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Abstract 

In addition to GA-deception, the lack of fitness differences among low-order schemata can also degrade GA’s 
search. Therefore, a coding should present adequate superior low-order building blocks at the early stage of search. 
This paper aims to reveal the inherent periodicity in the search process of a genetic algorithm, and to show how to 
make use of this periodicity in the design of representation for fitness functions with periods of the reciprocals of 
positive integers so as to ensure the effective supply of superior order-1 building blocks. Finally, simulations are 
given to illustrate the effectiveness of the proposed method. 

Keywords - genetic algorithms; periodical function; linear weighted coding; building block; cardinality of coding 
alphabet 
 

1. Introduction 

The capacity of the genetic algorithms (GA’s) to 
simultaneously process a large number of schemata 
leads to their success in exploring complex fitness. 1, 2 
In order to make use of this parallel search capacity, 
coding and population size should be properly chosen 
so as to provide adequate initial building blocks for 
search.1-5  

However, an adequate supply of raw building 
blocks itself does not ensure the formation and growth 
of superior building blocks, and the effects of building 
blocks’ fitness to the performance of GA’s search 
should also be taken into account. Some features of 
fitness landscapes are relevant to GA’s performance, 
and determine how schemata interact and combine 
during the typical evolution of the GA’s search.6 
Moreover, representation can also affect building block 

dynamics and GA’s ability to balance exploration and 
exploitation of building blocks.7  

Walsh analysis has been used to analyze the effects 
of coding and genetic operators to GA’s behaviors. 2, 8-12 
The analyses on schema fitness value reveal that GA-
hardness and GA-deception might mislead the search 8-

11, and non-inferior building blocks might cause a GA 
to get stuck into a local optimum because of a 
synchronization problem.12 However, there are still 
some kinds of fitness functions, e.g. the linear fitness 
functions, that are neither GA-deceptive nor GA-hard 
yet hard to optimization using genetic algorithms13, 14; 
for such smooth fitness functions, the fitness 
differences among individuals and schemata are so 
small that selection fails to choose the right ones with 
high probabilities, which degrades the GA’s search.  

Therefore, before discussing how to combine the 
superior building blocks to lead the search to the 
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desired regions, it is necessary first to clarify whether or 
not a representation can really present superior building 
blocks in the initial population.  

In this paper, based on the previous work Ref. 15, 
the inherent periodicity in the search behavior of GA’s 
is to be unveiled to show how to make use of this 
periodicity in the design of representation so as to get 
superior order-1 building blocks.  

The rest of the paper is organized as follows. 
Section 2 gives some preliminaries, including the 
concept of locus factor as a measurement of fitness 
difference among order-1 schemata with the same fixed 
bit. The periodicity in the search behavior of genetic 
algorithms is introduced in Section 3. Section 4 shows 
how cardinality number m of the coding alphabet 
affects the supply of superior order-1 building blocks 
for single-period and multiple-period fitness functions 
with period m-i. Simultation results for several typical 
cases are given in Section 5 to illustrate the 
effectiveness of the proposed method. Finally, Section 6 
summarizes the paper. 

2. Preliminaries (Fitness Difference and Locus 
Factor) 

Let us consider a schema taken from the alphabet 
A∪{*} , where * stands for “don’t care” bit, and 

}1,,1,0{ −= mA L , ( 1, >∈ + mZm ), is the 
coding alphabet of the genetic algorithm, named as m-
allelic coding alphabet for short. The number of the 
fixed bits of a schema is defined as the order of the 
schema. To simplify analysis, only schemata of order 1 
are considered. A schema is called an order-1 schema at 
locus i, if its fixed position is at the ith bit of the string 
counted from the rightmost. For example, 1***, **0* 
are order-1 schemata at the 4th and 2nd locus, 
respectively. Accordingly, a highly fit order-1 schema 
at the locus is named as a superior order-1 building 
block at locus i. A string is said to be a sample of a 
schema, or the latter is said to be matching the former, 
if the string is identical to the schema at the schema’s 
fixed positions. Here and throughout, the average 
fitness of all the examples of an order-1 schema in the 
whole search space is defined as the fitness of this 
schema.  

