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Abstract

A method is proposed in this paper to construct a new extended q-deformed KP (q-
KP) hiearchy and its Lax representation. This new extended q-KP hierarchy contains
two types of q-deformed KP equation with self-consistent sources, and its two kinds of
reductions give the q-deformed Gelfand-Dickey hierarchy with self-consistent sources
and the constrained q-deformed KP hierarchy, which include two types of q-deformed
KdV equation with sources and two types of q-deformed Boussinesq equation with
sources. All of these results reduce to the classical ones when q goes to 1. This
provides a general way to construct (2+1)- and (1+1)-dimensional q-deformed soliton
equations with sources and their Lax representations.

1 Introduction

In recent years, the q-deformed integrable systems attracted many interests both in mathe-
matics and in physics [1,8,9,11,12,15–18,20,23,24,29,30,35–37,39,40,42]. The deformation
is performed by using the q-derivative ∂q to take the place of ordinary derivative ∂x in the
classical systems, where q is a parameter, and the q-deformed integrable systems recover
the classical ones as q → 1. The q-deformed N -th KdV (q-NKdV or q-Gelfand-Dickey)
hierarchy, the q-deformed KP (q-KP) hierarchy, and the q-AKNS-D hierarchy were con-
structed, and some of their integrable structures were also studied, such as the infinite
conservation laws, bi-Hamiltonian structure, tau function, symmetries, Bäcklund trans-
formation (see [12,23,35,37,39,42] and the references therein).

Multi-component generalization of an integrable model is a very important subject
[3, 6, 7, 13, 19, 21, 22, 34, 38]. For example, the multi-component KP (mcKP) hierar-
chy given in [6] contains many physically relevant nonlinear integrable systems, such as
Davey-Stewartson equation, two-dimensional Toda lattice and three-wave resonant inter-
action ones. Another type of coupled integrable systems is the soliton equation with self-
consistent sources, which has many physical applications and can be obtained by coupling
some suitable differential equations to the original soliton equation [14,26,27,31–33,41,43].
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Very recently, we proposed a systematical procedure to construct a new extended KP hi-
erarchy and its Lax representation [28]. This new extended KP hierarchy contains two
types of KP equation with self-consistent sources (KPSCS-I and KPSCS-II), and its two
kinds of reductions give the Gelfand-Dickey hierarchy with self-consistent sources [2] and
the k-constrained KP hierarchy [5, 25]. In fact, the approach which we proposed in [28]
in the framework of Sato theory can be applied to construct many other extended (2+1)-
dimensional soliton hierarchies, such as BKP hierarchy, CKP hierarchy and DKP hierarchy,
and provides a general way to obtain (2+1)-dimensional and (1+1)-dimensional integrable
soliton hierarchies with self-consistent sources.

The KdV equation with self-consistent sources and the KP equation with self-consistent
sources can describe the interaction of long and short waves (see [14, 26, 27, 31–33, 41, 43]
and the references therein). In contrast with the well-studied KdV and KP equation with
self-consistent sources, the q-Gelfand-Dickey hierarchy with self-consistent sources and the
q-KP hierarchy with self-consistent sources have not been investigated yet. It is ineresting
to consider the case of the algebra of q-pseudo-differential operator, and to see if our
approach could be generalized to construct new extended q-deformed integrable systems,
which would enable us to find two types of new q-deformed soliton equation with sources
in a systematic way.

