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Abstract

This paper describes a method for finding a fuzzy membership matrix in case of numerical and categorical features.
The set of feature vectors with mixed features is mapped to a set of feature vectors with only real valued
components with the condition that the new set of vectors has the same proximity matrix as the original feature
vectors. This new set of vectors is then clustered using fuzzy c-means. Simulations show the method to be very
effective in comparison with other methods.
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1. Introduction

The first stage of knowledge acquisition and reduction of
complexity concerning a group of objects is to partition or
divide the objects into groups based on their attributes or
characteristics. “Organizing data into sensible groupings is
one of the most fundamental modes of understanding and
learning” [1]. “A fundamental operation in data mining
is the partitioning of a set of objects represented by
data into homogeneous groups or clusters” [2].
Identification of object types is one of the first steps of
knowledge acquisition.
Clustering [1, 3, 4] is a popular approach to implementing
the partitioning. It is unsupervised classification,
aggregation and segmentation [5]. It is the problem of
partitioning a set of objects into classes (called clusters) so
that (i) the objects belonging to the same class are similar
and (ii) the objects belonging to different classes are
dissimilar. By partitioning objects into clusters, interesting
groups may be found such as the groups of consumers
having a particular property useful for market analysis [6].
Objects can be partitioned into clusters (or called groups)
according to their proximity in terms of features. Clusters
are then information granules, with each cluster equating
to a granule, and hence can be used in computationally
intelligent systems as units of learning and reasoning. The
word “proximity” is used as a general term representing
both similarity and dissimilarity.

Unsupervised clustering has been extensively studied in
machine learning, databases, and statistics from various
perspectives. Many applications of clustering have been
discussed and many clustering techniques have been
developed. There are two main clustering methods.
Statistical clustering methods [3, 4, 7] partition objects
according to some proximity measures, whereas
conceptual clustering methods cluster objects according
to the concepts the objects carry [8, 9]. For automatic
clustering, both a method of determining proximity (
similarity or dissimilarity) between feature vectors and a
method for determining representatives (prototypes) of
clusters are generally required.
Proximity of objects is generally based on their feature
vectors. These feature values or attributes may be of ratio
scale, interval scale, ordinal scale or categorical scale [10].
Grouping the first two together, feature values can also be
divided into 3 types : numerical, ordinal and categorical.
Numerical feature values are well understood. Examples
of values of an ordinal feature are labels such as Infant,
Child and Adult that can be ordered. An example of a
categorical feature is colour with values such as Red, Blue
and Yellow where no ordering is sensible unless based on
position in the frequency spectrum.
The problem of clustering becomes very challenging when
the data is ordinal or categorical, that is, when there is no
inherent proximity measure between data values. Often
ordinal features are treated as either numeric or

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 285-298

Published by Atlantis Press 
  Copyright: the authors 
                  285

zegerkarssen
Typewritten Text

zegerkarssen
Typewritten Text
Received: 31-03-2008
Revised:  07-11-2008




R. Brouwer

categorical. Both of these approaches are incorrect.
Numerical feature values are easily handled in clustering
because values can be summed and compared. Summing
and division allows the center ( centroid or prototype) of a
set of values to be computed. The dissimilarity between
two numerical values can be easily computed by taking
the difference. Proximity is a general term for similarity
and dissimilarity but without loss of generality we will
restrict ourselves to dissimilarity from now on.
Categorical feature values do not have any relationship
except for equality among them, and hence the
dissimilarity between two values cannot be readily defined
except in terms of equality. There is no ordering. The
distance between two different values, e.g., Male and
Female, can be defined as 1, and the distance between two
identical values can be defined as 0. Ordinal feature
values are similar to categorical values in that arithmetic
operations do not make sense and a method for finding the
center of a set of values is not obvious.
Clustering may be either crisp or fuzzy. In the former
case, each object is placed in one and only one cluster. In
the latter case, an object is assigned to all clusters to
varying degrees. This degree may be close to zero and
even zero for some feature vectors and clusters. A
commonly used method of strictly crisp clustering is the
k-means. Fuzzy versions of the k-means algorithm are due
to Ruspini [11] and Bezdek [12], where each object is
allowed to have membership values for all clusters rather
than having a distinct membership in exactly one cluster.
The membership matrix is a generalization of the
membership matrix obtained in crisp clustering in which
case it may be called a characteristic matrix. If, after fuzzy
clustering, it is still desired to put an object into a single
cluster the cluster/class/group assigned to an object can be
chosen to be the cluster in which the object has maximum
membership value. The process is then that of fuzzy
clustering but the result is crisp clusters. Fuzzy clustering
in this instance is used as an intermediate step to reduce
the effect of noise. Working only on numeric data limits
the use of these k-means-type algorithms in such areas as
data mining where large categorical data sets are
frequently encountered. Categorical and ordinal data is
plentiful in real-world databases.
Representing clusters requires determination of cluster
prototypes as clustering takes place. Using cluster
prototypes has both an advantage and a disadvantage. The
advantage lies in the fact that it is not required that
dissimilarity between all object pairs be determined. The
disadvantage is that a way of aggregating feature vectors
is required. Thus two operations rather than one have to be
defined. This may not represent a problem in case of
feature vectors where all the features are of the ratio scale
or interval scale variety. In that case, addition of numbers