Without loss of generality, consider the fitness 
function )(xfy = , where )1,0[∈x , 0)( ≥xf , and 
with at least one point whose fitness value is larger than 
0.  Assume that the coding is linear weighted with m-

allelic coding alphabet, i.e., each solution of the search 
space, x , is encoded as ∑=

−−= l
i

li
imxx 1

1 , where l is 
string length, and }1,,1,0{ −∈ mxi L . For 
example, for the 3-allelic coding of string length 10, 

∑=
−= 10

1
113i

i
ixx , and }2,1,0{∈ix . Obviously, a 

superior order-1 building block at a certain locus 
indicates fitness variances among the order-1 schemata 
at this locus. In this paper, “locus factor” is introduced 
to describe the fitness variances.  

Definition 1:  The ratio of the maximal fitness to 
the average fitness of all the order-1 schemata at locus 
i  is called the locus factor of this locus, denoted by 

iθ , where li ≤≤1 . 
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By Definition 1, the locus factor of the ith locus is given 
by 

( ) ( )iixiixi LfxfLfxf
ii

/)]([max]/)([max ==θ .  (3) 
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)( iLfm ⋅= , therefore mi ≤≤θ1 .  

A simple example below illustrates the concept of 
locus factor. Suppose that the 3-allelic coding of string 
length 2 is used, and the fitness values of the strings 
are: 3)00( =f , 0)01( =f , 2)02( =f , 2)10( =f , 

1)11( =f , 1)12( =f , 5)20( =f , 3)21( =f , 
2)22( =f . From (3), one has += )00((*)0( ff  

67.13/))02()01( =+ ff , ++= )11()10((*)1( fff
33.13/))12( =f , and ++= )21()20((*)2( fff  
33.33/))22( =f . The average fitness of all the order-1 

schemata at locus 2 is ++= *)1(*)0(()( 2 ffLf  
11.23/*))2( =f . Since *)2(f  is the maximum 

among the three fitness values of the order-1 schemata 
at locus 2, according to (3), the locus factor at locus 2 is 

58.1)(/*)2( 2 =Lff . By Definition 1, if the locus 
factor of locus i  is significantly larger than 1, there will 
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be a superior order-1 building block with fitness much 
higher than the other order-1 schemata at this locus. 
Here in this example, the superior building block is 2*. 

3. Periodicity in GA’s Search Behavior 

In a GA’s population, each individual can be viewed as 
a sampling point of the search space. The iterative 
mutation of the individual generates a serial of 
sampling points in the space. If a string bit-wisely 
mutates in such a manner that the allele value at a 
particular locus varies, while the allele values at the 
other loci remain unchanged, there will be a period 
among the serial of sampling points. For example, 
assume that a genetic algorithm is coded with the 3-
allelic coding, i.e., ∑ =

−= 4
1

53i i
i xx . If the allele values 

at the 1st, 2nd, and 4th locus are all zeros, then the 
variation of the allele value at the 3rd locus results in 
strings 0000, 0100, and 0200, corresponding to decoded 
values, 0.000, 0.111, and 0.222, respectively. The 
period among these three points is 0.111. Obviously, 
the period depends on the position of the locus on the 
string. Another serial of sampling at the same locus 
may yield 1001, 1101, and 1201, and the period 
remains unchanged. However, the variation of the allele 
value at the 4th locus will result in a different period of 
0.333. Moreover, the cardinality of the coding alphabet 
also affects the period. With the binary coding 

∑ =
−= 4

1
52i i

i xx , mutation at the 4th locus results in 0000 
and 1000, corresponding to 0.000 and 0.500, 
respectively, which indicates a period of 0.50. During 
the evolution, mutation can occur at different positions 
of the string, and therefore, a genetic algorithm samples 
the search space simultaneously with multiple sampling 
periods. For example, with the 3-allelic and binary 
coding given above, mutation at the 1st, 2nd, 3rd, and 4th 
loci corresponds to sampling periods of 43− , 33− , 23− , 

13− , and 42− , 32− , 22− , 12− , respectively. 
 

