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Asymptotically isochronous systems
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Abstract

Mechanisms are elucidated underlying the existence of dynamical systems whose generic
solutions approach asymptotically (at large time) isochronous evolutions: all their de-
pendent variables tend asymptotically to functions periodic with the same fixed period.
We focus on two such mechanisms, emphasizing their generality and illustrating each
of them via a representative example. The first example belongs to a recently dis-
covered class of integrable indeed solvable many-body problems. The second example
consists of a broad class of (generally nonintegrable) models obtained by deforming
appropriately the well-known (integrable and isochronous) many-body problem with
inverse-cube two-body forces and a one-body linear (“harmonic oscillator”) force.

1 Introduction

Isochronous phenomena, characterized by a time-recurrence with fixed periodicity, have
intrigued observers from time immemorial. One of the first, semiquantitative observations
of this phenomenology was reported by Galileo, who timed the motions of pendula in
terms of the beating of his own pulse and thereby concluded that the oscillations of a
pendulum seemed isochronous, namely periodic with a period independent from the initial
conditions determining their amplitudes, provided they are small (in angular terms). This
phenomenology — as well as its generality — was subsequently explained by Newton, whose
contribution might well be considered to mark the beginning of modern physics — or at
least of mathematical physics (the discipline providing the overall context of the present
paper). Eventually the technology emerged of the isochronous systems par ezcellence —
clocks — playing a crucial role in the development of physics and other scientific disciplines,
as well as in many important human activities (for instance navigation). Then, throughout
the development of the modern theory of dynamical systems, much attention focussed on
periodic, and more specifically on isochronous, evolutions. For instance in the context
of the understanding of the interplay of regular and irregular time evolutions provided
by KAM theory (see for instance [1]), the phenomenology associated with isochronous
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motions in the context of KAM theory has been rather recently investigated in [2]. An
important field of activity where isochronous orbits arise is related to the study, connected
with the 16th Hilbert problem, of the motions in the plane of a point circling around an
isochronous center. A review of this field can be found in [3], and a few recent contributions
in [4-6], some of them based on similar techniques to those referred to below.

A related line of research explores the connection between periodic orbits of hamiltonian
dynamical systems and superintegrability (the existence of more integrals of motion than
degrees of freedom). Nekhoroshev [7] proved that all confined orbits of a maximally
superintegrable system are periodic. Some recent work on superintegrable systems and
isochronous potentials (including many-body problems similar to those treated in this
paper) can be found in [8-11].

A natural question that arises in classical isochronous systems concerns the properties of
the spectrum of their quantum counterparts, in particular, whether the quantum systems
whose classical counterparts are isochronous systems have equally spaced spectra. Some
representative works that address this and other related problems can be found in [11-16]

Over the last three-four decades major progress occurred in the discovery and under-
standing of integrable dynamical systems with a finite or infinite number of degrees of
freedom, and over the last decade the possibility was noticed and exploited to identify
and investigate many isochronous dynamical systems characterized by a time evolution
completely periodic (i. e., periodic in all degrees of freedom) with the same period. This
isochronous evolution might prevail in the entire (natural) phase space of the model

under consideration (one talks then of an entirely isochronous system), implying of
course that such a model is certainly integrable; or it might only prevail in an open (hence
fully dimensional) region of its (natural) phase space, a phenomenology now known to
characterize large families of nonintegrable dynamical systems possibly featuring quite
complicated (”chaotic”) behaviors outside the isochronous phase space region (for a review
of these developments, see [17,18] ). In the present paper we discuss another, perhaps more
interesting, phenomenology, namely dynamical systems whose generic solutions approach
asymptotically (at large time) isochronous evolutions: all their dependent variables tend
asymptotically to functions periodic with the same fixed period. The definition of such
dynamical systems is provided by the simultaneous validity of the two formulas

tiigloo [zn (t) — 2, (1)) =0, n=1,.,N, (1a)
% <t+T>:§n(t) . n=1,.,N. (1b)

Notation: the N (generally complex; but see below) numbers z, (t) denote the N depen-
dent variables of the dynamical system under consideration; we restrict consideration to
the case when N is a finite positive integer; the real variable ¢t denotes the time; the N
functions Z, () characterize the asymptotic behavior of the dynamical system via (1a)
and the periodicity requirement (1b) they satisfy characterizes the property of asymptotic
isochronicity. This property is supposed to hold in an open (hence fully dimensional)
region of the phase space of the dynamical system under consideration (possibly coincid-
ing with its entire natural phase space): hence the dependent variables z, (¢) denote here
(the N components of) a generic solution of the dynamical system evolving (at least for
sufficiently large time) within that region, while the functions Z, (¢) , which shall generally
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be different for different solutions z, (t), are required to satisfy the periodicity property
(1b) with the fized period T (the same for all the solutions in the phase space region
under consideration). Of course the formula (1a) does not define uniquely — for a given
N-vector z (t) — a corresponding N-vector Z (t): the time-dependent N-vector Z (t) is only
identified by (1la) up to arbitrary corrections whose effects disappear in the asymptotic
limit ¢ — oo. The property of asymptotic isochronicity is guaranteed provided there exist
just one N-vector Z (t) satisfying both relations (1), for every generic solution z (t) in an
open, fully dimensional, region of phase space — namely for every solution z () in that
region of phase space, except possibly for some exceptional, generally singular, solutions
belonging to a lower dimensional sector of that phase space region.

