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Abstract 

In this paper, a computer aided system for designing nonwoven materials is presented. As an original approach in 
the field of nonwoven research, both quality measurement analysis and human knowledge processing are integrated 
in the system. It allows designers to optimize the structure of nonwoven materials with limited trials according to 
the functional properties given in customers’ specifications. This system aims at modeling the relation between 
functional or physical properties (outputs) and structural parameters (inputs) of nonwoven products. In order to 
reduce the complexity of the system, a procedure is proposed for selecting the most relevant input variables based 
on a ranking criterion, which takes into account both the expertise of manufacturers and the measured data. In this 
criterion, fuzzy logic is used to establish a good compromise or a fusion between these two uncertain and 
incomplete information sources. Then, two models are set up by utilizing multilayer feed forward neural networks, 
which take into account the generality and the specificity of the product families respectively. The presented 
models have been validated with the use of experimental data concerning several families of nonwoven products.  

Keywords: nonwoven material structures, physical properties, fuzzy-neural design support system, parameter 
selection 

1. Introduction 

Nonwoven products are fibrous materials characterized 
by a large range of interesting properties, due mainly to 
the diversity of raw materials, forming, bonding and 
finishing technologies. As durable or semi-durable 
materials, they are employed in various application 
fields such as manufacturing, civil engineering, building 
or transportation. Their increasing success is also due to 
the good ratio performance/cost price. Consequently, 
the number of end-products designed with nonwoven 
materials has significantly grown in the last decades 
while the production in Western Europe has risen by 
8%.1 
 
Due to the international competition in the textile 
market, nonwoven materials should be designed and 
produced in order to satisfy more and more complex 

specifications (e.g. insulation, protection, filtration, 
durability, breathiness…) and increasing requirements 
for international standards in different application fields. 
In parallel, nonwoven product designers are actively 
involved in projects to reduce cost by applying value 
analysis during the design and the development of these 
manufacturing products. Several criteria of the product 
design are given as follows. 
1) Satisfying all specific values of the functional 
properties of nonwoven materials (i.e. customer’s 
specifications),  
2) Minimizing the cost and the quantity of raw 
materials,  
3) Optimizing the final structure of materials.  
 
Recently, great attention has been paid to explore the 
relationship between the structural parameters of 
nonwoven materials (thickness, basis weight, raw 
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material, number of layers…) and their functional 
properties. This approach enables nonwoven 
manufacturers to obtain a better understanding of the 
effect of the material structure and the corresponding 
process parameters on the product quality.  

Fig. 1. Modeling the relations between structural parameters 
and functional properties of nonwovens. 

The aim of our project is to develop a design support 
system for product designers using fuzzy logic and 
neural networks. The system includes a number of 
mathematical models for characterizing the relations 
between the structural parameters (input variables) and 
the functional properties (output variables) in order to 
optimize material structure and predict quality of new 
nonwoven products2 (Fig. 1). However, this procedure 
of modeling is very complex because of the nonlinear 
relationship between inputs and output variables, the 
large number of structural parameters, the 
interdependencies between them and the critical lack of 
available learning data. In practice, the amount of 
learning data or learning samples is strongly constrained 
by the production costs or experiment costs. Moreover, 
the production lines are not always available for trials. 
Given these constraints, a small set of learning samples 
have been used to model the relationship between 
structural parameters and functional properties of 
materials. 
 
 
 

 

 

 

Fig. 2. Framework of the proposed design support system. 

The structure of the proposed support system for 
designing new nonwoven products is shown in Fig.2. In 
this system, an exhaustive list of structural parameters 
(SP) and functional properties (FP) related to a specific 
application problem are firstly extracted according to 
the physical knowledge of nonwoven experts. Then, the 
most relevant structural parameters are selected from 
the list by combining the measured data obtained from a 
small number of experiments and the human knowledge 
of operators on processes and products. Fuzzy logic is 
used in the generation of this selection criterion in order 
to find a good compromise or a fusion between these 
two information sources. Finally, for each product 
family, a neural network is set up for modeling the 
relationship between the selected structural parameters 
and the concerned functional property. Based on this 
model, designers can optimize the structure of the 
nonwoven product according to the specifications. 
 