is a logical form of aggregation. In case of ordinal and
categorical features however, we may have a problem and
it may be useful to drop the aggregation requirement.
Sometimes feature vectors are not even available. The
data in some psychometric applications are collected as
proximities only [1]. In that case relational clustering
methods apply[13-17]. Converting a matrix of feature
vectors into a proximity matrix requires that dissimilarity
between individual feature values is measurable. The
dissimilarity between feature vectors is then an
aggregation of the initial proximities.
Following this introduction the paper commences with a
brief review of the literature. Next is a brief description of
fuzzy c-means. This is followed by a description of the
proposed method. A discussion on clustering quality
measures follows next. Results of simulations and
experiments are provided next followed by a description
of future work, conclusion and summary.
To allow variable names of more than one letter and
thereby permit variable names to be mnemonic, all
operations are denoted by explicit operators.
Multiplication, for example, is defined explicitly using the
operator . Implicit multiplication will not exist and na
for instance is just a variable name. Names of arrays are in
bold font. Rank-1 array variables are in lower case and
names of arrays of rank greater than 1 are in capital.
Division and multiplication between arrays are generally
between the components of the arrays.

2. Previous work

Many algorithms have been developed for clustering cate-
gorical data [4, 8, 18-43]. Algorithms for clustering
categorical data include hierarchical clustering methods
using Gower's proximity coefficient [42] or other
proximity measures [24], the PAM algorithm [4], the
fuzzy-statistical algorithms [43], and the conceptual
clustering methods [8].
Some of the work will now be briefly described as noted
by the authors in their abstracts. Ralambondrainy [41]
presents an approach to using the k-means algorithm to
cluster categorical data. His approach is to convert
multiple category attributes into binary attributes (using 0
and 1 to represent either a category absent or present) and
to treat the binary attributes as numeric in the k-means
algorithm. A drawback is that the cluster means, given by
real values between 0 and l, do not indicate the
characteristics of the clusters. Huang in his paper [20]
presents two algorithms that extend the k-means algorithm
to categorical domains and domains with mixed numeric
and categorical values. The k-modes algorithm uses a
simple matching dissimilarity measure to deal with
categorical objects, replaces the means of clusters with
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modes, and uses a frequency-based method to update
modes in the clustering process to minimize the clustering
cost function. With these extensions the k-modes
algorithm enables the clustering of categorical data in a
fashion similar to k-means.
The authors of [26] also describe extensions to the fuzzy

k-means algorithm for clustering categorical data. By
using a simple matching dissimilarity measure for
categorical objects and modes instead of means for
clusters, a new approach is developed, that permits the use
of the k-means paradigm to efficiently cluster large
categorical data sets. Guan etal. [27] define new distance
based on the improved Levenshtein distance with the
tolerance relation for incomplete categorical data, and a
new dissimilarity strategy for incomplete numerical data.
Li etal. [29] present a novel clustering algorithm for
mixed data sets by modifying the common cost function;
the trace of the within cluster dispersion matrix. A genetic
algorithm (GA) is used to optimize the new cost function
to obtain valid clustering result.
In [32] the clustering technique uses an FCM-type simple