The elementary idea underlying the identification of large classes of such asymptotically
isochronous dynamical systems is to start from isochronous systems and then modify them
by introducing a deformation whose effects are significant through the time evolution yet
disappear at large time: so that the modified systems loose their isochronous character
(at finite times) but in some sense retain it (at large times) as the dominant feature
characterizing their asymptotic behavior.

There are several possible ways to implement this strategy in order to manufacture
asymptotically isochronous systems: some are rather trivial, some less so. This kind of
judgement is of course subjective: for instance we tend to think that an important re-
quirement for such systems to be deemed “interesting” is that they be autonomous —
because the interest of dynamical systems is also related to their potential usefulness in
order to model natural phenomena, which are generally described by autonomous evolu-
tion equations — and moreover because the freedom to introduce instead an explicit time
dependence in the equations of motion of a dynamical system would provide too easy
a way to influence more or less at will the asymptotic behavior of such a system. But
of course the difference between autonomous and nonautonomous systems is unessential,
since any nonautonomous system can be made autonomous by treating time itself as an
additional dependent variable.

In this paper we focus on two mechanisms yielding asymptotically isochronous sys-
tems, and illustrate each of them via a representative example. The first example (see
Section 2) belongs to a recently discovered class of integrable indeed solvable many-body
problems [19]; in this case we eventually focus on as simple and specific an example as
possible, which is also suitable to exhibit some numerical results — but we trust our pre-
sentation is adequate to illustrate the generality of the approach. In this case the periodic
behavior prevailing asymptotically corresponds to a special solution of the dynamical sys-
tem under consideration belonging to a region of phase space with positive codimension
— albeit not an isolated solution of this system, so not quite identifiable as a limit cycle.
Hence this model might be considered a representative example of a phenomenology char-
acterized by the presence of some kind of friction. The second example (see Section 3)
consists of a broad class of models obtained by deforming appropriately the well-known
(see for instance [20]) integrable and isochronous one-dimensional many-body problem
with inverse-cube two-body forces and a one-body linear (“harmonic oscillator”) force;
the alert reader will again appreciate the generality of the approach, even though we illus-
trate it by focusing on a specific model (also restricting consideration to real dependent
variables). In this second case the time-dependent N-vector to which the solutions of the
model tend asymptotically is not restricted to be in a sector of phase space with positive
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codimension and is generally not itself a solution of the asymptotically isochronous N-
body model, so this phenomenology does not correspond to what is generally referred to
as a limit cycle behavior. In each of these two cases we back the qualitative understand-
ing of the origin of the relevant phenomenology with a proof of its actual emergence, see
(1). A section entitled “Outlook” in which we elaborate tersely on the generality of this
phenomenology concludes the paper.

2 An asymptotically isochronous class of solvable many-
body problems

A particular mechanism to manufacture integrable, indeed solvable, dynamical systems
interpretable as many-body problems inasmuch as they are characterized by Newtonian
equations of motion (“acceleration equal force”) was introduced about three decades ago
[21] and has been subsequently exploited to identify and investigate several such systems
(for reviews of these developments see for instance [18,20]). The idea is to exploit the
nonlinear relation among the N coefficients ¢, (t) of a (for definiteness, monic) time-
dependent polynomial of degree N and its N zeros z, (t):

N N
bl =N+ 3 en ) =[] le -2 )] - (2)
n=1

m=1

A class of such systems is characterized by the fact that the N coefficients ¢, (t) evolve in
time according to a system of linear second-order constant-coefficient ODEs, the solution
of which is a purely algebraic task (requiring essentially the diagonalization of an explicitly
known matrix of order N). The determination of the corresponding time evolution of the
N zeros z, (t) is therefore as well a purely algebraic task: computing the N zeros of a
known polynomial. And it so happens that in many cases [18,20,21] this time evolution
is indeed interpretable as that characterizing a Newtonian N-body problem — hence a
solvable N-body problem, since its solution can be achieved by purely algebraic means.
Indeed the solution z, (t) of such a model is reduced to finding the N zeros of a poly-
nomial of degree N in the (complez) variable z, see (2), whose coefficients ¢, (t) generally
evolve exponentially in time, typically
N
em (t) = Z {’y(g’ﬂu%’ﬂ exp [)\(K’Jr)t} + 4Ol exp [)\(K’_)t] } , (3)
=1

