement 
error. Pearn and Liao [35] studied the estimation and testing of ܥ௣௨ and ܥ௣௟ in the presence of measurement 
error and obtained adjusted lower confidence bounds and critical values for true process capability. In a 
similar vein Hsu et al. [18] studied the third generation index ܥ௣௠௞ in the presence of measurement errors. 
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The result of these analyses clearly emphasize that the presence of measurement errors in the data severely 
affects the assessment of process capability. In fact, the capability is underestimated. Conclusions inferred 
from process capability analysis without taking into consideration measurement errors are, therefore, 
incorrect. 
 
In this paper, we have used the concept of Generalized Confidence Interval (GCI) to determine process 
capability of the Taguchi Index ܥ௣௠ in the presence of measurement errors. The rest of the paper is organized 
as follows. We briefly introduce the Taguchi index ܥ௣௠ in Section 2. Section 3 is concerned with the 
estimation of process capability in the presence of measurement errors. Next in Section 4, we turn our 
attention to the construction of the confidence interval for the index ܥ௣௠ based on GCI method in presence of 
the measurement error. Section 5 deals with an exhaustive simulation study which has been done to assess the 
performance of the GCI method in terms of the coverage probability (CP) and the expected value of the 
generalized lower confidence limits. A sensitivity analysis is also carried out to analyze the effects of ignoring 
the measurement errors on the performance of the GCI method with various parameter settings. Numerical 
results are also analyzed and discussed in this section. A case study, discussed in Section 6, demonstrates the 
application of the proposed method. Finally some conclusions are drawn in Section 7. 
	
	

2. The ࢓࢖࡯index 

 
The index ܥ௣௠ has been introduced in the published literature by Chan et al. [8].  However, it was proposed 
by Hsiang and Taguchi [17], though they did not use the symbol	ܥ௣௠. Taguchi derived this index from his 
famous theory where he first introduced the concept of target and declares that deviation of the process 
characteristics from the target value (which is virtually deviation from quality) results in monetary loss. As 
Taguchi could relate the process performance with its monetary loss, different processes have become 
comparable. Taguchi’s philosophy has widely been accepted in the domain of quality and process 
improvement as in most of the cases his philosophy has produced unexpectedly excellent results in terms of 
process improvement. The index which is sometimes called the Taguchi index or loss-based capability index, 
which was also proposed independently by Chan et al. [8] has already been defined in Eq. (1) above. When 
the target is not at the midpoint of USL and LSL then the Taguchi capability index is modified as in Eq. (2) 
above. This index is based on the idea of the squared error loss. It attempts to measure the ability of the 
process to cluster around the target. The ܥ௣௠ index highlights on measuring the ability of the process on 
hitting the target, which therefore reflects the degree of process targeting (centering). 
 
The point estimation of ܥ௣௠ has been studied by Chan et al. [8] and Boyles [5]. The construction of 
(approximate) confidence bounds is more complicated and has been attempted by Marcucci and Beazley [26], 
Chan et al. [9] and Boyles [5]. 
 

 

3. Process Capability measures with measurement errors 

Till now we have been concerned with the inbuilt process variability. This variability is inevitable in any 
manufacturing process. But if we are interested in estimating the capability of any manufacturing process, 
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then we should be concerned about one more class of error namely the measurement error. In case of 
measurement error, the measurement system of measuring the process characteristics values takes a vital role 
along with the capability of the gauge by which the measurement is done. Though we may sometimes feel 
that gauge capability can be increased by doing regular calibration, it may not always be the case. Gauge 
capability reflects the gauge’s precision, i.e. lack of variation, but it should not be confused with calibration, 
which assures the gauge’s accuracy. As stated earlier, process capability is the measure of quantifying the 
ability of a manufacturing process to meet pre-assigned specifications. Nowadays, many customers use 
process capability to judge supplier’s ability to deliver quality products. In this connection, reference may be 
made to Chen et al. [13], Chen and Chen [11], Pearn et al. [36] and Chen et al. [12]. Suppliers ought to be 
aware of how gauges affect various process capability estimates. It might happen that while estimating 
process capability from a sample, the process is erroneously classified as inefficient. This can happen since 
the process variance is inflated by the measurement errors, thereby causing a decrease in the value of the 
index. 
 
	
The gauge capability includes two components of measurement systems’ variability – repeatability and 
reproducibility. Repeatability represents the variability from the gauge or measurement instrument when it is 
used to measure the same specimen (with the same operator or setup or in the same time period). 
Reproducibility reflects the variability arising from different operators, setups time periods or in general, 
different conditions. These studies are often referred to as gauge repeatability and reproducibility (Gauge 
R&R) studies. To summarize we have: 
	

௘௥௥௢௥	௠௘௔௦௨௥௘௠௘௡௧	௚௔௨௚௘ߪ
ଶ ሺீߪ

ଶሻ ൌ ௥௘௣௘௔௧௔௕௜௟௜௧௬ߪ
ଶ ൅ ௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬ߪ

ଶ 	.	

