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Abstract

We investigate a further group analysis of Whitham-Broer-Kaup(for short WBK)
equations. An optimal system of one-dimensional subalgebras is derived and used
to construct reduced equations and similarity solutions. Moreover, a special case of
WBK equations is linearized and some new solutions are obtained. At last, conserva-
tion laws are also analyzed by means of scaling symmetry.

1 Introduction

Since Sophus Lie (1842-1899) introduced the notion of continuous transformation group,
now known as Lie group, the theory of Lie group and Lie algebra have been evolved into
one of the most explosive development of mathematics and physics throughout the past
century. One of the main applications of Lie theory of symmetry group for differential
equations is the construction of similarity(group invariant) solutions. Given any subgroup
of the symmetry group, one can write down the equations for the similarity solution
with respect to this subgroup. This reduced system is of fewer variables and easier to
solve generally [1, 2, 3, 4, 5]. But a Lie group (or Lie algebra) usually contains infinitely
many subgroups (or subalgebras) of the same dimension, it is not usually feasible to list all
possible similarity solutions. Hence, one needs an effective, systematic means of classifying
these solutions, leading to a “basis set” of similarity solutions from which every other such
solution can be derived. This leads the notion of optimal system of symmetry subgroup
introduced and some examples can be found in [1, 6, 7]. Simultaneously, constructing
point transformation mapping the nonlinear partial differential equations(PDEs) which
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necessarily admit an infinite set of point (contact) symmetries to linear PDEs is also an
important application of symmetry group theorem. Then, the solutions of nonlinear PDEs
can be obtained from the linearized equations through the transformation. S. Anco et.al
[8], G. Bluman and S. Kumei [9, 10] have completed some theoretic studies and performed
some examples in this field.

Another important application is to construct conservation laws by the known symme-
tries [11, 12, 13, 14]. W. Hereman et al. [14] advocate a more direct approach by building
the candidate density as a linear combination (with constant coefficients) of terms that
are uniform in rank with respect to the scaling symmetry of the PDEs and can be im-
plemented in most computer algebra systems such as Mathematica, Maple, and Reduce.
Ü. Götaş and W.Hereman also applied this method to find higher-order symmetries for
nonlinear evolution and lattice equations [15].

In this paper, we investigate nonlinear WBK equations in shallow water obtained by
Whitham, Broer and Kaup [16, 17, 18]

ut = uux + vx + βuxx,

vt = vux + uvx + βvxx + αuxxx, (1.1)

where u = u(x, t) is the field of horizontal velocity, v = v(x, t) is the height that deviate
from equilibrium position of liquid, α, β are constants that represent different diffusion
power. If α = 0, β 6= 0, Eq.(1.1) are classical long-wave equations that describe shallow
water wave with diffusion [16]. If α = 1, β = 0, Eq.(1.1) are modified Boussinesq equations
[19]. If α = 0, β = 0, Eq.(1.1) are one-dimensional shallow water equations on a flat bottom
[20].

In the last decades, there have been several methods proposed to study Eq.(1.1) ,
which include inverse transformation formula [16, 19], homogeneous balance method [21],
improved sine-cosine method and the Wu elimination method [22], Backlund transforma-
tion [23], hyperbolic function method [24] and nonclassical symmetries method [20]. In
this paper, we present Lie point symmetries analysis and derive an optimal system of
one-dimensional subalgebras, some reductions and similarity solutions are constructed.
Furthermore, a special case for α = 0, β = 0 is linearized by its admitted symmetry and
some conservation laws are obtained by scaling symmetry.

The outline of the present paper is as follows. In Section 2, we investigate Lie point
symmetries of Eq.(1.1). An optimal system of one-dimensional subalgebras is derived.
Some symmetry reductions and similarity solutions are also obtained. In Section 3, a spe-
cial case of WBK equations is linearized and some new solutions are derived. Conservation
laws are considered in Section 4. Finally, we conclude this paper in Section 5.

2 Symmetry analysis

In this section, we first analyze Lie point symmetries of Eq.(1.1) and derive an optimal
system of one-dimensional subalgebras, then similarity solutions and reduced equations
are constructed.
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2.1 Lie point symmetries

We consider a one-parameter Lie group of local transformations with an infinitesimal
operator of the form

X = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t + η(x, t, u, v)∂u + φ(x, t, u, v)∂v , (2.1)

which leaves Eq.(1.1) invariant. Using the characteristic set algorithm for differential
polynomial systems and its implemented program to the determining equations [26, 27, 28],
we have two cases to discuss.
Case 1 : (α, β) 6= (0, 0).