iterative algorithm that includes a quantification step. In
the quantification step, the category scores are derived so
that they suit FCM clustering considering cluster centers
and memberships. Li etal. [34] in their paper study the
entropy-based criterion in clustering categorical data.
They show that the entropy-based criterion can be derived
in the formal framework of probabilistic clustering models
and establish the connection between the criterion and the
approach based on dissimilarity coefficients. The authors
in [35] introduce clustering based on compressed data
that is an extension of the Birch algorithm. Its main
characteristics refer to the fact that it can be especially
suitable for very large databases and it can work both with
categorical attributes and mixed features. The authors in
[36] develop an ensemble based mixed attribute cluster
model for mixed numeric and categorical databases based
on the cluster ensemble method. The method has excellent
scalability according to its originators.
Ramakrishna and Minho [37] propose an algorithm,
although hierarchical in essence, that avoids the
characteristic error propagation through reassignment and
deletion of bad clusters. They also propose new indices
for cluster validation in categorical datasets, an area that is
almost unexplored.
Ahmad and Dey [39] propose a method to compute
distance between two attribute values of the same attribute
for unsupervised learning. This approach is based on the
fact that similarity of two attribute values is dependent on
their relationship with other attributes. They use the
proposed distance measure with k-mode clustering
algorithm to cluster various categorical data sets.

3. Fuzzy c-means

The traditional fuzzy clustering method is called the fuzzy
c-means (FCM) [12, 44]. Fuzzy clustering is less sensitive
to noise than crisp clustering and may be used even when
the desired result is crisp clusters. This method of
clustering requires that attributes be numeric. FCM in the
main consists of repeatedly determining prototypes for the
clusters to be found and calculating membership values
for the feature vectors in the clusters. Every attribute value
in a prototype is the weighted mean over all members of
the data set to be clustered with weights equal to a power
of the degree to which an object belongs to a cluster.
Formally, let the weights or membership values for
clusters be designated by Mp,k; the membership of feature
vector p in cluster k. Also let Fp,a represent the parameters
for the attribute values themselves within feature vectors.
The ath attribute of the prototype for cluster k is
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Dp,k is the distance or dissimilarity between feature vector
p and prototype k. Aggregation of feature vectors and
therefore of feature values is required in (1); thereby
constraining the use of FCM. As argued before
aggregation may not always be possible. The required
arithmetic operations may not be defined or the feature
vectors may not be defined and only dissimilarities
between feature vectors are known. In this case another
approach has to be pursued. This is the essence of this
paper and is explained next.

4. Proposed Method

This section introduces a method for clustering of
categorical feature vectors that is based on replacing the
original set of feature vectors that contain both categorical
and numeric features with another set of vectors in (+)q

where q is some fraction of the number of components in
the original feature vectors. This new set of vectors, that
has only numeric components, is then clustered using
FCM. Applying FCM at this juncture is now possible
because the new set of vectors, the rows of F`, have only
numeric components. FCM is desirable since it is very
effective if the input is of the right form ie. all components
are of interval scale.

4.1. Distance between two mixed feature vectors

Unless a dissimilarity matrix, D(F), for the original set of
feature vectors to be clustered is available the distance
between two mixed feature vectors is found as follows.
Distance for mixed feature vectors

Consider two feature vectors with both numerical and
categorical features (n1,1..n1,nna, c1,1,..c1,nca) and
(n2,1,..n2,nna, c2,1,..c2,nca). Then the distance is

2 2 2
1, 2, 1, 2,

1

( ) ( )
nna nca

i i i i
i i=1

dn dc


     n n c c

(3)

1, 2, 1, 2,, and ,i i i ii = 1..nna i = 1..ncan n c c are the

numerical and categorical attributes respectively for the
two feature vectors.

The numerical attributes should be pre-processed such that
all are in [0,1]. This is so that values of numerical attribute
differences will be of the same order of magnitude as
values of the categorical attribute differences. A definition

of aggregation of categorical feature values is not required
here since prototypes do not need to be determined.
If F is the matrix whose rows are the feature vectors with

mixed numerical and categorical features then
( )FD a

dissimilarity matrix based on feature vectors, is defined by
(4).

 
2( )

, ,. ,. , ,
1

( , ) , 1..
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i j i j i s j s
s

i j np


   FD D F F F F (4)

F i,s is the value for the sth attribute of the ith feature.