	
Estimates of ߪ௥௘௣௘௔௧௔௕௜௟௜௧௬

ଶ  and ߪ௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬
ଶ  come from a Gauge R&R study. Barrentine [2], Levinson [25] 

and Montgomery [30] have provided useful procedures for Gauge R&R studies. 
 
The main objective of Gauge R&R study is to quantify the measurement errors. Two popular approaches to 
gauge R&R studies are the Range Method (Montgomery and Runger [31]) and the ANOVA Method 
(Montgomery and Runger [32] and Budrick et al. [6]). Both these methods assume that the distribution of the 
measurement errors is normal with a mean error of 0. Let the measurement errors be represented by a random 
variable, ܩ~ܰሺீߤ, ீߪ

ଶሻ. The mean ீߤ  is referred to as the bias of the measurement system. Typically, the bias 
can be eliminated by proper calibration of the system. Thus, we assume	ீߤ ൌ 0, so	ܩ~ܰሺ0, ீߪ

ଶሻ.  
 
Montgomery and Runger [31] presented the gauge capability ߣ	by the following formula:  
	

λ ൌ
ீߪ6

ሺܷܵܮ െ ሻܮܵܮ
	x	100%	. 

	
The ratio of 6ீߪ  to the tolerance width has been referred by Montgomery [30] as the precision to tolerance (or 
P/T) ratio. For the measurement system to be considered acceptable, the variability in the measurements due 
to the measurement system should be less than a predetermined percentage of the manufacturing tolerance.  
	
Let ܺ	be the quality characteristic of interest of a manufacturing process. Assume that	ܺ	~	ܰሺߤ,  ௣௠ܥ ଶሻ. Letߪ
measure the true process capability based on the random variable ܺ.	However in practice, instead of ܺ,	we 
estimate the process capability with the observed value	ܻሺൌ ܺ ൅  ܺ	ሻ. Assume that the quality characteristicܩ
and the random variable ܩ (which models the measurement error) are stochastically independent. Hence, we 
have ܻ	~	ܰሺߤ௒,  ߪ௒

ଶሻ where, ߪ௒
ଶ ൌ ଶߪ ൅	ீߪ

ଶ in this case. However, since the error distribution has mean zero, 
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it follows that	ܻ~	ܰሺ0, ௒ߪ
ଶሻ. The empirical process capability index ܥ௣௠

௒  will be obtained after substituting 
௒ߪ
ଶ for 2ߪ. The relationship between true process capability and the empirical process capability ܥ௣௠

௒  can be 
expressed as: 
	

௣௠ܥ
௒

௣௠ܥ
ൌ ඨ

ଶߪ ൅ ሺߤ െ ܶሻଶ

௒ߪ
ଶ ൅ ሺߤ െ ܶሻଶ

ൌ ඨ
ଶߪ ൅ ሺߤ െ ܶሻଶ

ଶߪ ൅ ீߪ
ଶ ൅ ሺߤ െ ܶሻଶ

 

	
Since the variation of the observed data is larger than the variation of the original data, the denominator of the 
index ܥ௣௠ becomes larger and the true capability of the process will be underestimated if calculations of PCI 
are based on the empirical data Y (the observed quantity contaminated with measurement errors). In case of 
 ௣௞, Pearn and Liao [34] indicated that the true process capability would be severely underestimated if insteadܥ
of σଶ, ߪ௒

ଶ (or its estimate ܵ௒
ଶ) is used. Thus the risk,ߙ, and the power of the test will decrease when the gauge 

measurement error increases. Since the true capability of a process is severely underestimated and the power 
becomes small, producers cannot firmly state that their processes meet the capability requirement even if their 
processes are indeed sufficiently capable. Adequate and even superior product units (or lots) could be 
incorrectly rejected in this case. In order to account for the measurement error while estimating the process 
capability index ܥ௣௠, Generalized Confidence Interval (GCI) technique can be applied. This technique is 
discussed in the next section.  
	

4. Generalized Confidence Intervals (GCI) for index ࢓࢖࡯ 

We now turn our attention to the notions of the generalized pivotal quantity (GPQ) and generalized 
confidence interval (GCI) which are used in our paper. Tsui and Weerahandi [44] introduced the concept of 
Generalized Inference for testing hypothesis when exact method does not exist. Weerahandi [45] extended 
this concept to construct generalized confidence intervals. Construction of GCI requires a GPQ with a 
distribution that is free of the parameters under study. Approximate Confidence Intervals are then constructed 
by computing desired percentiles of GPQ using either numerical integration or simulation. The idea of GCI 
and generalized tests has been successfully exploited to obtain meaningful inference procedures in non-
standard problems; see e.g. Ref. 10, 16, 14, 23, 24 & 27. Iyer and Patterson [2002] provided a generalized 
recipe for the construction of generalized test variable and GPQs. Hsu et al. [19] used this idea to construct 
generalized confidence intervals for the ܥ௣௠ index. Pearn et al. [37] used the idea of GCI to assess process 
capability based on the ܥ௣௠௞ index; while Wu [46] used similar idea to study the ܥ௣௞ index.  
 