In this case, we obtain

ξ = −1

2
c1x− c2t+ c4, τ = −c1t+ c3, η =

1

2
c1u+ c2, φ = c1v, (2.2)

and the corresponding infinitesimal operators are

X1 = −1

2
x∂x − t∂t +

1

2
u∂u + v∂v ,X2 = −t∂x + ∂u,X3 = ∂x,X4 = ∂t. (2.3)

Case 2 : (α, β) = (0, 0).
Here, we get

ξ = c3x+ (
3

4
c1u

2 − 3

2
c1v − c4)t+ g(u, v), η =

1

2
(
1

2
c1u

2 + c2u) + c1v + c4,

τ = −1

2
c1x+

1

2
(2c3 − 3c1u− c2)t+ f(u, v), φ = (c1u+ c2)v. (2.4)

The Lie algebra of infinitesimal symmetries of the WBK equations is spanned by the four
finite-dimensional subalgebras

X5 = x∂x + t∂t,X6 = ∂u − t∂x,X7 = −1
2t∂t + 1

2u∂u + v∂v,

X8 = (3
4u

2 − 3
2v)t∂x − (1

2x+ 3
2ut)∂t + (1

4u
2 + v)∂u + uv∂v . (2.5)

and one infinite-dimensional subalgebra

X9 = g(u, v)∂x + f(u, v)∂t. (2.6)

where f, g satisfy gv + ufv − fu = 0, gu − vfv + ufu = 0.

2.2 Optimal system of one-dimensional subalgebras

In this subsection we give an optimal system of one-dimensional subalgebras [29] for
Eq.(1.1). Due to the complexity of calculations, we first present an optimal system for
X5 ∼ X8, then for X1 ∼ X4 with the similar method.

2.2.1 Optimal system of X5 ∼ X8.

We want to classify its one-dimensional subalgebras up to the adjoint representation for
X5 ∼ X8. Table 1 shows the Lie brackets of X5 ∼ X8.

Table 1: Lie brackets of X5 ∼ X8
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X5 X6 X7 X8

X5 0 0 0 0
X6 0 0 1

2X6 X7 − 1
2X5

X7 0 −1
2X6 0 1

2X8

X8 0 1
2X5 −X7 −1

2X8 0

Each Xi of (2.5) generates an adjoint representation Ad(exp(ǫXi))Xj defined by [7]

Ad(exp(ǫXi))Xj = Xj − ǫ[Xi,Xj ] +
ǫ2

2
[Xi, [Xi,Xj ]] − · · · . (2.7)

From the commutator Table 1, we obtain the adjoint representation generated by X5 ∼ X8

in Table 2, with the (i, j) entry indicating Ad(exp(ǫXi))Xj .

Table 2: Adjoint representation generated by X5 ∼ X8

Ad X5 X6 X7 X8

X5 X5 X6 X7 X8

X6 X5 X6 X7 − ǫ
2X6 X8 − ǫ(X7 − 1

2X5) + ǫ2

4 X6

X7 X5 e
ǫ
2X6 X7 e−

ǫ
2X8

X8 X5 X6 + ǫ(X7 − 1
2X5) + ǫ2

4 X8 X7 + ǫ
2X8 X8

Hence they can be used to classify similar one-dimensional subalgebras. However,
before proceeding with the classification scheme we need to identify invariants of the full
adjoint action. These invariants place restrictions on how far we can expect to simplify a
given arbitrary element spanned by X5 ∼ X8

X = a5X5 + a6X6 + a7X7 + a8X8. (2.8)

The adjoint representation group is generated (via Lie equations) by the Lie algebra
X5 ∼ X8 spanned by the following symmetries (see [1], vol. 2)

△i = ckije
j ∂

∂ek
, i = 5, · · · , 8, (2.9)

where ckij are the structure constants in Table 1. Explicitly we have

△5 = 0,

△6 =
1

2
a7

∂

∂a6
+ a8(

∂

∂a7
− 1

2

∂

∂a5
),

△7 = −1

2
a6

∂

∂a6
+

1

2
a8

∂

∂a8
,

△8 =
1

2
a7

∂

∂a8
− a6(

∂

∂a7
− 1

2

∂

∂a5
). (2.10)