In this paper, we will give a systematical procedure to construct a new extended q-
deformed KP (q-KP) hierarchy and its Lax representation. First, we define a new vector
filed ∂τk

by a linear combination of all vector fields ∂tn in ordinary q-deformed KP hi-
erarchy, then we introduce a new Lax type equation which consists of the τk-flow and
the evolutions of wave functions. Under the evolutions of wave functions, the commu-
tativity of ∂τk

-flow and ∂tn-flows gives rise to a new extended q-KP hierarchy. This
new extended q-KP hierarchy contains two types of q-deformed KP equation with self-
consistent sources (q-KPSCS-I and q-KPSCS-II), and its two kinds of reductions give
the q-deformed Gelfand-Dickey hierarchy with self-consistent sources and the constrained
q-deformed KP hierarchy, which are some (1 + 1)-dimensional q-deformed soliton equa-
tion with self-consistent sources, e.g., two types of q-deformed KdV equation with self-
consistent sources (q-KdVSCS-I and q-KdVSCS-II) and two types of q-deformed Boussi-
nesq equation with self-consistent sources (q-BESCS-I and q-BESCS-II). The q-KdVSCS-II
is just the q-deformed Yajima-Oikawa equation. All of these results reduce to the classical
ones when q → 1. Thus, the method proposed in this paper is a general way to find the
(1 + 1)- and (2 + 1)-dimensional q-deformed soliton equation with self-consistent sources
and their Lax representations. It should be noticed that a general setting of “pseudo-
differential” operators on regular time scales has been proposed to construct some inte-
grable systems [4,10], where the q-differential operator is just a particular case. Our paper
will be organized as follows. In section 2, we will recall some notations in the q-calculus
and construct the new extended q-KP hierarchy, and then two types of q-deformed KP
equation with sources will be presented. In section 3, the two kinds of reductions for
the new extended q-KP hierarchy will be considered, and some (1 + 1)-dimensional q-
deformed soliton equation with self-consistent sources will be deduced. In section 4, some
conclusions will be given.
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2 New extended q-deformed KP hierarchy

In this section, we will give a procedure to construct a new extended q-KP hierarchy and
its Lax representation. Then, as the examples, two types of q-deformed KP equation with
self-consistent sources (q-KPSCS-I and q-KPSCS-II) will be presented explicitly.

The q-deformed differential operator ∂q is defined as

∂q(f(x)) =
f(qx) − f(x)

x(q − 1)
,

which recovers the ordinary differentiation ∂x(f(x)) as q → 1. Let us define the q-shift
operator θ as

θ(f(x)) = f(qx).

Then we have the q-deformed Leibnitz rule

∂n
q f =

∑

k≥0

(

n
k

)

q

θn−k(∂k
q f)∂n−k

q , n ∈ Z,

where the q-number and the q-binomial are defined by

(n)q =
qn − 1

q − 1
,

(

n
k

)

q

=
(n)q(n− 1)q · · · (n− k + 1)q

(1)q(2)q · · · (k)q
,

(

n
0

)

q

= 1.

For a q-pseudo-differential operator (q-PDO) of the form

P =

n
∑

i=−∞

pi∂
i
q,

we decompose P into the differential part and the integral part as follows

P+ =
∑

i≥0

pi∂
i
q, P− =

∑

i≤−1

pi∂
i
q.

The conjugate operation “∗” for P is defined by

P ∗ =
∑

i

(∂∗q )ipi, ∂∗q = −∂qθ
−1 = −

1

q
∂ 1

q
.

The q-KP hierarchy is defined by the Lax equation (see, e.g., [16])

∂tnL = [Bn, L], Bn = Ln
+, (2.1)

with Lax operator of the form

L = ∂q +
∞
∑

i=0

ui∂
−i
q . (2.2)
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According to the Sato theory, we can express the Lax operator as a dressed operator

L = S∂qS
−1, (2.3)

where S = 1+
∞
∑

i=1

Si∂
−i
q is called the Sato operator and S−1 is its formal inverse. The Lax

equation (2.1) is equivalent to the Sato equation

Stn = −(Ln)−S. (2.4)

The q-wave function wq(x, t; z) and q-adjoint wave function w∗(x, t; z) (here t = (t1, t2, t3, . . .))
are defined as follows

wq = Seq(xz) exp

(

∞
∑

i=1

tiz
i

)

, (2.5a)

w∗ = (S∗)−1|x/qe1/q(−xz) exp

(

−
∞
∑

i=1

tiz
i

)

, (2.5b)

where the notation P |x/t =
∑

i
pi(x/t)t

i∂i
q (for P =

∑

i
pi(x)∂

i
q) is used, and

eq(x) = exp

(

∞
∑

k=1

(1 − q)k

k(1 − qk)
xk

)

.