where the 2N constants (“*) are arbitrary (determined by the initial data z, (0), 2, (0)
in the context of the initial-value problem for the N-body system) and the 2N numbers
AEE) respectively the quantities u,(f;’i) are the eigenvalues respectively the (components
of the) eigenvectors of the matrix eigenvalue problem characterizing, as explained above,
the dynamics of this system. Note that these eigenvalues and eigenvectors are associated
to the dynamical problem under consideration: they do mot depend on the initial data
identifying a particular solution, namely they are the same for all the solutions of the
system.
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It is now clear (and indeed well known [18,20,21]) that if the 2N eigenvalues A+ are
all integer multiples of a single imaginary number iw (with w > 0), AEE) = EEE)y with
the 2N numbers kéi) arbitrary integers (positive or negative, but not vanishing), then the
polynomial 1 (z,t) is clearly periodic with the (possibly nonprimitive) period

T = 2{ , (4a)
V(z,t+T) =1 (21t) (4b)

hence all its zeros z, (t) are as well periodic with this same period or possibly with a
(generally small [22]) integer multiple p of this period, T = pT’, due to the possibility that
they exchange their role through the time evolution. Hence the corresponding N-body
problem is isochronous.

And it is as well plain that if, out of the 2N eigenvalues A+ only a (nonempty)
subset have the property indicated above while all the others feature a negative real part,
then the many-body problem in question is asymptotically isochronous. This observation
is not new, see for instance Section 4.2.3 of Ref. [20] (entitled “Some special cases: mod-
els with a limit cycle, models with confined and periodic motions, Hamiltonian models,
translation-invariant models, models featuring equilibrium and spiraling configurations,
models featuring only completely periodic motions”); but, to the best of our knowledge,
this mechanism yielding asymptotically isochronous many-body problems was never ana-
lyzed in explicit detail (including the display of numerical results). This is what we do in
this section, by focusing on a specific model whose integrable, indeed solvable, character
has been ascertained only quite recently [19].

2.1 A specific example

This N-body problem (with N > 3) is characterized by the Newtonian equations of motion

2 2
-5 1

2n=—a1én+a2znzg_1—2a3zgj — 2a42y,
n n

N .. 2
Znim +as +azz, +aq (25 —1
+2 ) ném + 02+ ayzn + as (4 ), n=1,.,N, (5a)
Zn — Zm

m=1,m#n

where the 4 “coupling constants” a; are a prior: arbitrary complex numbers, superimposed
dots denote time-differentiations and the rest of the notation is self-evident. The solvable
character of this N-body problem hinges [19] upon the following 4 restrictions on its initial
data:

Nil =0 Nién(o) =0 (5b)
Zzn(O)il_ ’ n;[zn(())il]?_ ’

n=1

which are then sufficient [19] to guarantee that, throughout the time evolution,
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implying that for this model it is justified to assume that only the evolution of N — 2
particles is determined by the Newtonian equations of motion (5a), while the evolution of
the remaining two is determined by these conditions, see (5¢).

Then the evolution of the N “particle coordinates” z, (t) — taking generally place in
the complex z-plane — coincides with the evolution of the N zeros of a monic polynomial
of degree N in the variable z analogous to v (z,t), see (2), but more specifically reading
as follows [19]:

N-3
Y (zt) =an (2) + D [em () Tnem (2)] + en (t) (6a)
m=1
m m 9
Tm (2) = 2™ — Em 27 = EmylMmz, M= 0,1,....N , (6b)
em =1if mis even, e, =0ifmis odd . (6¢)

And the coefficients ¢,, (t) evolve indeed according to formulas analogous to (3), but more
specifically reading as follows [19]:

N
em () = Z {7(£’+)u%’+) exp {)\(M‘)t} + 4Dl =) exp [)\(g’_)t]} ,
(=10#AN—1,N—2
m = 1,..N—3 and m= N, (7a)
—a; A
AR = % . AZ=a?+4lay+ (2N — € —3)ay] |
¢ = 1,..,.N—-3 ,N. (7b)

Note that the coupling constant asg does not appear explicitly in these formulas, but
of course all 4 coupling constants a; do play a role in determining the quantities u,(f;’i)
appearing in the right-hand side of (7a).

We now restrict attention to the N = 3 case, since this is sufficient, indeed convenient,
for exhibiting quite explicitly an asymptotically isochronous model. Then the only relevant

coefficient (see (7a)) is

c3 (t) = v4exp (Ayt) + - exp (A-t) , (8a)

—a1 A
Ao = ———, A’=al+ 12, (8h)
where the somewhat simplified notation we are now using is we trust self-explanatory (and
note that in this case with N = 3 the eigenvalues A1 only depend on the two coupling
constants a; and ag). Correspondingly, the positions of the 3 moving particles are the 3

zeros zy (t) of the third-degree polynomial

3
Yz t) =ms(2)+es(t)=2" =343 (t) = [[lz—2a (1)] - (8¢)
n=1

Note that these 3 zeros automatically satisfy the requirements (5c), which corresponds [19]
to the condition that the partial derivative of ¢ (z,t) with respect to z vanish at z = +1,
Y, (£1,t) = 0.
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Assume now that the two coupling constants a; and ay entail, via (8b),
A =iw, A_=—-a+if, (9a)

with a positive, « > 0, w also positive, w > 0 (for definiteness), and [ real but otherwise

arbitrary. This indeed happens provided

_w(B+ia)
3 .