 
Before proceeding further, we list down the notations that will be subsequently used.  
 
GCI Generalized Confidence Interval 
GPQ Generalized Pivotal Quantity 
Rµ GPQ of ߤ 
ܴఙೊ

మ GPQ of ߪ௒
ଶ 

ܴ஼೛೘ GPQ of ܥ௣௠(ignoring the measurement error) 

ܴ஼೛೘ೊ  GPQ of ܥ௣௠
௒  (considering the measurement error) 

 ௣௠(ignoring the measurement error)ܥ ௣௠ 95% lower confidence interval ofܮ
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௣௠ܮ
௒  95% lower confidence interval of  ܥ௣௠

௒  (considering the measurement error) 
CP Coverage Probability 
ܥ ௣ܲ௠	 Coverage Probability of ܮ௣௠	
ܥ ௣ܲ௠

௒ 	 Coverage Probability of ܮ௣௠
௒ 	

	
We shall now give some basic concepts of Generalized Confidence Interval (GCI) and Generalized Pivotal 
Quantity (GPQ). For details, see Ref. 20 and 7. These definitions and the above mentioned notations below 
will be used throughout this paper, unless otherwise stated. Construction of a GCI requires a GPQ with a 
distribution that is free of the model parameters.  
 
Suppose we wish to construct a GCI for a model parameter	ߠ. Let	ܺ represent a random variable with 
distribution function ܨሺݔ; ,ߠ	  is a ߟ is the parameter of interest and ߠ ,ݔ ሻ where the observed value of ܺ isߟ
nuisance parameter. 
	
Definition 1: Let ܴ ൌ ܴሺܺ, ;ݔ ,ߠ  Then ܴ  is .ߟ and ߠ parameters ,ݔ ሻ be a function of ܺ, the observed valueߟ
said to be a GPQ if it satisfies following conditions: – 

a) For fixed ݔ, the distribution of ܴis free from any unknown parameters; 
b) The observed value of ܴ, ܴ௢௕௦ ൌ 	ܴሺݔ, ;ݔ ,ߠ  .ሻ, does not depend on nuisance parametersߟ

	
Definition 2: Let Θ be the parameter space of ߠ.	 If a subset ܥଵିఈ of the sample space of ܴ satisfies 
ܲሼܴሺܺ, ;ݔ ,ߠ ሻߟ ∈ ଵିఈሽܥ ൌ 1 െ ஼߆ then the subset ,ߙ  of the parameter space given by 
	஼ሺଵିఈሻ߆ ൌ ሼߠ	 ∈ ௢௕௦ܴ|߆ ∈ ሽ is said to be a 100ሺ1	ଵିఈܥ	 െ  .ߠ ሻ% GCI forߙ
 
As we have already stated that ܻ~	ܰሺߤ, ௒ߪ

ଶ ൌ ଶߪ ൅	ீߪ
ଶሻ, then തܻ and S௒

ଶ are independent random variables 
with തܻ	~	ܰሺߤ, ௒ߪ

ଶ ݊⁄ ሻ andሺ݊ െ 1ሻ ܵ௒
ଶ ௒ߪ

ଶ⁄ ~߯௡ିଵ
ଶ ሺ݊ െ 1ሻ where ߤ and ߪ௒

ଶ are unknown constants. The pair 
( തܻ , ܵ௒

ଶ) may be viewed as the sample mean and sample variance (complete and sufficient statistics) from an 
i.i.d. ܰሺߤ, ௒ߪ

ଶሻ sample of size ݊. Set ߠଵ	 ൌ ଶߠ and ߤ ൌ ௬ߪ
ଶ. Consider the functions ଵ݂ and ଶ݂ defined by:  

ܼ ൌ ଵ݂ሺ തܻ, ܵ௒
ଶ; ,ߤ	 ௒ߪ

ଶሻ ൌ
തܻ െ ߤ

ඥߪ௒
ଶ ݊⁄

, 

and 

ܸ ൌ ଶ݂ሺ തܻ, ܵ௒
ଶ; ,ߤ ௒ߪ

ଶሻ ൌ 	
ሺ݊ െ 1ሻܵ௒

ଶ

௒ߪ
ଶ 		. 

Clearly, ܼ and ܸ are independent, where ܼ has a standard normal distribution and ܸ has a χଶ distribution with 
݊ െ 1 degrees of freedom. Thus, the joint distribution of ሺܼ, ܸሻ is free from any model parameters. Inverting 
the functions ଵ݂ and ଶ݂, we get: 

ଵߠ ൌ ߤ ൌ 	݃ଵሺ തܻ, ܵ௒
ଶ; 	ܼ, ܸሻ ൌ 	 തܻ െ ܼඨ

ሺ݊ െ 1ሻܵ௒
ଶ

ܸ݊
	,	

and	

ଶߠ ൌ ௒ߪ
ଶ ൌ ݃ଶሺ തܻ, ܵ௒

ଶ; ܼ, ܸሻ ൌ 	
ሺ݊ െ 1ሻܵ௒

ଶ

ܸ
.	