This paper is organized as follows. In Section 2, a 
procedure is given for selecting the most relevant input 
variables (structural parameters) based on a ranking 
criterion for reducing the complexity of the models. 
This fuzzy logic based selection criterion has been 
developed by properly integrating both human 
knowledge of operators on processes and products and 
measured data. In Section 3, we present the modeling 
procedure for characterizing the relationship between 
the selected relevant structure parameters and each 
functional property of the nonwoven. Multilayer feed 
forward Artificial Neural Network (ANN) models3 have 
been built with specific architectures adapted to the 
product diversity. In Section 4, the proposed models 
have been successfully applied to the prediction of 
hydraulic properties of filtration media nonwoven 
products. Finally, a general conclusion is given in 
Section 5. 

2. Selection of Relevant Structural Parameters  

2.1. Analysis of the existing work 

When studying the effect of each structural parameter 
on the functional properties selected from the final 
product specifications, it is quite difficult to produce a 
large number of samples. Therefore, small-scaled ANN 
models are built from a limited number of learning data 
and the most relevant structural parameters are selected 
before the modeling procedure. 
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The existing algorithms of variable selection mostly use 
heuristic search for an optimal subset of the original 
variables, with each state in the search space specifying 
a subset of the possible variables. Generally, each 
variable selection method is designed according to the 
following basic issues that determine the nature of the 
heuristic process4: 
1) The direction of search and the operators used. Two 

methods are frequently used: forward selection and 
backward elimination. 

2) The organization of the search. 
3) The strategy used to evaluate alternative subsets of 

variables. 
4) The condition for halting the search. 
 
In literature, most of the variable selection methods deal 
with data based classification problems. Moreover, the 
strategy used for evaluating variables and the condition 
for halting the search are generally defined as the 
variable’s ability to discriminate among classes of the 
learning data. The optimal subset of variables 
corresponds to the case in which the separability 
between different classes is maximal and data inside 
each class are as compact as possible. 
 
Most of the existing work has been carried out in the 
frame of supervised variable selection, i.e. the objective 
of selection is to improve the classification accuracy or 
class label predictive accuracy of data samples.5 Several 
well-known methods are the decision-tree method,6 the 
nearest-neighbor method,7 the mutual information 
measure based method8 and the hyperbox generation 
based method,9 the information-theoretical connectionist 
network model for removing both irrelevant and 
redundant variables10 and the wrapper model, which 
evaluates alternative subsets of variables by running 
some induction algorithm on the learning data and using 
the estimated accuracy of the resulting classifier as its 
metric.11 There also exists some work on unsupervised 
variable selection using conditional Gaussian networks5 
and data clustering techniques.12 Recently, a new 
variable selection method has been developed using a 
modified fuzzy C-means algorithm with supervision.13 
 
In practice, the performance of these data based variable 
selection methods is strongly related to the quality and 
the quantity of data samples and the criterion defined, 

which may vary from task to task. These methods are 
not efficient to solve variable selection problems in 
some industrial processes. In these processes, limited by 
the cost and the time of measurement, the quantity of 
data is often too small to constitute a correct distribution 
for obtaining significant classification results. In this 
case, the class separability based criteria of variable 
selection should be replaced by variable sensitivity 
based criteria such as gradient descent. Moreover, if 
possible, physical knowledge related to the problem and 
measured numerical data should be used in a 
complementary way in order to improve the criterion of 
selection and cross-validate the results obtained from 
these two information sources. 

2.2. Formalization of the criterion for relevant 
variable selection 

In this paper, we first propose a criterion for ranking the 
nonwoven structural parameters by linearly combining 
the human knowledge based criterion and the data 
sensitivity to the properties. The related formalization is 
given below. 
 

Let m and n be the total number of structural parameters 
and the total number of functional properties 
respectively. The input and output variables are denoted 
as X={x1, x2, …, xm} and {y1, y2, …, yn} respectively. The 
relationship between {x1, x2, …, xm} and one output 
variable yl can be considered as a nonlinear function f so 
that ),...,( 21 ml xxxfy = . For a t sized subset of input 

variables in X denoted as { })()2()1( ,...,,
t

t
xxxX = , we 

create a new nonlinear function ),...,( )()2()1( txxxg  in 

which we aggregate the variables of t
XX !  by 

calculating the average of all values of ),...,( 21 mxxxf  
for these remaining variables. The elements in the t-
sized subset { })()2()1( ,...,,

t
xxx  are considered as the t 

most relevant variables if and only if their mean value 
of |f-g| is the smallest for all the t sized subsets of input 
variables in X.  