4.2. Mapping the original set of Feature Vectors, F,
to another set of Feature vectors F’ using
Gradient Descent

A method for determining F’ from F or from D(F), if it is
available, is to use gradient descent on the sum of the
squares of the errors between the two dissimilarity
matrices, D(F) and D(F`) as in

,

1
=

2
2
i, j

i j

e E (5)

With

( ') ( ) F F'E D D (6)

since dissimilarity has to be preserved.
( )F'D and

( ')FD are the distance matrices for F’ and F respectively.
Since the distance function is symmetric and distances
between identical feature vectors are zero we really only
need to be concerned with the part of the matrices above
the main diagonal. The error, e, will be 0 if and only if

( ) ( ')F' FD D .
Now

,

,

( )i j i, j

i j

e
e


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
E E

E
(7)

To ensure non-negative values of the components of F’
we can define it in terms of an auxiliary matrix variable X
as F’=X 2. The values of X are updated according to (8).

0 e  XX X (8)

The expression for the gradient is given by (9)
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Derivation of eX

According to the chain rule

,

, , , , ,
, ,, , ,

( ) ( ) ( )r s

i j r s r s i j
r s r si j r s i j

e e
e e

 
       

  
 X F' X

F'
F'

X F' X

(10)

and

( )

( )
, ( )

, , , , ,( )
, ,, , ,

( ) ( ) ( )pq

r s pq pqr s
pq pqr s pq r s

e e
e e

 
      

  
  F'

F'

F'
F' F'F' D

D
D

F' D F'

(11)

and

( ) ( )

,

, , , , ,( ) ( )
, ,, , ,

( ) ( ) (t u

pq t u t u pq
t u t upq t u pq

e e
e e )

 
      

  
 F' F'EF' F'D D

E
E

D E D

(12)

Now

, ,( )t u t ue E E (13)

It can be shown that

( ') , ,( t,u,p,q t p u q)     FD
E (14)

,i j is the Kronecker delta function that is equal to 1 if i

is equal to j and 0 otherwise. By substitution of (13) and
(14) into (12) we get
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By substitution of (15) and (16) into (11) we get
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It can be shown that
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By substitution of (17) and (18) into (10) we get
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Q.E.D.
Feedback for controlling the number of iterations is
provided by the root mean squared error defined by (20).

( ) ( ) 2
, ,

, 1

( )
np

i j i j
i j

RMSE
np np








 F' FD D

(20)

The algorithm may be summarized as follows. For
controlling the number of iterations the root mean square
error defined in (20) is used.
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Algorithm
Initialize

D(F) using (3) and (4)
X using random numbers
F’= X2

D(F’) using (3) and (4)
E using (6)
RMSE using (20)

while (RMSE > predetermined amount) and (number of
iterations < than predetermined number)

determine

eX using (9)

X using (8)
F’= X2

D(F’) using (3) and (4)
E using (6)

RMSE using (20)
end while

The number of components required for F’ is not large
and 5 components is sufficient to capture the
dissimilarities between feature vectors as demonstrated by
simulations
Another method for determining vectors given inter vector
distances is a class of methods called multidimensional
scaling [45].

5. Clustering Quality Measures Utilized for
Comparing Methods

Determining the quality of clustering can be done by
comparing the result of clustering, the cluster partition, to
a known correct partition, the class partition, if it is
available. A key to comparing two crisp partitions, P(1)

and P(2), is the contingency table, C. Entry Ci,j is the
number of objects in subset i of P(1) and subset j of P(2).
Interestingly P(1) and P(2) can also be determined from C
to within a labelling of the elements.
Several well known measures for comparing two

partitions are obtained from the contingency table
including the Rand index (RI) [46], Adjusted Rand
index(ARI) [47-49] and Jaccard index (JI) [34]. If one of
the partitions is an assumed correct class partition and the
other partition is the result of clustering, then these
measures become clustering quality measures. They are
defined in terms of the following parameters as shown.
The quality indices are measured in terms of bonded pairs
of elements. For two elements to be bonded in a partition
means that they are in the same subset of the partition.
The total number of unordered pairs of elements,
including both bonded and unbonded, is

2

n
np

 
  
 

(21)

The total number of unordered pairs of elements bonded
in both P(1) and in P(2) is

,(1,2)

2
i j

j i

C
n

 
  

 
 (22)

2

i, j 
 
 

C
is the number of unordered pairs in set i of P(1)

and in set j of P(2). The total number of unordered pairs
of elements bonded in P(1) is

,(1)

2

i j
j

i

C
n

 
 

  
 
 


 (23)

The total number of unordered pairs of elements bonded
in P(2) is

,(2)

2

i j
i

j

C
n

 
 