 
In order to construct the GCI for ߤ  and	ߪ௒

ଶ, we first obtain the GPQs, ܴఓand ܴఙೊమ which are given by:  

ܴఓ ൌ തݕ െ ܼඨ
ሺ݊ െ 1ሻݏ௒

ଶ

ܸ݊
ൌ തݕ െ 	ܼඨ

ܴఙೊమ

݊
																																																											ሺ3ሻ		
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and	

ܴఙೊమ ൌ
ሺ݊ െ 1ሻݏ௒

ଶ

ܸ
																																																																			ሺ4ሻ	

	 	 	 	 	 	 	 	
where ݕത and s௒

ଶ are the observed value of തܻ and ܵ௒
ଶ	respectively. Since 	ீߪ

ଶ ൌ 	 ሼሺܷܵܮ െ ߣሻܮܵܮ 6⁄ ሽଶis known, 
the GPQ of ߪଶ (denoted by	ܴఙమ) can be obtained by: 

ܴఙమ ൌ 	max ቄܴఙೊమ െ	ீߪ
ଶ,  ,ቅߝ

 
where ߝ is a small positive quantity used to ensure positive value of ܴఙమ. Here ܴఓand ܴఙೊమ are free from any 

unknown parameters. Thus, a GPQ for ܥ௣௠ is given by: 
	

ܴ஼೛೘ ൌ
݉݅݊	ሺܷܵܮ െ ܶ, ܶ െ ሻܮܵܮ

3ටܴఙమ ൅ ൫ܴఓ െ ܶ൯
ଶ

	.																																																ሺ5ሻ	

 
Considering measurement error GPQ of ܥ௣௠

௒  is given by:	
	 	

ܴ஼೛೘ೊ ൌ
݉݅݊	ሺܷܵܮ െ ܶ, ܶ െ ሻܮܵܮ

3ටܴఙೊమ ൅ ൫ܴఓ െ ܶ൯
ଶ

	.																																												ሺ6ሻ	

	 	 	 	 	 	 	 	 	
And a 100ሺ1 െ  ௣௠can be obtained by calculating the 100α௧௛ percentileܥ ሻ% generalized confidence limit ofߙ

of ܴ஼೛೘, ܴ஼೛೘ሾߙሿ,which satisfies ܲ ቀܴ஼೛೘ ൏ ܴ஼೛೘ሾߙሿቁ ൌ 	.ߙ	

5. Numerical Results and Calculations 

Here we have considered as USL = 20, LSL = 5 with a target T = 12.5 for our entire simulation study. For 
each degree of measurement errors (or gauge capability ({0.4 ,0.3 ,0.2 ,0.1 ,0} = ߣ)), nine different 
combinations were run for the combinations of values {13.5 ,13 ,12.5} = ߤ and ܥ௣௠ = {1, 1.25, 1.5}. For each 
simulation, a sample size of ݊ = {25, 50, 75, 100} is drawn and 2000 samples are randomly generated. With 
the input values of ൣܥ௣௠, ,ߤ ,ߣ ݊൧, using Eqn.(1) ߪ௒

ଶ is calculated and a sample of size ݊ is generated which 
follows ܰሺߤ,  .ଶሻߪ
Corresponding to each sample, 5000 simulated values of ሺܼ, ܸሻ are generated and ܴఓand ܴఙೊమ are computed 

using Eqn.(3) & Eqn.(4). As ܴఙమ ൌ  max ቄܴఙೊమ െ	ீߪ
ଶ, ߝ ቅ, puttingߝ ൌ 0.001 and value of ீߪ

ଶ	ሺrecall that 	ீߪ
ଶ ൌ

	ሼሺܷܵܮ െ ߣሻܮܵܮ 6⁄ ሽଶሻ we get the value of ܴఙమ. Putting the value of Rµ, ܴఙమ  (or ܴఙೊమ) into the Eqn.(4) {or 

Eqn.(5)} we obtain the value of ܴ஼೛೘ or ܴ஼೛೘ೊ . Thus 5000 ܴ஼೛೘ or ܴ஼೛೘ೊ  values are obtained. ܮ௣௠ is the lower 

100α௧௛ percentile of these 5000 ܴ஼೛೘ values. ܮ௣௠-s are obtained by arranging these 5000 values of ܴ஼೛೘ in 

an increasing order and selecting the 251th of the sorted list. The process is repeated for 2000 times with 
different set of values of ሺݕത, ௒ݏ

ଶሻ. Thus 2000 ܮ௣௠ (or ܮ௣௠
௒ ) are obtained corresponding to each run. Expected 

value of ܮ௣௠, i.e.ܧ൫ܮ௣௠൯is obtained by simply taking the average of these 2000 ܮ௣௠ values for a single set of 
,௣௠ܥൣ ,ߤ ,ߣ ݊൧. These 2000 ܮ௣௠ values are arranged in descending order. The proportion of times ܮ௣௠< True 
 .௣௠ is computed. This gives the Coverage Probability (CP)ܥ
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The simulations have been carried out by using the Minitab 16 on PC platform. 
	