If a function ρ(a5, a6, a7, a8) is an invariant of the full adjoint action, then the symme-
tries (2.10) yield

△i(ρ) = 0, i = 5, · · · , 8. (2.11)
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Eq.(2.11) can be reduced to

a6
∂ρ

∂a6
− a8

∂ρ

∂a8
= 0, a7

∂ρ

∂a6
+ a8(2

∂ρ

∂a7
− ∂ρ

∂a5
) = 0. (2.12)

After direct computations, we get solutions of Eq.(2.12)

ρ = f(2a5 + a7, a
2
7 − 4a6a8). (2.13)

In particular,

η1(X) = a2
7 − 4a6a8, η2(X) = 2a5 + a7 (2.14)

are two invariants of the full adjoint action given in Table 2.

The invariants η1 and η2 provide us a key condition to simplify X by the action of
adjoint maps. For example, If η1 6= 0, then we cannot simultaneously make a6, a7 and a8

zero through adjoint maps. Similarly, if η2 6= 0, we cannot simultaneously make a5 and a7

zero through adjoint maps.

Hence, to begin the classification process, we investigate the coefficients a6, a7 and a8.
If X is presented in (2.8), then

X̂ = â5X5 + â6X6 + â7X7 + â8X8 = Ad(exp(βX8)) ◦Ad(exp(αX6))X (2.15)

has coefficients

â5 = a5, â6 = a6 −
α

2
a7 +

α2

4
a8, (2.16)

â7 = βa6 + (1 − αβ

2
)a7 + (

α2β

4
− α)a8, (2.17)

â8 =
β2

4
a6 + (

β

2
− αβ2

8
)a7 + (

α2β2

16
− αβ

2
+ 1)a8. (2.18)

In order to proceed, the following three cases about η1(X) should be considered.

Case 1 : η1(X) > 0.

In this case, we choose α =
a7 +

√
η1

a8
, β =

2a8

αa8 − a7
, then â6 = â8 = 0, â7 =

√
η1 6= 0,

X is equivalent to

X̂ = â5X5 + â7X7. (2.19)

No further simplification of X̂ is possible through the application of adjoint maps. After
scaling X̂, we obtain every one dimensional subalgebra generated by X with η1 > 0 is
equivalent to the subalgebra spanned by

X5 + aX7, a ∈ R(6= 0). (2.20)

Case 2 : η1(X) < 0(⇒ a6a8 > 0).

Here, we cannot make two of the coefficients â6, â7 and â8 vanish simultaneously, but
one of them can be annihilated. If X is the form as (2.8), then

X̂ = â5X5 + â6X6 + â7X7 + â8X8 = Ad(exp(αX6))X (2.21)
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has coefficients

â6 = a6 −
α

2
a7 +

α2

4
a8,

â7 = a7 − αa8,

â8 = a8. (2.22)

Set α =
a7

a8
, then â7 = 0, â6 = − η1

4a8
6= 0, so X can be reduced to

X̂ =
η2(X)

2
X5 −

η1(X)

4a8
X6 + a8X8. (2.23)

No further simplification of X̂ is possible through the application of adjoint maps, but we
can simplify the coefficients of X5,X6,X8.

Acting on X̂ by Ad(exp(βX7)) leads to

Ad(exp(βX7))X̂ =
η2(X)

2
X5 −

η1(X)

4a8
eβ/2X6 + a8e

−β/2X8. (2.24)

Due to a6a8 > 0 implies a8 > 0, a6 > 0 or a8 < 0, a6 < 0, so we first consider
a8 > 0, a6 > 0.

SubCase 2.1 : η2(X) > 0.

Set β = −2 ln(
η2

2a8
),

̂̂
X =

η2(X)

2
(X5 +X8) −

η1(X)

2η2(X)
X6. (2.25)

After scaling
̂̂
X, every one-dimensional subalgebra generated byX with η1(X) < 0, η2(X) >

0 is equivalent to the subalgebra spanned by

X5 +X8 + aX6, a ∈ R(6= 0). (2.26)

SubCase 2.2 : η2(X) < 0.

Assume β = 2 ln(
2a8η2

η1
),

̂̂
X =

η2(X)

2
(X5 −X6) +

η1(X)

2η2(X)
X8. (2.27)

After scaling
̂̂
X, every one-dimensional subalgebra generated byX with η1(X) < 0, η2(X) <

0 is equivalent to the subalgebra spanned by

X5 −X6 + aX8, a ∈ R(6= 0). (2.28)

SubCase 2.3 : η2(X) = 0.