 
 
 
 
 
 
 

Fig.1.a. A sine function of period ½ 

 

 

 

 

 

 

Fig.1.b. Sampling the sine function with period ¼               
(the first two points) 

 

 

 

 

 

Fig.1.c. Sampling the sine function with period ½                
(the first two points) 

 

 

 

 

 

Fig.1.d. Sampling the sine function with period 1/9              
(the first three points) 

 Intuitively, sampling with different periods extracts 
different features of a periodical function. As an 
example,  Fig. 1. illustrates the differences of sampling 
results for 14sin += xy π among different sampling 
periods. Fig.1.b., c., and d. give the first two/three 
points of the sampling with different periods. As is 
shown in Fig.1 b., one of the sampled points is 
significantly fitter than the other, while in Fig.1 c. and 
d., the differences of the fitness values between/among 
the sampled points are much smaller. Actually, if the 
binary coding is used, all the sampled points with 
higher fitness values are matched by the schema *0**. 
Consequently, *0** is much fitter than *1**, which, by 
Definition 1, indicates that the locus factor of the 3rd 

locus is significantly larger than 1. As for periods 12−  
and 23− , the differences among fitness values are so 
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small that the locus factor of locus 2 of the binary 
coding and that of locus 3 of the 3-allelic coding cannot 
be large. 

4. Function Period and Coding-Alphabet 
Cardinality 

A straightforward suggestion from the periodicity 
behavior of the GA’s is that, for a function with period 

im− , the m-allelic coding may generate large locus 
factor at locus i.  

Consider a periodical function == )(xfy  
)( kTxf ± , where k  is a positive integer, and 

hmT −= , in which }1,,0{ −∈ lh L . In terms of (1), 
one has 
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Further from (2), we have                                   
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Thus, the locus factor of locus hl −  is 
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When hlx −  varies from 0 to m-1, +−−
−

1h
hl mx  

∑ −−
=

−−1
1

1hl
j

lj
jmx can be viewed as a sampling within the 

range of ],0[ hm− , i.e., ],0[ T , with sampling period 
mT / . If the value of the periodical function varies 

significantly within a period, there will be at least one 
point whose fitness value is much larger than the 
average of the fitness values of all the points within this 
period. In this case, ( )>>−−

)(max hlx xf
hl

 
mxfm

x hlhl
∑ −

= −−

1
0 )( , i.e., 1>>−hlθ . 

Therefore, it is concluded that if the period of a 
non-negative function defined on )1,0[  is hm − , 
where m  and h  are positive integers larger than 1, and 
the value of the function varies significantly within a 
period, then a large locus factor will be obtained at 
locus hl − of the m-allelic-coded strings of length 

hl > . 
Some samples are given in Tables 1, 2 and 3, in 

which the binary coding, the 3-allelic coding, and the 5-
allelic coding are used, respectively. As shown in Table 
1, the diagonal locus factors are much larger than the 
others. For each of the functions of period k−2  
( 10<k ), the binary coding does result in a large locus 
factor at locus k−10 . Similar results are also shown in 
Table 2 and Table 3, where large locus factors are 
gained on the diagonals of the tables.  

As counterexamples, the locus factors of binary 
coding for the sine functions with periods k−3  and k−5 , 
respectively, are given in Table 4, in which most of the 
locus factors larger than 1.00 are at the 10th loci, rather 
than on the diagonal as shown in Tables 1, 2, and 3. 
Moreover, as compared with the large locus factors in 
Tables 1, 2, and 3, the large locus factors in Table 4 are 
much smaller, with the largest among them being 
merely 1.21. 