It is easy to show that wq and w∗
q satisfy the following linear systems

Lwq = zwq,
∂wq

∂tn
= Bnwq,

L∗|x/qw
∗
q = zw∗

q ,
∂w∗

q

∂tn
= −(Bn|x/q)

∗w∗
q .

It can be proved that [35]

T (z)− ≡
∑

i∈Z

Li
−z

−i−1 = wq∂
−1
q θ(w∗

q). (2.6)

For any fixed k ∈ N, we define a new variable τk whose vector field is

∂τk
= ∂tk −

N
∑

i=1

∑

s≥0

ζ−s−1

i ∂ts ,

where ζi’s are arbitrary distinct non-zero parameters. The τk-flow is given by

Lτk
= ∂tkL−

N
∑

i=1

∑

s≥0

ζ−s−1

i ∂tsL = [Bk, L] −
N
∑

i=1

∑

s≥0

ζ−s−1

i [Bs, L]

= [Bk, L] +

N
∑

i=1

∑

s∈N

ζ−s−1

i [Ls
−, L] = [Bk, L] +

N
∑

i=1

∑

s∈Z

ζ−s−1

i [Ls
−, L].
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Define B̃k by

B̃k = Bk +
N
∑

i=1

∑

s∈Z

ζ−s−1

i Ls
−, (2.7)

which, according to (2.6), can be written as

B̃k = Bk +

N
∑

i=1

wq(x, t; ζi)∂
−1
q θ(w∗

q(x, t; ζi)). (2.8)

By setting φi = wq(x, t; ζi), ψi = θ(w∗
q(x, t; ζi)), we have

B̃k = Bk +

N
∑

i=1

φi∂
−1
q ψi, (2.9a)

where φi and ψi satisfy the following equations

φi,tn = Bn(φi), ψi,tn = −B∗
n(ψi), i = 1, · · · ,N. (2.9b)

Now we introduce a new Lax type equation given by

Lτk
= [Bk +

N
∑

i=1

φi∂
−1
q ψi, L]. (2.10a)

with

φi,tn = Bn(φi), ψi,tn = −B∗
n(ψi), i = 1, · · · ,N. (2.10b)

We have the following lemma

Lemma 1. [Bn, φ∂
−1
q ψ]− = Bn(φ)∂−1

q ψ − φ∂−1
q B∗

n(ψ).

Proof. Without loss of generality, we consider a monomial: P = a∂n
q (n ≥ 1). Then

[P, φ∂−1
q ψ]− = a(∂n

q (φ))∂−1
q ψ − (φ∂−1

q ψa∂n
q )−. (2.11)

Notice that the second term can be rewritten in the following way

(φ∂−1
q ψa∂n

q )− = φ(θ−1(ψa))∂n−1
q − φ∂−1

q (∂qθ
−1(aψ))∂n−1

q )−

= (φ∂−1
q (−∂qθ

−1(aψ))∂n−1
q )− = · · · = φ∂−1

q

(

(−∂qθ
−1)n(aψ)

)

= φ∂−1
q P ∗(ψ),

then the lemma is proved. �

Proposition 1. (2.1) and (2.10) give rise to the following new extended q-deformed KP
hierarchy

Bn,τk
− (Bk +

N
∑

i=1

φi∂
−1
q ψi)tn + [Bn, Bk +

N
∑

i=1

φi∂
−1
q ψi] = 0 (2.12a)

φi,tn = Bn(φi), (2.12b)