Choose β = ln(−4a2
8

η1
), then

̂̂
X =

√
−η1(X)

2
(X8 +X6). (2.29)



Symmetry analysis for Whitham-Broer-Kaup equations 389

After scaling
̂̂
X, every one-dimensional subalgebra generated byX with η1(X) < 0, η2(X) =

0 is equivalent to the subalgebra spanned by

X8 +X6. (2.30)

Remarks: The case of a8 < 0 is similar to a8 > 0 except that X is simplified to (2.26)
when η2(X) < 0 and to (2.28) when η2(X) > 0 with the same values of β respectively.

Case 3 : η1(X) = 0.

There are four subcases to consider here depending upon which of the coefficients a6, a7

and a8 vanish.

(i): a6 = a7 = a8 = 0, then X = a5X5, which can be scaled to X5;

(ii): a6 = a7 = 0, a8 6= 0, then X = a5X5 +a8X8, which can be scaled to X5 +aX8(a 6=
0);

(iii): a7 = a8 = 0, a6 6= 0, then X = a5X5 +a6X6, which can be scaled to X5 +aX6(a 6=
0);

(iv): a6 6= 0, a7 6= 0, a8 6= 0, then a6a8 > 0, so we calculate it as in Case 2 with
additional conditions η1(X) = 0. When η2(X) = 0, then X = a8X8, which can be scaled

to X8; When η2(X) 6= 0, then X = e−β/2a8X8 + η2(X)
2 X5, which can be scaled to X8 ±X5

with appropriate value β.

Therefore, in this case, after scaling
̂̂
X we have every one-dimensional subalgebra gen-

erated by X with η1(X) = 0 is equivalent to the subalgebra spanned by

X5,X8,X5 + aX8,X5 + aX6, a ∈ R(6= 0). (2.31)

In summary, an optimal system of one-dimensional subalgebras of the WBK algebra
for X5 ∼ X8 is generated by the elements in Table 3.

Table 3: Optimal system for X5 ∼ X8

1 X5 + aX7 η1(X) > 0 a ∈ R(6= 0)
2a X5 +X8 −aX6 η1(X) < 0 a8 > 0, η2(X) > 0; a8 < 0, η2(X) < 0 a ∈ R(6= 0)
2b X5 −X6 +aX8 η1(X) < 0 a8 > 0, η2(X) < 0; a8 < 0, η2(X) > 0 a ∈ R(6= 0)
2c X8 +X6 η1(X) < 0 a8 > 0, η2(X) = 0; a8 < 0, η2(X) = 0
3a X5 η1(X) = 0 a6 = a7 = a8 = 0
3b X5 + aX8 η1(X) = 0 a6 = a7 = 0, a8 6= 0 a ∈ R(6= 0)
3c X5 + aX6 η1(X) = 0 a7 = a8 = 0, a6 6= 0 a ∈ R(6= 0)
3d X8 η1(X) = 0 η2(X) = 0, a6 6= 0, a7 6= 0, a8 6= 0
3e X8 ±X5 η1(X) = 0 η2(X) 6= 0, a6 6= 0, a7 6= 0, a8 6= 0

2.2.2 Optimal system of X1 ∼ X4.

Similar to the discussion about X5 ∼ X8, we give an optimal system of one-dimensional
subalgebras for X1 ∼ X4. Table 4 gives the Lie brackets of X1 ∼ X4.
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Table 4: Lie brackets of X1 ∼ X4

X1 X2 X3 X4

X1 0 −1
2X2

1
2X3 X4

X2
1
2X2 0 0 X3

X3 −1
2X3 0 0 0

X4 −X4 −X3 0 0

In Table 5, all the adjoint representations of X1 ∼ X4 are presented, with the (i, j)
entry indicating Ad(exp(ǫXi))Xj defined as (2.7).