Table 1.  Locus factors of the binary coding of string length 10 for sine functions with periods k−2  

Function Allele number 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st 
12sin += xy π  Locus factor 1.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14sin += xy π  Locus factor 1.00 1.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
18sin += xy π  Locus factor 1.00 1.00 1.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00
116sin += xy π  Locus factor 1.00 1.00 1.00 1.64 1.00 1.00 1.00 1.00 1.00 1.00
132sin += xy π  Locus factor 1.00 1.00 1.00 1.00 1.64 1.00 1.00 1.00 1.00 1.00
164sin += xy π  Locus factor 1.00 1.00 1.00 1.00 1.00 1.64 1.00 1.00 1.00 1.00
1128sin += xy π  Locus factor 1.00 1.00 1.00 1.00 1.00 1.00 1.64 1.00 1.00 1.00
1256sin += xy π  Locus factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.64 1.00 1.00
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Table 2.  Locus factors of the 3-allelic coding of string length 6 for sine functions with periods k−3  

Function Allele number 6th 5th 4th 3rd 2nd 1st 
12sin += xy π  Locus factor 1.72 1.00 1.00 1.00 1.00 1.00 
16sin += xy π  Locus factor 1.00 1.72 1.00 1.00 1.00 1.00 
118sin += xy π  Locus factor 1.00 1.00 1.72 1.00 1.00 1.00 
154sin += xy π  Locus factor 1.00 1.00 1.00 1.72 1.00 1.00 
1162sin += xy π  Locus factor 1.00 1.00 1.00 1.00 1.72 1.00 
1486sin += xy π  Locus factor 1.00 1.00 1.00 1.00 1.00 1.72 

Table 3.  Locus factors of the 5-allelic coding of string length 4 for sine functions with periods k−5  

Function Allele number 4th 3rd 2nd 1st 
12sin += xy π  Locus factor 1.89 1.00 1.00 1.00 
110sin += xy π  Locus factor 1.00 1.89 1.00 1.00 
150sin += xy π  Locus factor 1.00 1.00 1.89 1.00 
1250sin += xy π  Locus factor 1.00 1.00 1.00 1.89 

 Table 4.  Locus factors of the binary coding of string length 10 for sine functions with periods k−3  and k−5  

Function Allele number 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st 
16sin += xy π  Locus factor 1.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
118sin += xy π  Locus factor 1.07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
154sin += xy π  Locus factor 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1162sin += xy π  Locus factor 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

110sin += xy π  Locus factor 1.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
150sin += xy π  Locus factor 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1250sin += xy π  Locus factor 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00

 

 

 

 

 

 

Table 5.  Locus factors of the binary, 3-allelic, and 5-allelic coding employed to )(1 xf  

Allele number 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Binary Coding 
Locus factor 1.199 1.199 1.199 1.199 1.199 1.000 1.000 1.000 1.000 1.000

Allele number 7th 6th 5th 4th 3rd 2nd 1st 3-allelic Coding 
Locus factor 1.433 1.000 1.001 1.000 1.000 1.000 1.000 

Allele number 5th 4th 3rd 2nd 1st 5-allelic Coding 
Locus factor 1.506 1.001 1.000 1.000 1.000 

 
The above conclusion can be extended to a certain 

class of multiple-periodical functions. If the periods of a 
function are nTT ,,1 L , where nimT ih

i ,,1,1 L== +−− , 
and +∈Zn , and the value of the function varies greatly 
within each period, then the m-allelic coding is expected 

to generate large locus factors at loci, 
1,, +−−− nhlhl L .  

Consider functions ∑ = +⋅= 4
01 )22sin(5.0)( k

k xxf π   
6.1 , ∑ = +⋅= 3

02 5.1)23sin(5.0)( k
k xxf π , and =)(3 xf  

∑ = +⋅2
0 5.1)25sin(5.0 k

k xπ , whose trajectories are shown 

Fig. 2.c. Trajectory of )(3 xf  Fig. 2.b. Trajectory of )(2 xf  
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in Fig. 2. Since the value of a sine function varies 
significantly within a period, the coding schemes of 
proper alphabet cardinalities can produce large locus 
factors at particular loci. Here, the binary coding of string 
length 10, the 3-allelic coding of string length 7, and the 
5-allelic coding of string length 5 are respectively used to 
represent the solutions of these functions. The 
corresponding locus factors for )(1 xf  are given in Table 
5; and those for )(2 xf  and )(3 xf  are shown in Tables 6 
and 7, respectively.   