ψi,tn = −B∗
n(ψi), i = 1, · · · , N. (2.12c)
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Proof. We will show that under (2.10b), (2.1) and (2.10a) give rise to (2.12a). For
convenience, we assume N = 1, and denote φ1 and ψ1 by φ and ψ, respectively. By (2.1),
(2.10) and Lemma 1, we have

Bn,τk
= (Ln

τk
)+ = [Bk + φ∂−1

q ψ,Ln]+

= [Bk + φ∂−1
q ψ,Ln

+]+ + [Bk + φ∂−1
q ψ,Ln

−]+

= [Bk + φ∂−1
q ψ,Ln

+] − [Bk + φ∂−1
q ψ,Ln

+]− + [Bk, L
n
−]+

= [Bk + φ∂−1
q ψ,Bn] − [φ∂−1

q ψ,Bn]− + [Bn, L
k]+

= [Bk + φ∂−1
q ψ,Bn] +Bn(φ)∂−1

q ψ − φ∂−1
q B∗

n(ψ) +Bk,tn

= [Bk + φ∂−1
q ψ,Bn] + (Bk + φ∂−1

q ψ)tn .

�

Under (2.12b) and (2.12c), the Lax representation for (2.12a) is given by

Ψτk
= (Bk +

N
∑

i=1

φi∂
−1
q ψi)(Ψ), (2.13a)

Ψtn = Bn(Ψ). (2.13b)

Remark 1. The main step in our approach is to define a new Lax equation (2.10). For the
extended KP hierarchy in [28], a similar formula like (2.10) can be motivated by the well-

known k-constraint of KP hierarchy, which is obtained by imposing Lk = Bk +
N
∑

i=1

φi∂
−1ψi.

Here, the formula (2.10) can also be motivated by the k-constraint of q-KP hierarchy as
given in [35]. This enables us to obtain the k-constrained q-KP hierarchy and the q-
Gelfand-Dickey hierarchy with sources by dropping the τk-dependence and tn-dependence
in the new extended q-KP hierarchy (2.12) respectively (see Section 3).

Remark 2. When taking φi = ψi = 0, i = 1, . . . ,N , then the extended q-KP hierarchy
(2.12) reduces to the q-KP hierarchy.

Remark 3. Integrable systems can be constructed from the algebra of “pseudo-differential”
operators on regular time scales in [4,10], where the algebra of q-“pseudo-differential” op-
erator is a particular case. In fact, our approach for constructing new extended integrable
systems can also be generalized to the general setting as in [4, 10].

For convenience, we write out some operators here

B1 = ∂q + u0, B2 = ∂2
q + v1∂q + v0, B3 = ∂3

q + s2∂
2
q + s1∂q + s0,

φi∂
−1
q ψi = ri1∂

−1
q + ri2∂

−2
q + ri3∂

−3
q + . . . , i = 1, . . . ,N,

where

v1 = θ(u0) + u0, v0 = (∂qu0) + θ(u1) + u2
0 + u1,

v−1 = (∂qu1) + θ(u2) + u0u1 + u1θ
−1(u0) + u2,
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s2 = θ(v1) + u0, s1 = (∂qv1) + θ(v0) + u0v1 + u1,

s0 = (∂qv0) + θ(v−1) + u0v0 + u1θ
−1(v1) + u2.

ri1 = φiθ
−1(ψi), ri2 = −

1

q
φiθ

−2(∂qψi), ri3 =
1

q3
φiθ

−3(∂2
qψi).

and v−1 comes from L2 = B2 + v−1∂
−1
q + v−2∂

−2
q + · · · .