Let Xs = (xs1, xs2, …, xsk, …, xsm)T and Ys = (ys1, ys2, …, 
ysl, …, ysn)T be the input vector of structural parameters 
and the output vector of functional properties that 
correspond to the sample s (s∈{1, …, z}) respectively. 
All the measured data have been normalized to 
eliminate the scale effects and the learning data set 
contains z samples. In order to rank the relevant inputs 
for a given output yl, a criterion variable Fk,l (estimated 
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for each input variable xk and related to output variable 
yl) is defined as follows: 
 

 Fk,l = g1 . Hk,l + g2 . Sk,l (1) 

with k∈{1, …, m},  l∈{1, …, n},  g1 and g2 are two 
positive coefficients. 
 
The criterion Fk,l is designed for searching the best 
compromise between the sensitivity variation of 
measured data and the conformity of the human 
knowledge to measured data, represented by Sk,l and Hk,l 
respectively. The larger Fk,l is, the more relevant the 
input xk is to the output yl.  

2.3. Sensitivity of measured data 

The sensitivity is a distance based criterion for 
evaluating the effects of the input variables on the 
output variable. It is defined according to the following 
two assumptions: 
1) IF a small variation of the input variables 
corresponds to a large variation of the output variable, 
THEN the sensitivity of these variables is important. 
2) IF a large variation of an input variable corresponds 
to a small variation of the output variable, THEN the 
sensitivity of these variables is not important. 
 
The criterion of sensitivity for all input variables related 
to the output variable yl is defined by 
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where d(Xi, Xj) is the Euclidean distance between two 
input data Xi and Xj and d(yil, yjl) the Euclidean distance 
between yil and yjl.  
 
Evidently, Sl varies between 0 and 1. This criterion is 
used for evaluating the sensitivity of the whole set of 
input variables related to the output variable yl. If values 
of Sl are close to 1, then we consider that small 
variations of input data can cause big variations in the 
output space and the input variables are sensitive to 
measured data. If the values of Sl are close to 0, then we 
consider that big variations of input data correspond to 
small variations in the output space and the input 
variables are insensitive to measured data.  

 
The criterion Sl can be considered as a measure of 
information content in the input variables. However, for 
selecting relevant variables, we need to evaluate the 
information content after removing one or a group of 
input variables. The criterion of sensitivity related to the 
output variable yl when removing the input variable xk is 
then defined by 

( )
( ){ } !

!
!

"

#

$
$
$

%

&

= '
(

)
ji

zji jik

jlil
lk

,XXd

,yyd
S

,...1,

,
'

arctan
2

*
        (3) 

where ),(),(),(' 22
jikjijik XXdXXdXXd != and 

dk(Xi, Xj) is the projection of d(Xi, Xj) on the axis xk.  

 
From Eq. (2) and Eq. (3), we can easily obtain 1> Sk,l > 
Sl. For a specific input variable xk, if the value of Sk,l is 
bigger than any other sensitivity value Spl after 
removing related input variable xp (p≠k), then we 
consider that xk is the most insensitive to measured data 
because the remaining input variables after removing xk 
are more sensitive than those after removing any other 
individual input variable. According to the same idea, if 
the value of Sk,l is smaller related to the other input 
variables, then we consider that xk is the most sensitive 
to measured data because the remaining input variables 
after removing xk. are the least sensitive.  
 
In order to be conform to the definition of Fk,l in Eq. (1), 
i.e. big values of sensitivities correspond to relevant 
variables and small values of sensitivities to irrelevant 
variables, we transform Eq. (3) into the following form: 
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Evidently, values of Sk,l also vary between 0 and 1. The 
bigger the value of the sensitivity criterion Sk,l is, the 
more sensitive the corresponding variable xk is to 
measured data. 

2.4. Conformity of human knowledge to measured 
data  

In Eq. (1), Hk,l represents the degree of coherence 
between the human knowledge expressed in Table 1 and 
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the variation of measured data. Its principle is given as 
follows. If a variable xk has the same variation trend in 
learning data set as in the human knowledge, it will be 
considered as relevant. Otherwise, it will be considered 
as irrelevant. The universe of discourse of yl is divided 
into t equal intervals Clp (p=1, …, t). The set Akp is 
constructed using the projection of the input data set on 
the axis xk, which corresponds to the output interval Clp 
of yl. Ikp is generated by the overlap between Akp and 
Akp+1 (p∈{1, …, t-1}) (see Fig. 3). 