 
 
 

 (24)

The following parameters that make up the indices can
then be defined

(1,2)a n (25)
a is the number of unordered pairs of objects whose
components are bonded in P(1) and also bonded in P(2)

(1) (1,2)b = n n (26)
b is the number of unordered pairs of objects whose
elements are bonded only in P(1)

(2) (1,2)c = n n (27)
c is the number of unordered pairs of objects whose
elements are bonded only in P(2)

(1) (2) (1,2)( )d np n n n    (28)

d is the number of unordered pairs of objects whose
elements are not bonded in P(1) and not bonded in P(2).
The Rand index(RI)[46] is then defined as

a+d
RI

a+b+c+ d
 (29)

The adjusted Rand index (ARI) [47-49] corrects the RI to
give a constant expected value of 0 and may be calculated
according to the formula (30)[50]
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 
   2 2

2

2

a d b c
ARI =

c +b + a d + a+ d c+b

  

  
(30)

or more intuitively
(1) (2)

(1,2)

(1) (2) (1) (2)

2

n n
n

np
ARI

n n n n

np





 



(31)

The Jacquard index(JI) [47] defined as:

a
JI =

a+b+c
(32)

Another commonly accepted clustering quality measure
based on comparing a cluster partition to an assumed
correct class partition is the cluster purity index. A cluster
is defined as pure if all the elements in the cluster come
from one class. If all the clusters are pure then each
column in the contingency matrix will have exactly one
non-zero entry. A measure of this is clustering purity
(CPI) defined as in (33).

,

max
i j

j i
CPI

n

 C

(33)

The variable n is the total number of elements. The
maximum value for CPI is 1 when the maximum in each
column is the only non-zero entry. This measure assumes
that one of the partitions, the class partition, is correct . If
no such assumption is made and both partitions play the
same role as they do in the RI, the ARI and JI we can
define an index , called purity index, that is the average of
class and cluster purity as in

, ,

max max

2

i j i j
j ii j

PI
n






 C C

(34)

This will be 1 if there is exactly one non-zero entry in
each row and each column. The PI penalizes for the
number of sets in the partitions not being equal as do the
RI, ARI, and JI.
Huang etal. in [26] and later Kim et al. in [51] a use a

measure that is equivalent to Cluster Purity and called
Huang's accuracy measure by Kim etal.

j
j

a

H
n




(35)

aj is the number of elements in cluster j that belong to the
correct class. The correct class for a cluster is defined to
be the class with the maximum number of elements in the
cluster.
An example of a contingency matrix for 71 objects is
given below in Table 1. In this case CPI is equal to 34/56
or 0.607 if we assume that P(1) is the class partition and
that P(2) is the cluster partition.

Table 1 Example contingency matrix

P(2)

P(1)

3 2 1 8
7 3 3 1
2 1 9 2
1 10 2 1
5 3 5 2

In case of the example RI=0.700, ARI=0.200, JI=0.242,
CPI=0.607 and PI=. 0.514
There are more clusters than classes in the example and
CPI does not penalize the situation where the number of
clusters is unequal to the number of classes.
In [52] the authors recommended the adjusted Rand index
as the index of choice after many different indices were
evaluated for measuring agreement between two partitions
in cluster analysis with different numbers of clusters [53].

6. Simulations

Simulations are performed to determine the effectiveness
of the proposed method that is applied to both artificial
and real data sets. The proposed method, Method 0, is
compared to other methods implemented by the author
here that will be referred to as Methods 1 and 2. Method
1 consists of replacing each categorical attribute with a
number of binary attributes equal to the number of
categories as proposed by Ralambondrainy [31]. Method
2, the naïve method, consists of replacing categories by
numbers that are then treated as being numerical. Results
show that this simple method can do just as well or better
than some more complex methods and is therefore
included in the comparison.
Results for the proposed method are also compared to

results obtained by other researchers using their own
proposed methods. The methods proposed by these
researchers are not implemented and only their values for
certain indices that they have provided are used. This
means that values for some indices for some methods are
not available since contingency tables are not provided so
that the values can be calculated.
The fuzziness index, m, used in FCM, is kept at 2
throughout. The real data sets are from the UCI Machine
Learning Repository [55].
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6.1. Methods 0,1, and 2 applied to an Artificial Data
set