Then, one can compute the following commutators

[B2, B3] = f2∂
2
q + f1∂q + f0, [B2, φi∂

−1
q ψi] = gi1∂q + gi0 + . . . ,

[B3, φi∂
−1
q ψi] = hi2∂

2
q + hi1∂q + hi0 + . . . , i = 1, . . . ,N,

where

f2 = ∂2
q s2 + (q + 1)θ(∂qs1) + θ2(s0) + v1∂qs2 + v1θ(s1) + v0s2 − (q2 + q + 1)θ(∂2

q v1)

−(q2 + q + 1)θ2(∂qv0) − (q + 1)s2θ(∂qv1) − s2θ
2(v0) − s1θ(v1) − s0,

f1 = ∂2
q s1 + (q + 1)θ(∂qs0) + v1∂qs1 + v1θ(s0) + v0s1 − ∂3

q v1 − (q2 + q + 1)θ(∂2
q v0)

−s2∂
2
q v1 − (q + 1)s2θ(∂qv0) − s1∂qv1 − s1θ(v0) − s0v1,

f0 = ∂2
q s0 + v1∂qs0 − ∂3

q v0 − s2∂
2
qv0 − s1∂qv0,

gi1 = θ2(ri1) − ri1, gi0 = (q + 1)θ(∂qri1) + θ2(ri2) + v1θ(ri1) − ri1θ
−1(v1) − ri2,

hi2 = θ3(ri1) − ri1, hi1 = (q2 + q + 1)θ2(∂qri1) + θ3(ri2) + s2θ
2(ri1) − ri1θ

−1(s2).

hi0 = (q2 + q + 1)θ(∂2
q ri1) + (q2 + q + 1)θ2(∂qri2) + θ3(ri3) + (q + 1)s2θ(∂qri1)

+s2θ
2(ri2) + s1θ(ri1) − ri1θ

−1(s1) +
1

q
ri1θ

−2(∂qs2) − ri2θ
−2(s2) − ri3.

Now, we list some examples in the new extended q-KP hierarchy (2.12).

Example 1 (The first type of q-KPSCS (q-KPSCS-I)). For n = 2 and k = 3, (2.12)
yields the first type of q-deformed KP equation with self-consistent sources (q-KPSCS-I)
as follows

−
∂s2
∂t2

+ f2 = 0, (2.14a)

∂v1
∂τ3

−
∂s1
∂t2

+ f1 +

N
∑

i=1

gi1 = 0, (2.14b)

∂v0
∂τ3

−
∂s0
∂t2

+ f0 +

N
∑

i=1

gi0 = 0, (2.14c)

φi,t2 = B2(φi), ψi,t2 = −B∗
2(ψi), i = 1, . . . ,N. (2.14d)
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The Lax representation for (2.14) is

Ψτ3 = (∂3
q + s2∂

2
q + s1∂q + s0 +

N
∑

i=1

φi∂
−1
q ψi)(Ψ), (2.15a)

Ψt2 = (∂2
q + v1∂q + v0)(Ψ). (2.15b)

Let q → 1 and u0 ≡ 0, then the q-KPSCS-I (2.14) reduces to the first type of KP
equation with self-consistent sources (KPSCS-I) which reads as [31,32]

u1,t2 − u1,xx − 2u2,x = 0, (2.16a)

2u1,τ3 − 3u2,t2 − 3u1,x,t2 + u1,xxx + 3u2,xx − 6u1u1,x + 2∂x

N
∑

i=1

φiψi = 0, (2.16b)

φi,t2 − φi,xx − 2u1φi = 0, (2.16c)

ψi,t2 + ψi,xx + 2u1ψi = 0, i = 1, . . . ,N. (2.16d)

Example 2 (The second type of q-deformed KPSCS (q-KPSCS-II)). For n = 3
and k = 2, (2.12) yields the second type of q-deformed KP equation with self-consistent
sources (q-KPSCS-II) as follows

∂s2
∂τ2

− f2 +

N
∑

i=1

hi2 = 0, (2.17a)

∂s1
∂τ2

−
∂v1
∂t3

− f1 +
N
∑

i=1

hi1 = 0, (2.17b)

∂s0
∂τ2

−
∂v0
∂t3

− f0 +

N
∑

i=1

hi0 = 0, (2.17c)

φi,t3 = B3(φi), ψi,t3 = −B∗
3(ψi), i = 1, . . . ,N. (2.17d)