Table 1. Formalization of the human knowledge table. 

Structural parameters

(Input space) y 1 … y l … y n

x 1 R(x 1 ,y 1 ) … R(x 1 ,y l ) … R(x 1 ,y n )

… … … …

x k R(x k ,y 1 ) R(x k ,y l ) … R(x k ,y n )

… … … …

x m R(x m ,y 1 ) … R(x m ,y l ) … R(x m ,y n )

End-use functional properties (Output space)

 
positive influence: R(xi,yj) = +1 
negative influence: R(xi,yj) = -1 
no influence: R(xi,yj) = 0 
no human knowledge: Empty cell 

 
The human knowledge is summarized in Table 1. It is 
provided by a number of operators working on the 
related processes of nonwoven materials according to 
their experience. In practice, they have some incomplete 
qualitative knowledge on variation trends of end-use 
functional properties with non woven structural 
parameters. Each cell of Table 1 corresponds to one 
IF…THEN rule relating the input xk to the output yl. 
Several examples are given below. 
 
IF xk is increasing THEN yl is increasing: R(xk, yl) = +1 
IF xk is increasing THEN yl is decreasing: R(xk, yl) = -1 
There is no influence of xk on yl: R(xk, yl) = 0 
 
The element Hk,l can then be calculated using the 
following formula: 
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(5) 

 
As shown in Fig. 3, |Ikp| and |Ukp| are the lengths of the 
intervals, which respectively correspond to the 
intersection and union of Akp and Akp+1 (input space), 
related to Clp and Clp+1 (output space). 
 

xk yl

xkp
  inf

xkp+1
  inf xkp

  sup

xkp+1
  sup

C11
C1p C1p+1 C1t

Ukp Ikp

Akp

Akp+1

Input space
Output space

 
Fig. 3. Relationship between the input and output spaces. 

Eq. (5) can be interpreted as follows. hp represents the 
degree of coherence between the human knowledge and 
the variation of measured data in the two neighboring 
intervals Clp and Clp+1. Its value varies between 0 and 1. 
If Ikp=Φ and supinf

1 kpkp xx !+ , then the input data Xs’s (s=1, 
…, z) projected on the axis xk are increasing when their 
corresponding output data ysl’s vary from Clp to Clp+1. In 
this case, if the human knowledge R(xk,yl)=1 (xk has a 
positive influence on yl), then we consider that this 
human knowledge is strongly coherent with the data 
variation trend of xk in the two neighboring intervals Clp 
and Clp+1. From Eq. (5), we obtain hp=1 (the best case). 
If the human knowledge R(xk,yl)=-1 (xk has a negative 
influence on yl), then we consider that this human 
knowledge is strongly incoherent with the data variation 
trend of xk in the two neighboring intervals Clp and 
Clp+1. Then, we obtain hp=0 from Eq. (5) (the worst 
case). Similar interpretation can be given to the case of 
Ikp=Φ and infsup

1 kpkp xx !+ . If Ikp≠Φ and supsup
1 kpkp xx !+ , then 

we obtain a situation between the above two extreme 
cases (see Fig. 3) and the input data projected on xk are 
slightly increasing when their corresponding output data 
vary from Clp to Clp+1. If R(xk,yl)=1, then we consider 
that the human knowledge is weakly coherent with the 
data variation of xk in Cp and Clp+1. The degree of 
coherence hp is related to the overlap between the two 
data sets of xk corresponding to Clp and Clp+1. The 
smaller this overlap is, the closer the data variation of xk 
is to a strongly increasing case and the closer the value 
of hp is to 1. If R(xk,yl)=-1, the human knowledge is 
incoherent with the data variation of xk and we have 
hp=0. The other cases of hp can be interpreted in the 
same way. If we obtain big values for all hp (p=1, …, t-
1), then the value of the criterion Hk,l is also big and the 
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data variation related to xk is coherent with the human 
knowledge. 
 
After computing Hk,l and Sk,l, the value of the criterion 
Fk,l expressing the relevancy of each input xk to a given 
output yl can be determined. Then all the Fk,l’s (k=1, …, 
m) can be ranked in a descending order. Consequently, 
the input corresponding to the highest value of Fk,l will 
be the most relevant input to this output, and so on.  