In Tables 5, 6, and 7, the locus factors are given in 
rows, and those larger than 1.1 are typed in boldface. As 

for )(1 xf  in Table 5, there are totally 5 large locus 
factors when the binary coding is used, while only one 
large locus factor when the other coding schemes are 
employed. Therefore, when applied to )(1 xf , the binary 
coding obtains more superior order-1 building blocks 
than the 3-allelic and 5-allelic coding. Similar results can 
be obtained for the other two functions, as shown in 
Tables 6 and 7, where the 3-allelic coding for )(2 xf  and 
the 5-allelic coding for )(3 xf  surpass the other coding 
schemes at achieving more large locus factors. 

Table 6.  Locus factors of the binary, 3-allelic, and 5-allelic coding employed to )(2 xf  

Allele number 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Binary Coding 
Locus factor 1.314 1.000 1.002 1.002 1.000 1.002 1.000 1.000 1.000 1.000

Allele number 7th 6th 5th 4th 3rd 2nd 1st 3-allelic Coding 
Locus factor 1.239 1.238 1.238 1.238 1.000 1.000 1.000 

Allele number 5th 4th 3rd 2nd 1st 5-allelic Coding 
Locus factor 1.381 1.001 1.001 1.000 1.000 

Table 7.  Locus factors of the binary, 3-allelic, and 5-allelic coding employed to )(3 xf  

Allele number 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st Binary Coding 
Locus factor 1.263 1.001 1.001 1.001 1.000 1.001 1.000 1.000 1.000 1.000

Allele number 7th 6th 5th 4th 3rd 2nd 1st 3-allelic Coding 
Locus factor 1.296 1.000 1.000 1.001 1.000 1.000 1.000 

Allele number 5th 4th 3rd 2nd 1st 5-allelic Coding 
Locus factor 1.297 1.297 1.297 1.000 1.000 

 

5. Simulations 

In the simulations, genetic algorithms with the binary 
coding of string length 11, the 3-allelic coding of string 
length 7, and the 5-allelic coding of string length 5, 
respectively, are used to search for the maximal or sub-
maximal values of the three functions given in Section 
4. The algorithms employ roulette wheel and elitism 
selection, single-point crossover, and bitwise mutation. 
For the m-allelic coding, the mutation is to replace the 
original allele value with another integer randomly 
selected from }1,,0{ −mL . The population size, 
crossover probability, and mutation probability are 30, 
0.8 and 0.005, respectively. For every function, 1000 
calculations are performed using each of the three 
coding schemes in turn, with each calculation runs for 
20 generations.  

The Schema Theorem states that a superior building 
block receives an exponentially increasing trial in 

subsequent generations. As a result, the superior 
building blocks will soon dominate the population. 
Thus, we introduced “domination rate” as an indication 
of superior order-1 building blocks. An order-1 schema 
is said to dominating the final population if all the 
individuals in the final population are examples of the 
schema. In this paper, the domination rate of a 
particular order-1 schema stands for the rate of the 
times at which it dominates the final populations to the 
total number of the calculations. The results are given 
in Tables 8, 9, and 10, respectively. In the tables, the 
domination rates are listed for all the possible allele 
values at each locus, which stand for the domination 
rates of the corresponding order-1 schemata. High rates 
are highlighted in boldface.  

For function )(1 xf  in Table 8, the allele value “0” 
at the 11th locus, which stands for the order-1 schema 
0**********, dominates the final populations for 790 
times. The schemata, *0*********, **0********, 
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***0*******, and ****0******, also have very high 
domination rates. They are all superior building blocks, 
and each of them has much higher chance to survive 
than the other order-1 schema at the same fixed 
position. In contrast, only the schema 0********** 
dominates the final populations with high rates 
for )(2 xf  and )(3 xf . Similar results can be observed in 
Tables 9 and 10, in which the proper coding schemes 
generate more order-1 building blocks than the others. 