Table 1: Expected value of Generalized Lower Confidence Limit for 95% confidence limit 

Expected value of Generalized Lower Confidence Limit for 95% confidence limit 

 ݊ ߤ ௣௠ܥ
ߣ ൌ ߣ 0 ൌ 0.1 ߣ ൌ 0.2 ߣ ൌ 0.3 ߣ ൌ 0.4

Eሺܮ௣௠ሻ
a Eሺܮ௣௠ሻ ܧ൫ܮ௣௠

௬
൯ Eሺܮ௣௠ሻ ܧ൫ܮ௣௠

௬
൯ Eሺܮ௣௠ሻ ܧ൫ܮ௣௠

௬
൯ Eሺܮ௣௠ሻ ܧ൫ܮ௣௠

௬
൯ 

1 

12.5 

25 0.7563 0.7525 0.7502 0.7443 0.7356 0.7417 0.7227 0.7279 0.6969 

50 0.8286 0.8267 0.8239 0.8226 0.8113 0.8162 0.7920 0.8114 0.7704 

75 0.8621 0.8594 0.8562 0.8549 0.8424 0.8534 0.8262 0.8474 0.8016 

100 0.8819 0.8769 0.8735 0.8761 0.8627 0.8727 0.8438 0.8670 0.8184 

13 

25 0.7580 0.7597 0.7574 0.7541 0.7451 0.7419 0.7230 0.7372 0.7049 

50 0.8284 0.8286 0.8257 0.8224 0.8111 0.8194 0.7949 0.8115 0.7705 

75 0.8617 0.8619 0.8586 0.8594 0.8467 0.8524 0.8253 0.8453 0.7999 

100 0.8813 0.8805 0.8771 0.8778 0.8644 0.8730 0.8441 0.8646 0.8163 

13.5 

25 0.7687 0.7653 0.7629 0.7608 0.7516 0.7556 0.7357 0.7436 0.7108 

50 0.8372 0.8371 0.8341 0.8316 0.8200 0.8246 0.7996 0.8175 0.7756 

75 0.8682 0.8650 0.8617 0.8623 0.8495 0.8562 0.8288 0.8501 0.8039 

100 0.8845 0.8830 0.8796 0.8808 0.8672 0.8758 0.8466 0.8718 0.8225 

1.25 

12.5 

25 0.9416 0.9372 0.9329 0.9278 0.9112 0.9149 0.8799 0.9026 0.8450 

50 1.0354 1.0277 1.0222 1.0248 1.0032 1.0117 0.9667 0.9982 0.9247 

75 1.0729 1.0728 1.0665 1.0656 1.0417 1.0585 1.0078 1.0457 0.9629 

100 1.1008 1.0996 1.0929 1.0924 1.0668 1.0876 1.0331 1.0713 0.9833 

13 

25 0.9510 0.9492 0.9446 0.9365 0.9195 0.9223 0.8867 0.9023 0.8450 

50 1.0402 1.0415 1.0358 1.0323 1.0103 1.0181 0.9723 1.0019 0.9275

75 1.0778 1.0760 1.0697 1.0731 1.0487 1.0609 1.0098 1.0477 0.9645 

100 1.1029 1.1001 1.0934 1.0941 1.0684 1.0844 1.0304 1.0751 0.9862 

13.5 

25 0.9701 0.9636 0.9590 0.9577 0.9396 0.9434 0.9055 0.9241 0.8630 

50 1.0521 1.0545 1.0486 1.0412 1.0187 1.0298 0.9825 1.0194 0.9414

75 1.0891 1.0842 1.0778 1.0850 1.0598 1.0707 1.0184 1.0550 0.9702 

100 1.1090 1.1067 1.0999 1.1018 1.0756 1.0967 1.0409 1.0808 0.9907 

1.5 

12.5 

25 1.1294 1.1313 1.1237 1.1125 1.0842 1.0887 1.0308 1.0613 0.9706 

50 1.2425 1.2423 1.2325 1.2277 1.1911 1.2117 1.1364 1.1806 1.0638

75 1.2946 1.2879 1.2771 1.2763 1.2358 1.2621 1.1786 1.2430 1.1102 

100 1.3199 1.3174 1.3059 1.3105 1.2670 1.2938 1.2047 1.2732 1.1321 

13 

25 1.1401 1.1370 1.1292 1.1244 1.0952 1.1000 1.0408 1.0739 0.9803 

50 1.2480 1.2496 1.2397 1.2348 1.1976 1.2111 1.1357 1.1952 1.0743

75 1.2989 1.2922 1.2813 1.2839 1.2427 1.2631 1.1794 1.2446 1.1113 

100 1.3209 1.3228 1.3113 1.3071 1.2640 1.2941 1.2050 1.2761 1.1342 

13.5 

25 1.1911 1.1741 1.1657 1.1552 1.1238 1.1392 1.0742 1.1019 1.0020 

50 1.2775 1.2737 1.2632 1.2551 1.2163 1.2413 1.1610 1.2110 1.0861

75 1.3155 1.3125 1.3012 1.2978 1.2555 1.2800 1.1933 1.2598 1.1221 

100 1.3373 1.3391 1.3271 1.3282 1.2831 1.3110 1.2188 1.2892 1.1438 
 
a For ߣ ൌ 0, ௣௠ܮ൫ܧ

௬
൯ ൌ     	௣௠ሻܮሺܧ
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Table 2: Coverage Probabilities of Generalized Lower Confidence Limit for 95% confidence limit	
 