2.5. Fuzzy logic based criterion for relevant 
variable selection 

Two main drawbacks exist when using the raking 
criterion Fk,l.  
- The coefficients g1 and g2 are difficult to be 

determined because the precise importance of the 
data sensitivity Sk,l, related to the coherence 
between human knowledge and measured data Hk,l, 
as well the precise ranges of these two variables, 
are generally unknown. 

- Some changes of Fk,l are not significant because the 
linear combination of Hk,l and Sk,l is too sensitive to 
data variation. 

 
In this paper, fuzzy logic is used to obtain a more robust 
ranking criterion of input variables. This new criterion 
is built according to the following fuzzy rules extracted 
from the human knowledge on the physical meaning of 
these two elements Sk,l and Hk,l. 
If Sk,l is big and Hk,l is big, then Fk,l is big. 
If Sk,l is big and Hk,l is medium, then Fk,l is medium. 
If Sk,l is big and Hk,l is small, then Fk,l is medium. 
If Sk,l is medium and Hk,l is big, then Fk,l is medium. 
If Sk,l is medium and Hk,l is medium, then Fk,l is medium. 
If Sk,l is medium and Hk,l is small, then Fk,l is small. 
If Sk,l is small and Hk,l is big, then Fk,l is medium. 
If Sk,l is small and Hk,l is medium, then Fk,l is medium. 
If Sk,l is small and Hk,l is small, then Fk,l is small. 
 
According to these knowledge based fuzzy rules, it can 
be seen that the coherence degree between human 
knowledge and measured data plays a more important 
role in the ranking of variables than the data sensitivity 
criterion. 
 
These fuzzy rules permit to build a fuzzy model in 
which Sk,l and Hk,l are taken as two input variables and 
Fk,l as an output variable. After the fuzzification 

procedure, each of them is transformed into a fuzzy 
variable with three fuzzy values: big, medium and 
small. For these three variables, we adopt triangular 
membership functions for the following reasons: 
- For a specific product family, the ranges of Sk,l, Hk,l 

and Fk,l can be approximately determined from 
experiments. These ranges permit to determine for 
each variable, three core numerical values 
corresponding to their linguistic values “big” (right 
extreme), “small” (left extreme) and “medium” 
(medium of the range). 

- For each of these three variables, their core values 
should not be overlapped between them. For 
example, if one variable is absolutely “medium”, 
then the membership degrees for “small” and “big” 
should be both 0.  

- To simplify, for any value between “small” and 
“medium” and between “medium” and “big”, the 
corresponding membership degree can be 
considered as a linear combination between its two 
extreme cases.    

 
 
 
 

 
 
 

 

Fig. 4. Membership functions of Sk,l  

The Mamdani method14 is used for calculating the 
output value from input values. 
 
We consider that the output variable Fk,l varies in the 
range of [0,1]. The more the value of Fk,l is close to 1, 
the more the corresponding variable xk is relevant. The 
membership functions of Sk,l are shown in Fig. 4 and 
can be denoted as Triangle(a,a,b), Triangle(a,b,c) and 
Triangle(b,c,c). The corresponding parameters a, b, c 
are defined by 
 

{ }
lk

k

Sa ,min= , { }
lk

k

Sc ,max=  and  

The membership functions of Hk,l and Fk,l are defined in 
the same way. 
 

2
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b

+
=
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This fuzzy logic based selection criterion takes into 
account both the conformity of human knowledge on 
process technology and the sensitivity of measured data 
to the functional properties. Moreover, it is a robust 
criterion and less sensitive to measuring noises than 
linear combinations. It is closer to human knowledge on 
the corresponding process and products. According to 
this procedure, the most relevant structural parameters 
of nonwoven products are obtained and will be used in 
the further modeling procedure. In this way, the 
complexity of the model can be largely decreased and 
the parameters of the model will be more concise and 
easier to be interpreted physically.  

3. Modeling with Artificial Neural Networks 

The artificial neural networks (ANNs) have been used 
for modeling complex nonlinear problems including 
various fiber product-related applications.15, 16  
 
The existing work on neural network design for small 
training sets of high dimension has been studied in Ref. 
17, 18 and 19. In Ref.17, a diffusion-neural-network has 
been developed for learning from a small number of 
samples. In this learning procedure, a number of derived 
samples are generated from original samples using the 
method of information distribution.20 According to 
Ref.19, modeling with few learning data can be solved 
by 
- reducing the number of input variables by feature 

selection;  
- deploying a rapid, greedy algorithm to identify a 

good number of nodes to use in hidden layer 
configuration. 