We have also tried other positive integers as the 
coding alphabet cardinalities, e.g., 6-11, etc; the 
simulation results, which are omitted for sake of space 
limitation, were similar to those listed in Table 8-10, 
and supported the same conclusion, i.e., the m-allelic 
coding provides more superior order-1 building blocks 
for multiple-periodical fitness function with periods 
satisfying nimT ih

i ,,1,1 L== +−−  than the coding 
with other alphabet cardinalities.  

Table 8.  Domination rate of the allele values at the loci of the binary strings 

Function Allele value 11th 10th 9th 8th 7th 6th 1st-5th 
0 0.790 0.586 0.527 0.783 0.298 0.417 0.30 < Each < 0.50 )(1 xf  
1 0.039 0.131 0.276 0.080 0.004 0.470 0.30 < Each < 0.50 
0 0.998 0.300 0.289 0.387 0.408 0.421 0.30 < Each < 0.50 )(2 xf  
1 0.001 0.287 0.356 0.423 0.381 0.440 0.30 < Each < 0.50 
0 0.958 0.332 0.368 0.412 0.409 0.417 0.30 < Each < 0.50 )(3 xf  
1 0.003 0.390 0.445 0.360 0.364 0.398 0.30 < Each < 0.50 

Table 9.  Domination rate of the allele values at the loci of the 3-allelic strings 

Function Allele value 7th 6th 5th 4th 3rd 2nd 1st 
0 0.820 0.132 0.327 0.198 0.256 0.221 0.187 
1 0.033 0.325 0.329 0.198 0.263 0.189 0.203 

)(1 xf  
 

2 0.003 0.267 0.120 0.320 0.228 0.231 0.276 
0 0.468 0.364 0.400 0.541 0.223 0.237 0.267 
1 0.253 0.387 0.356 0.169 0.223 0.237 0.149 

)(2 xf  

2 0.001 0.010 0.005 0.003 0.249 0.210 0.200 
0 0.723 0.130 0.324 0.126 0.227 0.198 0.201 
1 0.065 0.150 0.147 0.198 0.210 0.253 0.241 

)(3 xf  

2 0.001 0.376 0.168 0.304 0.205 0.198 0.195 

Table 10.  Domination rate of the allele values at the loci of the 5-allelic strings 

Functions Allele value 5th 4th 3rd 2nd 1st 
0 0.234 0.007 0.012 0.033 0.038 
1 0.162 0.169 0.021 0.056 0.101 
2 0.001 0.001 0.067 0.048 0.033 
3 0.002 0.078 0.069 0.089 0.041 

 
)(1 xf  

4 0.000 0.002 0.077 0.081 0.065 
0 0.186 0.013 0.077 0.073 0.058 
1 0.115 0.044 0.041 0.053 0.049 
2 0.023 0.021 0.059 0.043 0.022 
3 0.007 0.120 0.035 0.044 0.098 

 
)(2 xf  

4 0.002 0.066 0.038 0.054 0.075 
0 0.066 0.081 0.132 0.047 0.042 
1 0.231 0.238 0.295 0.071 0.036 
2 0.077 0.043 0.021 0.045 0.067 
3 0.002 0.004 0.001 0.067 0.101 

 
)(3 xf  

4 0.004 0.002 0.003 0.045 0.059 
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6. Conclusions 

A genetic algorithm samples the search space 
simultaneously with multiple sampling periods 
determined by the cardinality of the coding alphabet. 
Thus, a coding scheme with cardinality in accordance 
with the periods of the fitness function is expected to 
present more superior order-1 building blocks than 
those with improper cardinalities. It is shown that if the 
periods of the fitness function satisfy 

nimT ih
i ,,1,1 L== +−− , and the value of the function 

varies greatly within each period, then the m-allelic 
coding can generate large locus factors at loci, 

1,, +−−− nhlhl L , and may surpass the coding with 
other alphabet cardinalities in the supply of superior 
order-1 building blocks. 

Given an arbitrary function, its main frequency 
components can hardly be expressed as 1−+ihm . 
Therefore, it should be interesting to find out whether 
or not rare superior order-1 building blocks can be 
generated for such functions, as long as a linear-
weighted coding ∑=

−−= l
i

li
imxx 1

1  is employed.  
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