Coverage Probabilities of Generalized Lower Confidence Limit for 95% confidence limit 

 ݊ ߤ ௣௠ܥ
ߣ ൌ ߣ 0 ൌ 0.1 ߣ ൌ 0.2 ߣ ൌ 0.3 ߣ ൌ 0.4	 

ܥ  ௣ܲ௠
a ܥ ௣ܲ௠  ܥ ௣ܲ௠

௬ ܥ    ௣ܲ௠ ܥ ௣ܲ௠
௬ ܥ    ௣ܲ௠  ܥ ௣ܲ௠

௬ ܥ  ௣ܲ௠  ܥ ௣ܲ௠
௬   

1 

12.5 

25 0.9675 0.9650 0.9655 0.9680 0.9765 0.9750 0.9865 0.9755 0.9925 

50 0.9605 0.9730 0.9765 0.9660 0.9775 0.9680 0.9870 0.9590 0.9920 

75 0.9630 0.9650 0.9690 0.9640 0.9730 0.9610 0.9875 0.9605 0.9970 

100 0.9510 0.9670 0.9710 0.9725 0.9825 0.9610 0.9895 0.9610 0.9970 

13 

25 0.9670 0.9690 0.9700 0.9725 0.9785 0.9735 0.9875 0.9710 0.9880 

50 0.9680 0.9645 0.9665 0.9675 0.9800 0.9625 0.9870 0.9700 0.9945 

75 0.9650 0.9695 0.9725 0.9605 0.9765 0.9705 0.9875 0.9690 0.9965 

100 0.9640 0.9610 0.9655 0.9660 0.9800 0.9615 0.9900 0.9600 0.9960 

13.5 

25 0.9675 0.9670 0.9690 0.9670 0.9750 0.9670 0.9795 0.9715 0.9945 

50 0.9560 0.9625 0.9660 0.9610 0.9745 0.9600 0.9805 0.9590 0.9890 

75 0.9535 0.9605 0.9655 0.9545 0.9750 0.9595 0.9900 0.9595 0.9940 

100 0.9555 0.9585 0.9665 0.9570 0.9760 0.9520 0.9895 0.9580 0.9970 

1.25 

12.5 

25 0.9745 0.9715 0.9745 0.9750 0.9830 0.9710 0.9870 0.9735 0.9935 

50 0.9705 0.9720 0.9745 0.9640 0.9825 0.9715 0.9930 0.9665 0.9980 

75 0.9690 0.9660 0.9705 0.9700 0.9865 0.9660 0.9950 0.9695 0.9985 

100 0.9535 0.9625 0.9705 0.9625 0.9825 0.9655 0.9945 0.9580 0.9995 

13 

25 0.9625 0.9630 0.9675 0.9705 0.9805 0.9725 0.9930 0.9760 0.9960 

50 0.9620 0.9605 0.9665 0.9630 0.9790 0.9620 0.9895 0.9655 0.9970 

75 0.9615 0.9710 0.9750 0.9635 0.9815 0.9585 0.9935 0.9655 0.9990 

100 0.9605 0.9660 0.9730 0.9650 0.9860 0.9630 0.9965 0.9560 0.9985 

13.5 

25 0.9695 0.9725 0.9755 0.9655 0.9805 0.9705 0.9880 0.9680 0.9940 

50 0.9645 0.9550 0.9625 0.9715 0.9840 0.9610 0.9925 0.9525 0.9945 

75 0.9525 0.9590 0.9680 0.9495 0.9805 0.9625 0.9940 0.9520 0.9985 

100 0.9570 0.9655 0.9710 0.9605 0.9840 0.9510 0.9945 0.9610 0.9995 

1.5 

12.5 

25 0.9720 0.9685 0.9735 0.9750 0.9855 0.9705 0.9910 0.9690 0.9975 

50 0.9660 0.9705 0.9775 0.9675 0.9845 0.9645 0.9955 0.9720 0.9990 

75 0.9625 0.9615 0.9735 0.9645 0.9875 0.9660 0.9980 0.9625 0.9995 

100 0.9640 0.9650 0.9720 0.9640 0.9875 0.9570 0.9985 0.9620 0.9995 

13 

25 0.9700 0.9665 0.9690 0.9690 0.9840 0.9675 0.9905 0.9650 0.9995 

50 0.9710 0.9625 0.9700 0.9570 0.9790 0.9645 0.9935 0.9610 0.9985 

75 0.9615 0.9580 0.9725 0.9585 0.9860 0.9690 0.9975 0.9620 1.0000 

100 0.9625 0.9650 0.9700 0.9690 0.9925 0.9535 0.9990 0.9580 1.0000 

13.5 

25 0.9655 0.9610 0.9660 0.9630 0.9800 0.9615 0.9890 0.9680 0.9965 

50 0.9560 0.9580 0.9635 0.9610 0.9865 0.9525 0.9945 0.9585 0.9985 

75 0.9520 0.9625 0.9750 0.9605 0.9860 0.9565 0.9975 0.9530 0.9995 

100 0.9590 0.9585 0.9670 0.9560 0.9880 0.9565 0.9995 0.9630 1.0000 

 
aFor λ = 0,ܥ ௣ܲ௠

௬
ൌ ܥ ௣ܲ௠	   
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Fig	1:	Eሺܮ௣௠ሻ	and	Eሺܮ௣௠