It is now plain that the asymptotic condition (1a) holds now with Z, (t) being the three
roots of the polynomial 23 — 3z + v, exp (iwt) ,

a=a—i(f+w), a (10)

3
23— 32 + v, exp (iwt) = H [z —Z, (V)] , (11)
n=1

which provide of course also the special solution of the model (5) (with N = 3) correspond-
ing to initial data such that v_ vanishes (see (8a)). And it is as well plain that the time
evolution of this polynomial is periodic with period T, see (4a), hence the corresponding
evolution of each of its 3 zeros is clearly periodic with periods 7', 2T or 3T, depending
whether that zero does not “exchange its role” through the motion with another zero or
does so with one or with both the other two zeros.

Figure 1. Trajectory of z1(¢) in the complex z-plane from ¢ = 0 to ¢ = 50 (see text)

We complete this section by displaying one specific example, namely the solution of the
system of ODEs (5) with N = 3, w = 27 implying 7" =1 (see (4a)), ag = a4 = 0, a1 and
ay given by (10) with o = 0.1 and 8 = —3, and with initial data

z1(0) = —2.1702823 + 0.18021431i, 21 (0) = 1.2487698 + 0.76941297i,
29(0) = 0.71910399 — 0.89149288i, 29 (0) = —2.7507203 + 1.3102500i,
z3(0) = 1.4511783 + 0.71127857i, 23 (0) = 1.5019505 — 2.0796630i,
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Re z1

‘ i ol
” ' ' ’ , TR TR,

Figure 2. Plot of Rez; as a function of ¢ (see text)

satisfying the conditions (5b) and entailing v+ = 0.5 + 4, v- = 3 — 3i(see (8a)). The
results displayed are, from ¢ = 0 to ¢ = 50, the trajectory of z1 (¢) in the complex z-plane
(Fig. 1), the real part of z1 (t) as a function of ¢ (Fig. 2) (the behavior of the imaginary
part is qualitatively analogous) and the evolution of the quantity

D (t) = |e3 (t) — v4 exp (iwt)|  with  e3(t) = —21 (t) 22 (t) 23 (1) (12)

(Fig. 3) that clearly provides a measure of the distance of this solution z(¢) from its
periodic limit Z (t) (see (8c) and (11), as well as (1)). The numerical integration has
been performed with an embedded Runge-Kutta method of order 8(5,3) with automatic
step size control, as developed by Prince and Dormand [23]; the integration and the
graphical output have been performed with the software DYNAMICS SOLVER developed by
J. Aguirregabiria.! The results displayed have been obtained by integrating numerically
the system of ODEs (5), checking throughout the integration the validity of the conditions
(5¢c) as well as the two conditions

21(t)+22(t) +23(t) =0, 21 (t) 22(t) +22(t) 23(t) + 23 (t) 21 (t) = —3 (13)

(see (8c)). The results reported are just a representative example of several numerical
computations we did with different parameters and initial data, computations which were
found to be quite reliable and stable unless the time evolution entailed a near collision of
particles or their passage close to the special values z = +1 (see (5a)).

!This software is available at http://tp.1lc.echu.es/jma/ds/ds.html
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Figure 3. Plot of the distance D(t) (see (12))

3 A (generally nonintegrable) class of asymptotically
isochronous many-body models

In this section we consider a class of asymptotically isochronous models obtained by de-
forming the well-known integrable N-body problem with two-body inverse cube forces and
a one-body linear force, which is of course isochronous when no deformation is present [20].
In particular we focus on the following equations of motion:

N
1
Tn + Zw%n = ¢ Z (xp — xm)_?’ + F(w,z,2) , n=1,..N, (14a)
m=1,m#n
i = wlalogw — f (w,z,)] | (14b)
with
0<w(0)<1. (14c)

Here N is an arbitrary positive integer (N > 2); the N dependent variables x,, = z, (t)
may be interpreted as the coordinates of N particles evolving according to the Newtonian
("acceleration equal force”) equations of motion (14a); these variables x,, are hereafter
assumed to be all real (until we mention below to what extend the results change if
the variables z,, are allowed to be complez), and x denotes of course the N-vector with
components z,, (this has motivated the notational replacement of the particle coordinates
zp with z,, to be kept in mind when comparing the formulas written in this section
with those written in the preceeding sections); likewise the auxiliary dependent variable
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w = w (t) evolves according to the first-order ODE (14b) with an initial condition satisfying
the inequalities (14c) (but clearly, see below, one could replace this first-order ODE with an
appropriate second-order "Newtonian” ODE); ¢ denotes of course the (real) independent
variable (”time”: ranging from the initial time t = 0 to the asymptotic time t = 400),
and superimposed dots denote again differentiations with respect to this variable; w, ¢
and « are three positive (but otherwise arbitrary) constants; the main restriction on the,
otherwise arbitrary, function F' (w,z,v) is that it vanish when w vanishes,