  
The feature selection problem has been discussed in 
Section 2. In order to find an optimal neural network 
architecture, the projection pursuit regression21 
combined with slicing inverse regression22 is used. 
Projection pursuit regression introduces a regression 
family that can be modeled as a sum of subnets of a 
single hidden layer neural network. This idea can be 
used for determining the number of nodes in a single 
hidden layer.  
 
 
 
 
 

 
 
 
 
 
 

Fig. 5a. General model including only public structural 
parameters 

 
 
 
 
 
 

Fig. 5b. Special model including public and special structural 
parameters 

In this section, we use ANNs for modeling the 
relationship between the structural parameters and the 
properties of nonwoven fabrics. In general, different 
nonwoven materials have different structural parameters 
determined by specific applications, applied 
technologies and production conditions. Even in the 
same application field, different technologies are used to 
manufacture nonwoven products. In this case, the 
structure of materials varies with applied technology 
and the corresponding nonwoven products are then 
classified into a number of families each corresponding 
to one type of structure. Consequently, all the structural 
parameters are divided into two groups. One group 
includes public structural parameters available for all 
the families of products and the other group includes 
special structural parameters available for each specific 
family. Accordingly, two neural network models are 
built. The general model (Fig. 5a) takes all the public 
structural parameters as its input variables. This general 
model can be used by all the families of products. For 
each specific family, a special model is developed (Fig. 
5b). It takes both the public and the special structural 
parameters of this family as its input variables.  
 
In order to solve the problems related to the lack of 
available learning data or samples, small scaled ANN 
models are built. In practice, the performance of an 
ANN model is strongly related to the relationship 
between the number of its input variables m and the 
total number of learning data w. According to Ref. 16, 
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for a three layered neural network used in this paper, 
this relationship can be described as follows. 

 
The neural network includes m input variables (m 
neurons) each corresponding to one structural 
parameter. The output layer includes only one neuron 
corresponding to the specific functional property of 
interest. The number of hidden neurons, denoted as m2, 
should be at least 2. In this case, we have m×m2 weights 
connecting the input layer to the hidden layer and m2 
weights connecting the hidden layer to the output layer. 
Also, we have m2+1 biases in this neural network 
(hidden layer and output layer). Then, the total number 
of unknown variables in the model (weights and biases) 
is m2(m+2)+1. In order to maintain that the number of 
unknown variables is no bigger than the number of 
learning data or constrained conditions, we should have 

 m2(m+2)+1 ≤ w (6) 

Given a fixed number of learning data w and 
considering a minimum of 2 hidden neurons, the 
maximal value of the number of input variables should 
be (w-5)/2.  
 
In our experiments, only 18 learning data are available. 
Then, we take five input variables in the general model 
and six input variables in each special model. 
 
In the general model, the transfer functions of the 
hidden neurons and the output neuron are the hyperbolic 
tangent function and pure linear function, respectively. 
The Levenberg-Maquardt fast learning procedure,3 
based on a second order error back propagation 
algorithm, is then used for determining the parameters 
of the neural network from the public learning data sets. 
 
In the special model of each family, the weights and 
biases connecting the public inputs to the hidden layer 
neurons, as well as those connecting the hidden layer to 
the output layer, are kept as the same values as in the 
general model. Only the weights connecting the special 
input neurons to the hidden layer neurons are adjusted 
using the error back propagation algorithm. 

4. One Industrial Application 

In our work, 18 samples describing 3 nonwoven 
families (6 samples per family) have been used for 
studying the following functional properties: water 

permeability, filtration level, breaking resistance in both 
the Machine Direction (MD) and the Cross Direction 
(CD), elongation at peak (MD/CD) and bursting 
strength. The number of samples is rather limited 
because of their high production cost and long 
production time. In fact, these 18 samples are rather 
diversified and representative because their 
corresponding process parameters can cover almost all 
the important working points.   
 
These three nonwoven families are different in the 
formation (drylaid or spunlaid webs) and the bonding 
technologies (thermal or chemical bonding). For 
simplicity, only the modeling procedure and the results 
related to the water permeability are discussed in this 
section.  

4.1.  Identification and selection of the structural 
parameters 

In general, the nonwoven structural parameters are 
firstly listed according to their own characteristics (raw 
material, fiber count, crimp and length, thickness, basis 
weight, porosity, basis weight uniformity, fiber 
orientation, etc.) and then selected by nonwoven experts 
according to their possible influence on each functional 
property. Some structural parameters are difficult to be 
obtained due to the lack of characterization techniques 
or measuring instruments. 
 