The Lax representation for (2.17) is

Ψτ2 = (∂2
q + v1∂q + v0 +

N
∑

i=1

φi∂
−1
q ψi)(Ψ), (2.18a)

Ψt3 = (∂3
q + s2∂

2
q + s1∂q + s0)(Ψ). (2.18b)

Let q → 1 and u0 ≡ 0, then the q-KPSCS-II (2.17) reduces to the second type of KP
equation with self-consistent sources (KPSCS-II) which reads as [31]

u1,τ2 − u1,xx − 2u2,x + ∂x

N
∑

i=1

φiψi = 0, (2.19a)

3u2,τ2 + 3u1,x,τ2 − 2u1,t3 − u1,xxx + 6u1u1,x − 3u2,xx + 3∂x

N
∑

i=1

φi,xψi = 0, (2.19b)

φi,t3 − φi,xxx − 3u1φi,x − 3(u1,x + u2)φi = 0, (2.19c)

ψi,t3 − ψi,xxx − 3u1ψi,x + 3u2ψi = 0, i = 1, . . . ,N. (2.19d)
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3 Reductions

The new extended q-deformed KP hierarchy (2.12) admits reductions to several well-known
q-deformed (1 + 1)-dimensional systems.

3.1 The n-reduction of (2.12)

The n-reduction is given by

Ln = Bn or Ln
− = 0, (3.1)

then (2.5) implies that

Bn(φi) = Lnφi = ζn
i φi, (3.2a)

−B∗
n(ψi) = −Ln∗ψi = −ζn

i ψi. (3.2b)

By using Lemma 1 and (3.2), we can see that the constraint (3.1) is invariant under the
τk flow

(Ln
−)τk

= [Bk, L
n]− +

N
∑

i=1

[φi∂
−1
q ψi, L

n]−

= [Bk, L
n
−]− +

N
∑

i=1

[φi∂
−1
q ψi, L

n
+]− +

N
∑

i=1

[φi∂
−1
q ψi, L

n
−]−

=

N
∑

i=1

[φi∂
−1
q ψi, Bn]− = −

N
∑

i=1

(φi,tn∂
−1
q ψi + φi∂

−1
q ψi,tn)

= −
N
∑

i=1

(ζn
i φi∂

−1
q ψi − ζn

i φi∂
−1
q ψi) = 0. (3.3)

The equations (3.1) and (2.4) imply that Stn = 0, so (Lk)tn = 0, which together with (3.3)
means that one can drop tn dependency from (2.12) and obtain

Bn,τk
= [(Bn)

k
n
+ +

N
∑

i=1

φi∂
−1
q ψi, Bn], (3.4a)

Bn(φi) = ζn
i φi, (3.4b)

B∗
n(ψi) = ζn

i ψi, i = 1, · · · , N. (3.4c)

The system (3.4) is the q-deformed Gelfand-Dickey hierarchy with self-consistent sources.

Example 3 (The firs type of q-deformed KdVSCS (q-KdVSCS-I)). For n = 2
and k = 3, (3.4) presents the first type of q-deformed KdV equation with self-consistent
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sources (q-KdVSCS-I)

v1,τ3 + f1 +
N
∑

i=1

gi1 = 0, (3.5a)

v0,τ3 + f0 +

N
∑

i=1

gi0 = 0, (3.5b)

u2 + θ(u2) + ∂q(u1) + u0u1 + u1θ
−1(u0) = 0, (3.5c)

(∂2
q + v1∂q + v0)(φi) − ζ2φi = 0, (3.5d)

(∂2
q + v1∂q + v0)

∗(ψi) − ζ2ψi = 0, i = 1, · · · ,N, (3.5e)

with the Lax representation

Ψτ3 = (∂3
q + s2∂

2
q + s1∂q + s0 +

N
∑

i=1

φi∂
−1
q ψi)(Ψ),

(∂2
q + v1∂q + v0)(Ψ) = λΨ, u2 + θ(u2) + ∂q(u1) + u0u1 + u1θ

−1(u0) = 0.