௒ ሻ	for	ܥ௣௠	ൌ	1,	n	ൌ	25 

 
From Fig. 1 it is clear that as the population mean deviates more from the Target value (ܶ), the expected value 
of ܥ௣௠ (or ܮ௣௠

௒ ) tends to increase. This can be explained by the lower variance of the process to maintain the 
same value of true ܥ௣௠ as it deviates from the target value. 
 
It is also very clear that both	ܧ൫ܮ௣௠൯ and ܧ൫ܮ௣௠

௒ ൯ decrease with the increase of ߣ. This can be explained as 
follows: 
 
From Eq. (2) we get:  
 

௣௠ܥ ൌ ݉݅݊

ۉ

ۇ
ܮܷܵ െ ܶ

3ටߪ௒
ଶ	– ீߪ

ଶ 	൅ ሺߤ െ ܶሻଶ
,

ܶ െ ܮܵܮ

3ටߪ௒
ଶ	– ீߪ

ଶ 	൅ ሺߤ െ ܶሻଶ
ی

	ۊ

	
or	

ටߪ௒
ଶ െ ீߪ

ଶ ൅ ሺߤ െ ܶሻଶ ൌ
min	ሺܷܵܮ െ ܶ, ܶ െ ሻܮܵܮ

௣௠ܥ3
	

 
or	

௒ߪ
ଶ ൌ ቈ

min	ሺܷܵܮ െ ܶ, ܶ െ ሻܮܵܮ

௣௠ܥ3
቉

ଶ

൅ ீߪ
ଶ െ ሺߤ െ ܶሻଶ	
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or	

௒ߪ
ଶ ൌ ቈ

min	ሺܷܵܮ െ ܶ, ܶ െ ሻܮܵܮ

௣௠ܥ3
቉

ଶ

൅ ൤
ሺܷܵܮ െ ߣሻܮܵܮ

6
൨
ଶ

െ ሺߤ െ ܶሻଶ	

	
From the above equation it is very clear that as ߣ increases ߪ௒

ଶ  also increases. Since ܻ	~	ܰሺߤ, ௒ߪ
ଶሻ, with the 

increase of ߣ, the variability of the process increases leading to lower ܥ௣௠. Hence lower ܧ൫ܮ௣௠൯ is obtained. 
 
From Fig.1, it is been also observed that as the ߣ increases, the difference between the ܧ൫ܮ௣௠൯ and ܧ൫ܮ௣௠

௒ ൯ 
also increases. Maximum attainable value for ܧ൫ܮ௣௠

௒ ൯ is ܧ൫ܮ௣௠൯ at ߣ ൌ 0. That can be explained as follows: 
	

ܴ஼೛೘ೊ

ܴ஼೛೘
ൌ
ටܴఙమ ൅ ൫ܴఓ െ ܶ൯

ଶ

ටܴఙೊమ ൅ ൫ܴఓ െ ܶ൯
ଶ
ൌ
ටܴఙమ െ ீߪ

ଶ ൅ ൫ܴఓ െ ܶ൯
ଶ

ටܴఙೊమ ൅ ൫ܴఓ െ ܶ൯
ଶ

	.	

	
As ߣ increases, ீߪ

ଶ also increases which in turn decreases ratio ܴ൫ܥ௣௠
௒ ൯ ܴ൫ܥ௣௠൯ൗ .Thus with the increase of ߣ, 

௣௠ܮ൫ܧ
௒ ൯ ௣௠൯ൗܮ൫ܧ decreases.We also observe from Fig. 2 that as ߣ increases ܧ൫ܮ௣௠൯ decreases steadily. Also 

we can observe that with the increase of sample sizeሺ݊ሻ the value of ܧ൫ܮ௣௠൯ increases. 

	
 

 
Fig 2: E(ܮ௣௠) for ܥ௣௠ = 1.5, μ = 12.5 
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6. Case Study 

A real-world problem is implemented with data collected from a manufacturing factory, which is located on 
the Science-Based Industrial Park in Taiwan. The data is reported in Pearn et al. [2009]. This manufacturing 
company produces a variety of optoelectronic devices including the Light Emitting Diodes (LEDs). An 
essential product characteristic for LEDs is the luminous intensity, which has a significant impact on product 
quality. For luminous intensity of a particular model of LED, the upper specification (USL) is set to 13,800 
mcd [Milli-candela (mcd) is a measurement unit of brightness or light intensity]; the lower specification 
(LSL) is set to 6,200 mcd. The target (ܶ) is set to 10,000 mcd. Consider the LED manufacturing process has 
process mean (ߤ) =10.1 and process standard deviation ሺߪሻ ൌ 0.5.	Also consider the luminous intensity 
follows normal distribution. A total of 120 observations collected from a stable process in the factory are 
displayed in Table 3. 
 