Table 5: Adjoint representation generated by X1 ∼ X4

X1 X2 X3 X4

X1 X1 e
ǫ
2X2 e

−ǫ
2 X3 e−ǫX4

X2 X1 − ǫ
2X2 X2 X3 X4 − ǫX3

X3 X1 + ǫ
2X3 X2 X3 X4

X4 X1 + ǫX4 X2 + ǫX3 X3 X4

They are used to identify one-dimensional subalgebras for X1 ∼ X4. For a given
arbitrary element

X = a1X1 + a2X2 + a3X3 + a4X4, (2.32)

after similar computations, we find an optimal system of one-dimensional subalgebras
spanned by

(a) : X1 = −1

2
x∂x − t∂t +

1

2
u∂u + v∂v,

(b1) : X2 +X4 = −t∂x + ∂u + ∂t,

(b2) : X2 = −t∂x + ∂u,

(c) : X3 = ∂x,

(d) : X4 = ∂t. (2.33)

The list is slightly reduced by the discrete symmetry (x, t, u) 7→ (−x,−t, u), not in the
connected component of the identity of the full symmetry group, which maps X2 −X4 to
X2 +X4.

2.3 Symmetry reductions and similarity solutions

One of the main purpose for calculating symmetry is to use them for obtaining symmetry
reductions and hopefully similarity solutions. The goal of this subsection is to apply the
symmetries calculated in the previous subsection to obtain symmetry reductions and exact
solutions whenever it is possible.
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Case 1. X1. Solving the characteristic equations for the similarity variables [7, 2], one
has

y =
x2

t
,W = xu, T = tv. (2.34)

Substituting these variables into Eq.(1.1), one finally converts it into ordinary differential
equations

8αyWyyy + (
6α

y
+ 2T )Wy + 4βyTyy + (2β + 2W + y)Ty + T − TW

y
− 6α

y2
W = 0,

βy2Wyy + (y2 + 2yW − 2βy)Wy + 2y2Ty −W 2 + 2βW = 0. (2.35)

Eq.(2.35) are highly nonlinear and should be solved numerically for given boundary condi-
tions. However, it is much easier to solve this system numerically than the original partial
differential equations.

In what follows, we omit the tedious computations and just present the final results.
The similarity variables are listed in bracket.

Case 2. X2 +X4. Reduced equations are (y = x+ t2

2 ,W = u− t, T = v)

WWy + Ty + βWyy − 1 = 0,

(TW )y + βTyy + αWyyy = 0. (2.36)

The first equation of (2.36) may be integrated once to give

T = −βWy + y − 1

2
W 2 + c1, (2.37)

which makes the second equation of (2.36) become

−W (y)3

2
+W (y)

(
y + c1 − 2βW ′(y)

)
+

(
α− β2

)
W ′′(y) = c2, (2.38)

where c1, c2 are arbitrary constants.

Case 3. X2. We find solutions

u =
1

t
(c1 − x), v =

c2
t

(2.39)

with two arbitrary constants c1, c2.

Case 4. X3 + cX4. It is the traveling wave case, the reduced equations are (y =
x− ct,W = u, T = v)

WWy + Ty + βWyy + cWy = 0,

WTy + TWy + βTyy + αWyyy + cTy = 0, (2.40)

which is the researching object by many researchers [21, 22, 24].

Case 5. X5. We get the reduced equations (y = x
t ,W = u, T = v)

(W 2 + 2T )y + 2yWy = 0,

WTy + TWy + yTy = 0. (2.41)
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Case 6. X7. Eq.(1.1) can be reduced to (y = x,W = tu, T = t2v)

W +WWy + Ty = 0,

2T +WTy + TWy = 0, (2.42)

whose solutions are T (y) = −
∫
W (y)dy − 1

2W (y)2 and W (y) satisfy

W ′ = −1 ±
√
W 8 − c1W 4

c1 −W 4
, c1 > 0. (2.43)

Case 7. X5 + aX6. Eq.(1.1) can be reduced to (y = x
t + a ln t,W = u

a − ln t, T = v)

a(1 + aWy − aWWy − yWy) − Ty = 0,

a(WTy + TWy − Ty) + yTy = 0. (2.44)

Case 8. X5 + aX7. Eq.(1.1) can be reduced to (y = x1−a/2

t ,W = u
xa/2

, T = v
xa )

a

2
W 2 + (1 − a

2
)y(WWy + Ty) + aT + y2Wy = 0,

(1 − a

2
)y(WTy + TWy) +

3a

2
TW + y2Ty = 0. (2.45)

3 Linearization of WBK equations

In section 2, we reduce Eq.(1.1) by an optimal system of one-dimensional subalgebras, but
reduced equations and similarity solutions for the cases containing X8 are not obtained,
so we search solutions by means of linearization. For α = β = 0, Eq.(1.1) become

ut = uux + vx,

vt = vux + uvx, (3.1)

which are one-dimensional shallow water equations on a flat bottom [20].
Now, we review an important theorem on invertible linearization mappings of nonlinear

PDEs to linear PDEs through admitted symmetry [8, 9, 10].