Let q → 1 and u0 ≡ 0, then the q-KdVSCS-I (3.5) reduces to the first type of KdV
equation with self-consistent sources (KdVSCS-I) which reads as

u2 = −
1

2
u1,x,

u1,τ3 − 3u1u1,x −
1

4
u1,xxx + ∂x

N
∑

i=1

φiψi = 0,

φi,xx + 2u1φi − ζ2φi = 0,

ψi,xx + 2u1ψi − ζ2ψi = 0, i = 1, · · · ,N.

The first type of KdV equation with self-consistent sources (KdVSCS-I) can be solved by
the inverse scattering method [27,33] or by the Darboux transformation (see [26] and the
references therein).

Example 4 (The first type of q-BESCS (q-BESCS-I)). For n = 3 and k = 2, (3.4)
presents the first type of q-deformed Boussinesq equation with self-consistent sources (q-
BESCS-I)

s2,τ2 − f2 +

N
∑

i=1

hi2 = 0, (3.6a)

s1,τ2 − f1 +
N
∑

i=1

hi1 = 0, (3.6b)

s0,τ2 − f0 +

N
∑

i=1

hi0 = 0, (3.6c)

(∂3
q + s2∂

2
q + s1∂q + s0)(φi) − ζ3φi = 0, (3.6d)

(∂3
q + s2∂

2
q + s1∂q + s0)

∗(ψi) − ζ3ψi = 0, i = 1, · · · ,N, (3.6e)



A new extended q-deformed KP hierarchy 343

with the Lax representation

Ψτ2 = (∂2
q + v1∂q + v0 +

N
∑

i=1

φi∂
−1
q ψi)(Ψ), (∂3

q + s2∂
2
q + s1∂q + s0)(Ψ) = λΨ. (3.7)

Let q → 1 and u0 ≡ 0, then the q-BESCS-I (3.6) reduces to the first type of Boussinesq
equation with self-consistent sources (BESCS-I) which reads as

−2u2,x − u1,xx + u1,τ2 + ∂x

N
∑

i=1

φiψi = 0,

3u2,τ2 − 3u2,xx + 3u1,x,τ2 + 6u1u1,x − u1,xxx + 3∂x

N
∑

i=1

φi,xψi = 0,

φi,xxx + 3u1φi,x + 3(u1,x + u2)φi − ζ3φi = 0,

ψi,xxx + 3u1ψi,x − 3u2ψi + ζ3ψi = 0, i = 1, · · · ,N.

3.2 The k-constrained hierarchy of (2.12)

The k-constraint is given by [5,25]

Lk = Bk +

N
∑

i=1

φi∂
−1
q ψi. (3.8)

By using the above k-constraint, it can be proved that L and Bn are independent of τk.
By dropping τk dependency from (2.12), we get

(

Bk +
N
∑

i=1

φi∂
−1
q ψi

)

tn

=

[

(Bk +
N
∑

i=1

φi∂
−1
q ψi)

n
k
+ , Bk +

N
∑

i=1

φi∂
−1
q ψi

]

, (3.9a)

φi,tn = (Bk +
N
∑

j=1

φj∂
−1
q ψj)

n
k
+(φi), (3.9b)

ψi,tn = −(Bk +

N
∑

j=1

φj∂
−1
q ψj)

n
k
∗

+ (ψi), i = 1, · · · ,N, (3.9c)

which is the constrained q-deformed KP hierarchy. Some solutions of the constrained q-
deformed KP hierarchy can be represented by q-deformed Wronskian determinant (see [12]
and the references therein).

Remark 4. In [4, 10], the k-constrained q-KP hierarchy can be constructed from the q-
KP hierarchy by imposing the k-constraint. Here, the k-constrained q-KP hierarchy is
obtained directly from the extended q-KP hierarchy (2.12) by dropping the τk dependence
due to the k-constraint.