In this case suppose that the capability requirement is defined ‘satisfactory’ if ܥ௣௠ ൒ 1.3. Also consider that 
gauge capability (ߣ) is equal to 0.2. The above table shows a sample data of 120 observations. The above data 
has a sample mean of 10.6462 and standard deviation = 0.5254. 

 
 

Table 3: Data for Case Study 

10.19 10.75 9.51 10.31 10.77 11.74 11.13 10.42 11.14 12.14 10.19 10.12 

11.02 9.84 10.45 10.93 10.47 11.34 11.76 11.41 10.79 11.46 10.94 10.74 

11.45 10.76 10.69 9.84 11.24 10.01 10.66 10.85 10.59 11.25 10.84 10.45 

10.46 8.85 10.24 10.92 10.99 10.5 11.03 10.24 11.02 10.65 10.87 10.14 

10.29 9.89 11.81 10.72 11.08 10.62 10.78 11.03 9.95 10.52 11.04 10.58 

10.87 11.14 10.48 10.28 10.44 9.85 10.19 10.12 11.22 11.23 10.74 10.41 

10.86 10.76 10.78 11.35 11.21 10.86 10.85 10.39 10.03 9.99 10.61 10.34 

10.55 10.79 10.75 10.15 10.97 9.98 10.42 11.37 10.94 10.4 11.33 11.15 

10.33 10.78 11.07 10.05 10.11 9.85 10.69 9.92 10.31 9.79 11.16 10.36 

9.9 10.71 10.96 10.96 10.4 11.24 10.94 9.75 11.19 10.03 10.38 10.45 
 

In this case suppose that the capability requirement is defined ‘satisfactory’ if ܥ௣௠ ൒ 1.3. Also consider that 
gauge capability (ߣ) is equal to 0.2. The above table shows a sample data of 120 observations. The above data 
has a sample mean of 10.6462 and standard deviation = 0.5254. 

Under the hypothesis that the above data follows a normal distribution the Anderson-Darling, Kolmogorov-
Smirnov & Ryan-Joiner tests yields the following results: 

Anderson-Darling Test  Kolmogorov-Smirnov Test  Ryan-Joiner Test 
AD = 0.267   KS = 0.054    RJ = 0.994 
P = 0.682   p>=0.15    p>= 0.10 
 
So each of the above test confirms our normality our assumption.  The MLE estimates of ߤ and ߪ are given by 
ߤ̂ ൌ 10.65 and ߪො ൌ 0.5254. Hence, the point estimation of ܥ௣௠ based on the empirical data ܻ (the observed 
values contaminated with measurement errors) is ܥመ௣௠= 1.27624. The true ܥ௣௠ of this manufacturing process 
ߤ) ൌ 10.1 and ߪ ൌ 0.5 ) would be 2.13333(>1.3). Clearly the process is fairly satisfactory. But as the true 
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process mean and process variance is never known, the true process ܥ௣௠ can never be computed. Using GCI 
methods for 5000 replications for the GPQs of ܥ௣௠ , if we ignore the gauge measurement errors, the process 
would be considered incapable since the calculated lower 95% confidence limit of ܥ௣௠ is 1.26535(<1.3). 
That is the process is determined to be ‘unsatisfactory’ since the lower confidence of ܥ௣௠ is lower than the 
preset process capability requirement of 1.3. In contrast to that, if we consider the measurement error, and 
compute the 95% generalized confidence limit of ܥ௣௠(i.e. ܮ௣௠) we get ܮ௣௠= 1.30793(>1.3). Then we will be 
able to correctly judge the process as ‘satisfactory’. Therefore the process would have been incorrectly 
rejected in this case if we did not take gauge measurement errors into consideration. 
 

7. Conclusion 

A substantial majority of research works on process capability analysis that has appeared in the literature do 
not take into account measurement errors. Unfortunately, measurement errors cannot be avoided in many 
branches of manufacturing industry but they can be reduced by improving the gauge measurement and 
properly training the operators. If the producers do not take into account the effects of the gauge capability on 
estimating and testing process capability, it may often lead to incorrect decisions and resulting serious loss.  
This paper applies the GCI concept to measure process capability based on the second generation index ܥ௣௠ 
in the presence of measurement errors. An exhaustive simulation has been conducted to assess the 
performance of GCI methods in terms of the CP and the expected value of the generalized lower confidence 
limit. Moreover, a sensitivity study was also carried out to analyze the effects of ignoring measurement errors 
on the performance of the GCI with various parameter settings. The result indicate that GCI method appears 
quite satisfactory for assessing process capability when measurement errors are present.  
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