In our study, 24 public structural parameters are 
selected by the experts for all the families. They are the 
fiber length, fiber count, total pore volume, basis weight 
uniformity, thickness, fiber density, basis weight and so 
on. The special structural parameters of these three 
families are the binder rate, the spunbond and the 
calendaring surface ratio, respectively. 
 
If we take all these 24 structural parameters as input 
variables, the corresponding model can not be efficient 
because the number of learning samples is limited to 18, 
which is too small related to 24 input variables. In that 
case, the number of parameters for the ANN model 
would increase to 53 according to the formula (4), 
considering only 2 hidden neurons. 
 
In order to reduce the complexity of the model and 
effectively learn the parameters of the model from a 
small number of data, we select the most relevant 
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structural parameters using three methods, i.e. the data 
sensitivity based ranking method, the linear 
combination based ranking method and the fuzzy logic 
based ranking method. In the linear combination 
ranking, the same weight (0.5) is assigned to each of the 
human knowledge criterion (H) and the data sensitivity 
(S). Table 2 gives the most relevant structural 
parameters related to the water permeability, obtained 
using these three ranking methods respectively.  

Table 2. Ranking of the structural parameters according to 
their relevancy to water permeability. 

 
Structural 
parameters 

Data 
sensitivity 

S       rank 

Cohe-
rence 
degree 

H 

Ranking by 
linear 

combination 

F1       rank 

Fuzzy logic 
based ranking 

F2        rank 

Basis 
weight 

0.1000 7 0.6177 0.3588 1 0.5000 3 

Thickness 0.1006 6 0.5212 0.3109 2 0.5000 3 
Fiber 

density 
0.1086 1 0.4574 0.2830 3 0.5574 1 

Total pore 
volume 

0.1036 5 0.4248 0.2642 4 0.5000 3 

Basis 
weight 

uniformity 

0.1052 2 0.3333 0.2193 5 0.5020 2 

Fiber count 0.1052 2 0 0.0526 6 0.3287 6 
Fiber 
length 

0.1045 4 0 0.0523 7 0.2119 7 

 
Table 2 shows that the fuzzy logic based ranking (F2) 
takes the fiber density, the basis weight uniformity and 
the total pore volume as the most relevant structural 
parameters for the property of water permeability. This 
result completely conforms to the knowledge of 
nonwoven experts on the process and the products and 
is more efficient than the ranking results of S and F1. 
Also, Table 2 denotes a significant difference between 
the result of the data sensitivity criterion (S) and those 
of the combination of human knowledge and data 
sensitivity (F1 and F2). The result of data sensitivity 
does not give high ranking orders to total pore volume, 
thickness and basis weight but emphasizes the fiber 
count, which is not significant in physical knowledge. In 
the result of the linear combination based ranking F1, 
basis weight uniformity is considered as an irrelevant 
parameter, which is quite different from the physical 
knowledge. 
 
In general cases, we can conclude that when using small 
sets of data for selecting relevant variables, human 
knowledge seems to positively affect the final ranking 

result and more relevant than data sensitivity based 
criterion. Moreover, the use of the fuzzy logic based 
ranking brings more efficient results. As this procedure 
aims at finding a suitable compromise between the data 
sensitivity and the human knowledge, it gives better 
results in the combination of the two sources of 
information.  

4.2. Modeling the FP/SP relations for each 
product family 

 

fiber density

uniformity

basis weight

binder rate

water permeability

special parameter

public parameters

Structural parameters Functional property

 
Fig. 6. Special model concerning water permeability for the 
chemical bonded family 

A general model is built using a neural network for all 
the nonwoven samples. It characterizes the relationship 
between the selected structural parameters and the 
corresponding functional property. For the property of 
water permeability, using the fuzzy logic based ranking 
method, we take the five most relevant structural 
parameters as public input variables.  
 
A special model is built for the family of nonwoven 
materials produced using a specific bonding technology 
(chemical bonding). Its architecture and parameters are 
built based on the corresponding general model. The 
binding rate is added to the set of the input variables of 
the general model. Fig. 6 shows the special model built 
for predicting the water permeability with five public 
parameters (basis weight, thickness, fiber density, total 
pore volume and basis weight uniformity) as input 
variables. The special structural parameter (binder rate) 
is then added to the set of these five input variables. 
 