F(0,z,0) =0, (15)

and the main restrictions on the function f (w,z,v) is that it entail via (14b) a (very fast:
see below) asymptotic vanishing (as ¢t — 400) of the auxiliary variable w (),

lim [w(t)]=0. (16a)

t—-+o00

A condition generally sufficient (but by no means necessary) to cause this is clearly (see
(14b) with (14c¢) and below) the requirement that f (w,z,v) be finite and nonnegative,

0< f(w,z,v) <d®, (16b)

for all (real) values of w, z and v; it is indeed plain (for a proof, see below) that these
conditions together with (14b) entail the inequalities

0 < w(t) < [w(0)]"PE) (16¢)

hence (see (14c) and recall that o > 0) the auxiliary variable w (¢) is always positive and
vanishes asymptotically faster than exponentially,

lim [w(t)exp (bt)] =0, (16d)

t—-+o00

with b any arbitrary constant. Restrictions on the dependence of the function F'(w,z,v)
upon the N-vectors x and v are also required: a simple sufficient (but of course not
necessary) condition, also encompassing (15), is that there exist a finite (positive) constant
C and a positive number § such that

|F (w,z,0)| <Clw® , >0, (17)

for all (real) values of w, x and v. Functions satisfying these conditions are for instance
-1
F(w,z,v) = Cuw’

N
1 —i—Z (Aixi —i—B,QLU,QL)
n=1

F(w,z,v) = Cu’exp

N
=Y (Ahap+ Bjop)
n=1

where A,, and B,, are arbitrary real constants.

Our main result states that, for every (N-vector) solution z (¢) of this dynamical system,
an (N-vector) Z (t) characterizing its asymptotic behavior (as ¢ — 400) via the formula
(1a) (exists and) has the property to be completely periodic (i. e., periodic with the same
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period in all its components), see (1b) with 7' = T, see (4a). Of course this asymptotic
N-vector Z (t) will depend on the solution z (¢) under consideration — in particular, it will
depend on the initial data, z (0) and 2 (0), determining that solution in the context of
the initial-value problem for the N-body problem (14): but let us re-emphasize that, for
any arbitrary choice of these data (of course, satisfying the condition z,, (0) # z, (0) for
n # m, see (14a)) it shall feature the property (1), namely all solutions z (¢) of the system
(14) shall feature the property of completely isochronous asymptotic periodicity (1) (with
T =T, see (4a)).

This result is a natural consequence of the well-known fact (see for instance [20]) that all
solutions of the system of Newtonian equations (14a) without the F' term in the right-hand
side are completely periodic with period T, see (4a), namely they all feature themselves the
property (1b) with 7 = T'. It stands therefore to reason that, if the function F (w,z,v)
vanishes when w vanishes, see (15), and if the time evolution (14b) of the auxiliary variable
w (t) entails that this dependent variable indeed vanishes asymptotically, see (16a), fast
enough (see (16d)), then asymptotically all solutions of our model (14) shall behave as the
solutions of the same model without the F' term, entailing the asymptotic phenomenology
(1) with T = T, see (4a).

To turn this hunch into a theorem a proof must be provided. This we do in the following
subsection. Then in Section 4 we tersely discuss, again in the same qualitative vein as done
above, to what extent the phenomenology described in this paper, and shown to occur in
a specific, representative model, can be expected to occur in more general contexts.

3.1 A theorem and its proof

Theorem 1. The conditions (16b) and (17) are sufficient to guarantee that every solution
of the N-body problem (14) with the three constants w, g> and o all positive yield the
outcomes (16a) and (1) with T = T, see (4a); in particular they guarantee that there
exists, corresponding to every solution z (t) of the N-body problem (14), an N -vector Z (t)
satisfying both formulas (1) (of course, with z, replaced by x,, and Z, by Z,).

Proof. First of all let us prove the inequalities (16¢), obvious as they are. To this end
we set

w (t) = [w (0)]7PFOL (18a)
so that
p(0)=0 (18b)

and (from (14b))

p(t) =at flw(t),z(t), ()] exp[—p (1)] [log [w (0)]] 7", (18c)

where we used the fact that log[w (0)] = — |log [w (0)]|, see (14c). This ODE, together
with the initial datum (18b) and the inequalities (16b), clearly imply that ¢ (¢) is positive
and finite for 0 <t < oo, indeed validity of the inequalities

at<p(t)y<oo, 0<t<oo, (18d)
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which, via (18a) and (14c), yield (16¢).
Next, let us introduce the counterpart of the Newtonian equations of motion (14a), but
without the F' term in the right-hand side:

N
M g L -
xn—{—Zwan:gQ E (in —im) >, n=1,..,N. (19)

m=1,m#n

Here it is justified to use the notation Z,, = Z,, (t) for the dependent variables, since it is
well-known [20] that all the solutions of this Newtonian N-body problem are completely
periodic with period T, see (4a), consistently with (1b) with T=T.