Theorem 1. Let R{x, u} denote a given k th-order nonlinear system of M PDEs with n
independent variables x = (x1, · · · , xn) and m dependent variables u = (u1, · · · , um) and
S{z,w} denote a k th-order linear target system of M PDEs with n independent variables
z = (z1, · · · , zn) and m dependent variables w = (w1, · · · , wm).

Suppose a given nonlinear system R{x, u} of PDEs admits infinitesimal point symme-
tries

X = ξi
∂

∂xi
+ ητ

∂

∂uτ
(3.2)

of the form

ξi = αiσF
σ(x, u), ητ = βτ

σF
σ(x, u), (3.3)

involving an arbitrary solution F (X) of a linear system

L[X]F = 0 (3.4)
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with specific independent variables X = (X1(x, u), · · · ,Xn(x, u)). If the m first order
linear homogeneous PDEs

αiσ(x, u)
∂φ

∂xi
+ βτ

σ

∂φ

∂uτ
= 0, σ = 1, · · · ,m, (3.5)

whose coefficients are formed from (3.3) have φ1 = X1(x, u), · · · , φn = Xn(x, u) as n
functionally independent solutions, and if the m2 first order linear inhomogeneous PDEs

αiσ(x, u)
∂ψγ

∂xi
+ βτ

σ

∂ψγ

∂uτ
= 0, γ, σ = 1, · · · ,m, (3.6)

(where δγ
σ is the Kronecker symbol) have a particular solution ψ = (ψ1(x, u), ..., ψm(x, u)),

then the mapping µ defined by

zi = Xi(x, u), i = 1, · · · , n, wσ = ψσ(x, u), σ = 1, · · · ,m (3.7)

is invertible and transforms R{x, u} to the linear system S{z,w} of PDEs given by L[z]w =
g(z), for some inhomogeneous term g(z).

Obviously, the linear target system S{z,w} arises from the admitted infinitesimal point
symmetries of the given nonlinear system (first procedure). Moreover, these admitted
symmetries yield a specific mapping (second procedure). Then, the solutions of R{x, u}
can be obtained from the linear target system S{z,w} through the invertible mapping.
Next we apply the Theorem 1 to linearize Eq.(3.1).

In subsection 2.1, the nonlinear system (3.1) is found to admit an infinite set of point
symmetries given by the infinitesimal generator

X = (

∫
fudv − uf)

∂

∂x
+ f

∂

∂t
(3.8)

where f satisfy fuu = 2fv + vfvv . Therefore, we have F1 =
∫
fudv, F2 = f with α11 =

1, α12 = −u, α21 = 0, α22 = 1, βτ
σ = 0 in (3.3). The associated homogeneous system (3.5)

give S1 = u, S2 = v as functionally independent solutions and the corresponding linear
inhomogeneous system (3.6) has a particular solution (ψ1, ψ2) = (x + ut, t). Then from
(3.8) we have that F = (F1, F2) satisfies the linear system

∂F1

∂S2
=
∂F2

∂S1
,

∂F1

∂S1
= S2

∂F2

∂S2
+ F2.

One obtains the invertible point transformation

z1 = u, z2 = v, w1 = x+ ut, w2 = t (3.9)

mapping the given nonlinear system (3.1) into the linear system

∂w1

∂z2
=
∂w2

∂z1
,

∂w1

∂z1
= z2

∂w2

∂z2
+ w2. (3.10)

Therefore, we can get the solutions of Eq.(3.1) through transformation (3.9) if the solu-
tions of the linearized Eq.(3.10) are known. According to different solutions of Eq.(3.10),
Eq.(3.1) have the following solutions.
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Case I. We have solutions in the form

u = t+ c1, v =
1

2
(t2 + 2x− 2c1t+ c21 − 2c2), (3.11)

where c1, c2 are arbitrary constants.
Case II. Solutions are

u =
25

1

3 t+ 2
1

3

(
−15x+

√
5
√
−4 t3 + 45x2

) 2

3

10
2

3

(
−15x+

√
5
√
−4 t3 + 45x2

) 1

3

, (3.12)

v =
3 t

5
−

(
2
5

) 2

3 t2

(
−15x+

√
5
√
−4 t3 + 45x2

) 2

3

−

(
−15x+

√
5
√
−4 t3 + 45x2

) 2

3

5 2
2

3 5
1

3

.