In this application, the general model is based on 18 
samples of three product families. Each family is 
composed of 6 samples. We use the leave one out 
technique to test the effectiveness of the general model 
and the special model. This technique is described as 
follows. We carry out 18 tests. In each test, we remove 
one sample from the learning base for testing the 
models. The remaining 17 samples are used for learning 
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the general model and the remaining 5 samples of the 
corresponding family are used for learning the special 
model. Next, for the testing sample, we calculate the 
difference between the real value of the water 
permeability, the output of the general model and the 
output of the special model. This procedure is repeated 
for 18 times so that all samples can be removed from 
the learning base for testing the models. 
 
According to Eq. (6), the number of learning data 
related to 5 input variables should be no smaller than 
15. Then, the leave one out technique with 17 learning 
data permits to obtain efficient results in the general 
model. 

4.3. Prediction assessment of the product 
functional properties 

Table 3. Experimental results on the functional property 
“water permeability” for three product families. 

Removed 

sample

Experimental 

value (l/m?/s)

Predicted value 

(l/m?/s)
Error (%)

Predicted value 

(l/m?/s)
Error (%)

1 1103 1004 9.0% 1093 0.9%

2 972 997 2.6% 985 1.3%

3 889 832 6.4% 905 1.8%

4 735 692 5.9% 723 1.6%

5 723 676 6.5% 709 1.9%

6 721 775 7.5% 708 1.8%

7 609 583 4.3% 598 1.8%

8 607 629 3.6% 618 1.8%

9 562 532 5.3% 571 1.6%

10 539 502 6.9% 529 1.9%

11 445 410 7.9% 453 1.8%

12 427 394 7.7% 419 1.9%

13 374 405 8.3% 369 1.3%

14 324 301 7.1% 318 1.9%

15 318 288 9.4% 324 1.9%

16 221 204 7.7% 219 0.9%

17 217 226 4.1% 219 0.9%

18 181 167 7.7% 184 1.7%

Average prediction error (%): 6.55% 1.60%

General model Special model

 
 
Table 3 gives the details of the experimental results on 
the water permeability and the corresponding predicted 
results obtained from the general model and the special 
model. Fig. 7 compares the predicted and the 
experimental values of the water permeability obtained 
from the general and the special models and the real 
physical measures, respectively. 
 
In this experiment, we found that the proposed ANN 
models give satisfying results with low values of the 
averaged prediction error, despite the restricted amount 
of data. 
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Fig. 7. Comparison general/special models, related to water 
permeability 

From these experimental results, we can see that the 
special model gives lower prediction errors (averaged 
error: 1.60%) than the general model (averaged error: 
6.55%). This observation can be explained as follows: 
1. The general model makes use of samples from 

several families which differ from each other in 
many aspects while the special model only uses 
samples from the same family. The specificity of 
each family can not be taken into account in the 
general model. 

2. The special model is built based on the same 
structure as the general model. Only the weights 
connecting the specific input to hidden neurons are 
introduced. So, it takes into account both the 
specificity of each product family and the 
generality of all families.  

5. Conclusions 

In this paper, a support system is proposed for 
optimizing the design of nonwoven products, in 
accordance with the specifications. The relationship 
between structural parameters and functional properties 
of nonwoven products is modeled using artificial neural 
networks. In order to reduce the complexity of the 
models and solve the difficulty of insufficient available 
data, the most relevant structural parameters are selected 
according to data sensitivity and human knowledge 
conformity. A fuzzy logic based selection criterion is 
developed in order to find the best compromise between 
these two sources of information. The selection 
procedure of structural parameters allows designers to 
focus on the most relevant parameters in order to 
conduct production experiments related to the new 
product. In the modeling procedure, two models are 
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defined. A general model is firstly developed for all 
families of products. It is built from the set of public 
input variables. A special model is then built for each 
family of products by adding special structural 
parameters to the set of public input variables. The 
simulation of these models allows designers to optimize 
structure of materials and minimize the number of 
experiments. 
 
The proposed method has been successfully applied to 
the nonwoven industry to predict three functional 
properties: water permeability, breaking resistance and 
elongation at peak in machine direction. The simulation 
results show low prediction errors for both the general 
and the special models. In our future work, this 
modeling procedure can be further improved by finding 
new methods to process the existing constraints such as 
small amount of data, interdependencies between 
structural parameters and integrate human knowledge 
on processes and products.  
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