Let us now remark that, due to the strict positivity of g2, this system of ODEs entails
that

T (1) —Zm (t)| >, #>0, n#m, 0<t<oo, (20a)

2

where ¢ is a time-independent constant that generally depends on the particular solu-

tion under consideration but is certainly strictly positive, ¢ > 0. Likewise, again due
to the strict positivity of g2, the system of ODEs (14a) with (17) and (16c) (entailing

|F (w,z,v)| < D, D=C|w(0)|?) implies that

20 (1) =2 ()| >c*, >0, n#tm, 0<t<oo, (20b)

where ¢2

is again a time-independent constant that generally depends on the particular
solution under consideration but is certainly strictly positive, ¢> > 0. Moreover the systems
of ODEs (19) and (14) with (17) and (16¢) clearly imply that, for all (finite, positive) time,
the functions &, (t) and x,, (t) are finite.

Let us now set
n (t) = Tn (t) — I (t) . (21)

These functions &, (t) satisfy — as implied by subtracting (19) from (14a) — the system of
ODEs

N
gn + iWQ En + 92 Z [gn - gm] Pnm (ia i) =F [w,g,i} (223)
m=1,m#n
with
N (2 — xm)Q + (Tn — Tm) (Tn — Tm) + (Tn — jm)2
Prm (2, Z) = o — o) (F ) (22b)

Note that the above bounds, (20), as well as the finiteness of z,, and z,, for all (positive)
time, guarantee that these functions ¢y, (z,Z) remain finite for all time, namely that
there always exist time-independent finite upper and lower bounds ¢+ satisfied by them
for all time,

- < um (2,2) < oy (22¢)
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These bounds depend of course on the particular solutions z and Z under consideration,
but let us re-emphasize that, for any such solutions, they are finite.

It is now clear that the theorem is proven if we can show that this system of ODEs
admits a solution satisfying the asymptotic condition

lim &, (t)]=0, n=1,.,N (23)
t——+o00

(see (la) and (21)). As can be easily verified such a solution of (22) is provided by the
formula

& (t):/oodt’F w ()2 (1) .2 (£)] Gu (1.1) . n=1,...N (24a)

t

where the functions G, (t,t') are the Green’s functions associated with the left-hand side
of the system of ODEs (22a), namely the solutions of the system of ODEs

PG (1) 1 4 ,

+g> > [Gu () = G ()] um [z (t)

|83

—~
~

=
I
(an}
~
A\
S

OG, (t,t))

Gy (t,t)=0, T

=1, n=1,..,N. (24b)

t=t/
Indeed, while these Green functions cannot be computed explicitly (since we do not know
the N-vectors z (t) and Z (t) , hence neither the functions @y, [z (t) , Z (t)]), it is plain from
the linear character of this system of ODEs and from the bounds (22c) that these Green
functions can grow (in modulus) at most exponentially as ¢ — oo and/or ¢’ — oo ; so that
the faster than exponential vanishing of F' [w (t'),z (¢'),2 ()] as ¢ — oo (implied by (17)
with (16d)) entails that the integral in the right-hand side of the solution formula (24a)
vanishes asymptotically (as t — 00). |
Remark. 1t is clear how this example could have been made more general by allowing
the function F' appearing in the right hand side of (14a) to depend on the index n, and/or
by replacing the single auxiliary variable w (t) by a J-vector w (¢) with J an arbitrary
positive integer, and so on; without invalidating our conclusion, but complicating our
proof. Let us also re-emphasize that the hypotheses made above to prove this theorem
are sufficient but by no means necessary for its validity. More specific, and possibly
considerably less stringent, conditions yielding an analogous conclusion can and will be
introduced whenever this kind of result shall be considered in specific (possibly applicative)
contexts. Our motivation to assume here quite simple (hence overly stringent) hypotheses
is because we are just interested to show that the main idea discussed in this paper does
indeed work. |