Case III. We get solutions

v = t− u2, (3.13)

where u satisfy

7u6 + 12 t u3 + 36u2 x− 18 t2 = 0. (3.14)

Case IV. We arrive at

u =
ProductLog[−t2e−x]

t
, v = −ProductLog[−t2e−x]

t2
, (3.15)

where ProductLog[z] gives the principal solution for equation z = wew, and

u = −x
t
, v = −1

t
. (3.16)

Case V. We find

u = −x
t
, v = 0. (3.17)

and

u = ±
√

4 v + t2 v2, (3.18)

where v satisfies

−2 ln
1√
v
(vt±

√
4 v + t2 v2) = x±

√
4 v + t2 v2t. (3.19)

Case VI. Solutions u, v satisfy the following equations

eu
(
c1BesselI(0, 2

√
v) + 2c2BesselK(0, 2

√
v)

)
= x+ ut,

eu
(
c1 BesselI (1, 2

√
v) − 2c2BesselK(1, 2

√
v)

)
= t

√
v, (3.20)

where BesselI[n, z] gives the modified Bessel function of the first kind In(z), BesselK[n, z]
gives the modified Bessel function of the second kind Kn(z), they both satisfy the differ-
ential equation z2y′′ + zy′ − (z2 + n2)y = 0.
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4 Conservation laws

In this section, we use the scaling symmetry to obtain the polynomial form conservation
laws of Eq.(1.1).

In reference [14], there is an direct method to construct conservation laws. First,
build a candidate density as a linear combination (with undetermined coefficients) of
“building blocks” that are homogeneous under the scaling symmetry of the PDEs. If
no such symmetry exists, one is constructed by introducing weighted parameters. Next,
use the Euler operator (variational derivative) to derive a linear algebraic system for the
undetermined coefficients. After the system is analyzed and solved, use the homotopy
operator to compute the flux(for details in [14]).

Eq.(1.1) is invariant under the scaling symmetry with infinitesimal operator X1

(x, t, u, v) −→ (λ−1x, λ−2t, λ−1u, λ−2v), (4.1)

where λ is an arbitrary scaling parameter. Introducing the weight, W , of a variable as the
exponent of λ that multiplies the variable, if we set W (x) = −1 or W (∂/∂x) = 1, then
W (u) = 1,W (v) = 2,W (∂/∂t) = 2. The rank of a monomial equals the sum of all of its
weights. An expression (or equation) is uniform in rank if its monomial terms have equal
rank. Observe that the first and second equation of (1.1) are uniform of ranks 3 and 4,
respectively.

By virtue of the method in [14], after tedious and complicated calculations, we obtain
three density-flux pairs

ρ(1) = −v, J (1) = uv + αuxx + βvx.

ρ(2) = −ux, J
(2) = uux + βuxx + vx.

ρ(3) = −v2 − u2v + αu2
x, (4.2)

J (3) = 2uv2 + u3v +
1

3
(2α+ 3)u2uxx + 2(1 − 2α)uu2

x − 2αuxvx + 3αuvxx(β = 0).

Obviously, the above densities are uniform in ranks 2 and 4. Both ρ(1) and ρ(2) are of rank
2 and ρ(3) is of rank 4. The corresponding fluxes are also uniform in rank with ranks 3
and 5. Both J (1) and J (2) are of rank 3 and J (3) is of rank 5.

5 Conclusion

We have performed Lie symmetry analysis for the WBK equations and derived an optimal
system of one-dimensional subalgebras. Some exact solutions and symmetry reductions
with respect to the optimal system are constructed. Furthermore, a special case of WBK
equations is linearized through its admitted infinite set of point symmetries and some new
solutions are obtained. Polynomial form conservation laws are also analyzed by means of
scaling symmetry.

In particular, the above conservation laws can be used for construction of potential
systems, potential symmetries and potential conservation laws. For example, from ρ(1)
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and J (1), we can construct potential equations

wx = v,

wt = uv + αuxx + βvx,

ut = uux + vx + βuxx, (5.1)

for potential symmetries and potential conservation laws. It would be interesting to in-
vestigate them in our future work.
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the paper.
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