Example 5 (The second type of q-KdVSCS (q-KdVSCS-II)). For n = 3 and k = 2,
(3.9) gives rise to the second type of q-deformed KdV equation with self-consistent sources
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(q-KdVSCS-II).

v1,t3 + f1 −

N
∑

i=1

hi1 = 0, (3.10a)

v0,t3 + f0 −

N
∑

i=1

hi0 = 0, (3.10b)

u2 + θ(u2) + ∂q(u1) + u0u1 + u1θ
−1(u0) −

N
∑

i=1

ri1 = 0, (3.10c)

φi,t3 = (∂3
q + s2∂

2
q + s1∂q + s0)(φi), (3.10d)

ψi,t3 = −(∂3
q + s2∂

2
q + s1∂q + s0)

∗(ψi), i = 1, · · · ,N. (3.10e)

Let q → 1 and u0 ≡ 0, then the q-KdVSCS-II (3.10) reduces to the second type of KdV
equation with self-consistent sources (KdVSCS-II or Yajima-Oikawa equation) which reads
as

u2 = −
1

2
u1,x +

1

2

N
∑

i=1

φiψi,

u1,t3 =
1

4
u1,xxx + 3u1u1,x +

3

4

N
∑

i=1

(φi,xxψi − φiψi,xx),

φi,t3 = φi,xxx + 3u1φi,x +
3

2
u1,xφi +

3

2
φi

N
∑

j=1

φjψj ,

ψi,t3 = ψi,xxx + 3u1ψi,x +
3

2
u1,xψi −

3

2
ψi

N
∑

i=1

φjψj , i = 1, · · · ,N.

Example 6 (The second type of q-BESCS (q-BESCS-II)). For n = 2 and k = 3,
(3.9) gives rise to the second type of q-deformed Boussinesq equation with self-consistent
sources (q-BESCS-II))

s2,t2 − f2 = 0, (3.11a)

s1,t2 − f1 −
N
∑

i=1

gi1 = 0, (3.11b)

s0,t2 − f0 −

N
∑

i=1

gi0 = 0, (3.11c)

φi,t2 = (∂2
q + v1∂q + v0)(φi), (3.11d)

ψi,t2 = −(∂2
q + v1∂q + v0)

∗(ψi), i = 1, · · · ,N. (3.11e)

Let q → 1 and u0 ≡ 0, then the q-BESCS-II (3.11) reduces to the second type of Boussinesq
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equation with self-consistent sources (BESCS-II) which reads as

−2u2,x − u1,xx + u1,t2 = 0,

3u2,t2 − 3u2,xx + 3u1,x,t2 + 6u1u1,x − u1,xxx − 2∂x

N
∑

i=1

φiψi = 0,

φi,t2 = φi,xx + 2u1φi,

ψi,t2 = −ψi,xx − 2u1ψi, i = 1, · · · ,N.

4 Conclusions

A method is proposed in this paper to construct a new extended q-deformed KP (q-KP)
hiearchy and its Lax representation. This new extended q-KP hierarchy contains two
types of q-deformed KP equation with self-consistent sources (q-KPSCS-I and q-KPSCS-
II), and its two kinds of reductions give the q-deformed Gelfand-Dickey hierarchy with
self-consistent sources and the constrained q-deformed KP hierarchy. Thus, the reductions
of the new extended q-KP hierarchy may give some q-deformed (1+1)-dimensional soliton
equation with self-consistent sources, e.g., the two types of q-deformed KdV equation with
self-consistent sources (including q-deformed Yajima-Oikawa equation) and two types of
q-deformed Boussinesq equation with self-consistent sources. All of these results reduce
to the classical ones when q → 1. The method proposed in this paper is a general way
to find (1 + 1)- and (2 + 1)-dimensional q-deformed soliton equation with self-consistent
sources and their Lax representations.
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