4 Outlook

Clearly the kind of approaches illustrated above via the detailed treatment of two specific
examples can be applied much more widely: it will be particularly interesting to do so in
specific applicative contexts.
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A natural point of departure for such applications are isochronous systems, namely
models whose generic solutions — in their entire natural phase space, or in open, hence
fully dimensional, regions of it — are completely periodic (i. e., periodic in all their degrees
of freedom) with the same fized period (independent of the initial data, provided they stay
within the isochrony region). As recently pointed out (see for instance [18]), quite a lot of
dynamical systems can be modified so that they become isochronous, entailing the conclu-
sion that isochronous systems are not rare. Each of these isochronous systems can then be
further extended — along the lines obviously suggested by the treatment detailed above, see
in particular the specific case treated in Section 3 — in order to generate classes of asymp-
totically isochronous systems, namely systems featuring open, hence fully dimensional,
regions in their natural phase space (possibly including all of it) in which all (or almost
all) their solutions display asymptotically a completely periodic behavior with the same
fized period, see (1). The technique to manufacture such generalized systems is clearly
suggested by the examples treated above: of course these systems could be autonomous,
as the examples treated above, or they might feature an ezplicit time-dependence, as could
have been included in the system treated in Section 3 by assuming the functions F' and f
to also feature an ezplicit time dependence (but autonomous systems are generally more
interesting than nonautonomous ones).

Often the natural context to investigate isochronous systems is in the complex rather
than the real [18,20] — although every system with complex dependent variables can of
course be reformulated as a system with twice as many real dependent variables. Hence
it may be of interest to mention how the findings detailed in Section 3 would be affected
if the dependent variables z,, and w in the model (14) were allowed to be complex —
keeping of course real the time ¢ and positive the constant w, while the constant g? could
now also be complez. It is then well known [18,20] that the isochronous character of
the motions still prevails for the (integrable indeed solvable) many-body problem (14a)
without the F term (i. e., with an identically vanishing F; see (19)) — describing motions
taking place in the compler z-plane rather than on the real line. But in the complex
context the isochronous behavior is a bit different than in the real context: the phase
space is then divided into sectors separated by lower-dimensional manifolds characterized
by solutions which hit a singularity at a finite time due to a particle collision; an event
forbidden in the real case with positive g%, when the particles move on the real axis and the
two-body force, singular at zero separation, is repulsive, see (14a), but which can happen
in the compler case, although not for generic initial data. In the different sectors the
motion is still completely periodic, but with different periods, characterizing each sector
and being (generally rather small [22]) integer multiples of the basic period T, see (4a).
Accordingly, the generic solution of the (generally nonintegrable) generalized model (14)
will be nonsingular throughout its time evolution and it shall eventually settle within a
sector, approaching asymptotically one of the completely periodic solutions in that sector
of the (integrable) model (14a) with identically vanishing F.

A somewhat analogous outcome obtains for the model analogous to (14) but with (14a)
replaced by

N

1
Zn + ZWQZn = Z [gflm (zn — zm)_g] + F(w,z,2) , n=1,..,N, (25)

m=1,m#n
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featuring NV (N — 1) different coupling constants g2, acting among every particle pair. In
this case the model without F' is generally not integrable, yet (if considered in the complez,
namely without restricting the dependent variables z,, — nor, for that matter, the coupling
constants g2,, — to be real) it still does feature an open, hence fully dimensional, region
in its phase space where all solutions are completely periodic with the same period T', see
(4a) [18,24]; while in other regions of its phase space it might also be periodic but with
periods T = pT where the numbers p are integers but might be very large, or it might
even display an aperiodic, quite complicated (in some sense chaotic) behavior [25] (for
recent progress in the understanding of this phenomenology see [26-29]). It then stands
to reason that the solutions of the generalized model (14) with (14a) replaced by (25)
(and of course z in (14b) replaced by z) shall again approach asymptotically solutions —
including, from open regions of initial data, completely periodic ones — of the model (25)
without F': entailing a remarkable, and quite rich, phenomenology. Clearly our motivation
to mention this specific model is because of its prototypical role: indeed, the main aspects
of this phenomenology shall also characterize the large class of isochronous (but by no
means necessarily integrable) systems that can now be manufactured [18], once they are
extended by adding to their equations of motion other, fairly general, terms having the
property to disappear asymptotically (as t — +00), as a consequence of the very dynamics
implied by these extended equations of motion.

In conclusion let us re-emphasize that these results (as indeed all mathematically cor-
rect findings) might well be deemed remarkable or trivial, depending on the level of un-
derstanding of the reader. Once their foundation is understood, it becomes obvious how
they can be extended to many other models — suggesting an ample applicative potential.
But these developments exceed the scope of this paper.

Acknowledgements

One of us (FC) would like to thank Francois Leyvraz for several illuminating discussions.
The research reported in this paper has profited from visits by each of the two authors
in the Department of the other performed in the framework of the exchange program
among our two Universities. The research of DGU is supported in part by the Ramén y
Cajal program of the Ministerio de Ciencia y Tecnologia and by the DGI under grants
FIS2005-00752 and MTM2006-00478.

References

[1] R. de la Llave, A tutorial on KAM theory, in: Smooth Ergodic Theory and Its Ap-
plications Seattle, WA, 1999, Proc. Sympos. Pure Math. vol. 69, (Providence: Amer.
Math. Soc.) 2001, pp. 175-292.

[2] G. Gallavotti, Arnol’d’s diffusion in isochronous systems, Math. Phys. Anal. Geom.
1 no. 4 (1999) 295-312.

[3] J. Chavarriga, M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst.
1 (1999) 1-70.



Asymptotically isochronous systems 425

[4]

[5]

[10]

[11]

[12]

J.-P. Francoise, Isochronous systems and perturbation theory, J. Nonlinear Math.
Phys. 12 suppl. 1 (2005) 315-326.

A .R. Chouikha, Isochronous centers of Lienard type equations and applications. J.
Math. Anal. Appl. 331 no. 1 (2007) 358-376.

J. Giné, J. Llibre, A family of isochronous foci with Darboux first integral, Pacific J.
Math. 218 no. 2 (2005) 343-355.

N.N. Nekhoroshev, The Poincaré-Lyapunov-Liouville-Arnol’d theorem, Funct. Anal.
Appl. 28 no. 2 (1994) 128-129.

C. Gonera, Isochronic potentials and new family of superintegrable systems. J. Phys.
A: Math. Theor. 37 no. 13 (2004) 4085-4095.

O. Chalykh, A.P. Veselov, A remark on rational isochronous potentials, J. Nonlinear
Math. Phys. 12 (2005) 179-183.

M. A. Rodriguez, P. Winternitz, Quantum superintegrability and exact solvability in
n dimensions J. Math. Phys. 43 (2002) 1309-22.

S. Gravel, P. Winternitz, Superintegrability with third-order integrals in quantum
and classical mechanics, J. Math. Phys. 43 (2002) 5902-5912.

F. Calogero, F. Leyvraz, On a class of Hamiltonians with (classical) isochronous mo-
tions and (quantal) equi-spaced spectra. J. Phys. A: Math. Theor. 39 (2006) 11803—
24.

M.C. Nucci, P.G.L. Leach, K. Andriopoulos, Lie symmetries, quantisation and c-
isochronous nonlinear oscillators, J. Math. Anal. Appl. 319 (2006), 357-368.

F. Calogero, S. Graffi, On the quantisation of a nonlinear Hamiltonian oscillator,
Phys. Lett. A 313 (2003) 356-362.

J. Dorignac, On the quantum spectrum of isochronous potentials. J. Phys. A: Math.
Theor. 38 no. 27 (2005) 6183-6210.

F. Calogero, F. Leyvraz, General technique to produce isochronous Hamiltonians, J.
Phys. A.: Math. Theor. 40 (2007) 12931-12944

F. Calogero, Isochronous systems, in: Encyclopedia of Mathematical Physics edited
by J.-P. Frangoise, G. Naber and Tsou Sheung Tsun (Oxford: Elsevier) 2006 (ISBN
978-0-1251-2666-3), vol. 3, pp. 166-172.

F. Calogero Isochronous systems (Oxford: Oxford University Press) 2008.

F. Calogero, D. Gomez-Ullate, A new class of solvable many-body problems with
constraints associated with an exceptional polynomial subspace of codimension two,
J. Phys. A: Math. Theor. 40 (2007) F573-F580.

F. Calogero, Classical Many-Body Problems Amenable to Ezact Treatments (Lecture
Notes in Physics Monograph Vol. 66) 2001 (Berlin: Springer)



426

F Calogero and D Gémez-Ullate

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

F. Calogero, Motion of Poles and Zeros of Special Solutions of Nonlinear and Linear
Partial Differential Equations and Related “Solvable” Many Body Problems, Nuovo
Cimento 43B (1978) 177-241.

D. Gémez-Ullate, M. Sommacal, Periods of the goldfish many-body problem J. Non-
linear Math. Phys. 12 Suppl.1) (2005) 351-62.

E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Non-
stiff Problems 1987 (Berlin: Springer) pp. 193-195

F. Calogero Periodic solutions of a system of complex ODEs, Phys. Lett. A293 (2002)
146-150.

F. Calogero, M. Sommacal, Periodic solutions of a system of complex ODEs. II.
Higher periods J. Nonlinear Math Phys. 9 (2002) 483-516.

F. Calogero, D. Gémez-Ullate, P. M. Santini, M. Sommacal, The transition from
regular to irregular motions, explained as travel on Riemann surfaces J. Phys. A:
Math. Gen. 38 (2005) 8873-8896.

F. Calogero, D. Gémez-Ullate, P. M. Santini, M. Sommacal, Towards a theory of
chaos explained as travel on Riemann surfaces, J. Phys. A: Math. Gen. , in press.

Yu. Fedorov, D. Gémez-Ullate, Dynamical systems on infinitely sheeted Riemann
surfaces, Physica D 227 (2007) 120-134.

P. Grinevich, P. M.Santini, Newtonian dynamics in the plane corresponding to
straight and cyclic motions on the hyperelliptic curve u? = v™ — 1, n € Z: ergodicity,
isochrony, periodicity and fractals, Physica D 232, (2007) 22-32.