The first simulation involves applying the method of this
paper to an artificial data set. This data set is generated by
first producing 5 vectors with 20 randomly produced
components of integers between 0 and 19. Each of these
five vectors is then copied 20 times producing a matrix of
dimension 100 by 20 and 5 classes with 20 elements in
each. To this matrix of feature vectors is added a binary
matrix of the same dimension. The probability of a 1 in
this matrix is 80%. The resulting matrix is the data set
that is used with the integers treated as categories. Adding
a 1 is as drastic as adding any other number except for 0
since not differences but only equality is considered for
measuring distance between categorical values in Method
0.
For the learning of the distance-equivalent feature vectors,
the learning rate was 0.001. The total number of iterations,
to obtain F’, was 1000. The number of components in the
original feature vectors was 20. The number of
components in the distance-equivalent feature vectors is
set to 5. The reduction in the root mean square error over
the iterations is shown in Figure 1. The root mean square
error is over the differences between the components of
the two dissimilarity matrices as defined by (20).
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Figure 1 Training schedule to obtain distant equivalent
vectors for artificial data set

Below in Table 2 is the contingency matrix for method 0
applied to the artificial data set.

Table 2 Contingency matrix for artificial data and
method 0

cluster
class

0 1 2 3 4

0 0 0 0 20 0
1 20 0 0 0 0
2 0 20 0 0 0

3 0 0 0 0 20
4 0 0 20 0 0

The contingency matrix for method 1 and the same input
is in Table 3.

Table 3 Contingency matrix for artificial data and
method 1

Cluster
class

0 1 2 3 4

0 0 0 0 0 20
1 0 0 0 5 15
2 6 14 0 0 0
3 8 6 0 0 6
4 6 0 0 0 14

There are 3 maximum in column 4 corresponding to class
4. The contingency matrix for method 2 is in Table 4.
The contingency matrix is the basis for all the clustering
quality measures here.

Table 4 Contingency matrix for artificial data and
method 2

cluster
class

0 1 2 3 4

0 15 0 0 0 5
1 5 0 0 0 15
2 0 20 0 0 0
3 0 0 0 20 0
4 0 0 20 0 0
A comparison of the 3 methods applied by the author is
given in Table 5 where CPI means cluster purity, RI is
the rand index, ARI is the adjusted rand index and JI is the
Jaccard index.

Table 5 Comparison of methods applied by author to

the artificial data set

Quality Measures
Method

CPI RI ARI JI

0 1 1 1 1
1 0.47 0.66 0.20 0.26
2 0.90 0.94 0.80 0.73
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This shows that Method 0 is far superior to the other two
methods. What is interesting is that the naiive method, 2,
is superior to method 1 proposed by Ralambondrainy in
this case.

6.2. Small Soybean data set

The second simulation involves applying the method of
this paper to a small subset of the original soybean
database. The soybean disease data set [12] is used
because all attributes of the data can be treated as
categorical. The data base is from the UCI Machine
Learning Depository[54]. The data set has 47 records,
each being described by 35 attributes. The number of
missing attribute values is zero. Each record is labeled
with one of the four diseases: Diapehhe Stem Canker,
Charcoal Rot, Rhizoctonia Root Rot, and Phytophthora
Rot. Except for phytophthora Rot which has 17 records,
all other diseases have 10 records each.
A plot of a set of feature vectors with two components and
the same distance matrix as the distance matrix for the
original set of feature vectors is shown in Figure 2. This 2-
dimensional plot is also obtained by multidimensional
scaling. The plot shows an inherent clustering.
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Figure 2 Plot of 2-D distance- equivalent feature
vectors for small soybean data set

To obtain an equivalent set of feature vectors with just 4
real components, rather than 5, using the method of this
paper required the training schedule as demonstrated in
Figure 3.
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Figure 3 Training schedule for determining the set of
distance equivalent feature vectors for the small soybean
data set
The result after FCM was applied is the contingency
matrix in Table 6. This shows a clustering result identical
to the classes. Less than 4 components was not found to
be sufficient. The learning rate was obtained by trial and
error.

Table 6 Contingency matrix using proposed method (
Method 0) on small soybean data set

clusters
Classes

0 1 2 3

0 0 10 0 0
1 0 0 10 0
2 10 0 0 0
3 0 0 0 17
The various clustering indices for the 3 methods are as in
Table 7. Three other methods for which only cluster purity
measures are provided are found in [26]. The fuzzy k-
modes has been developed by Huang and Ng in the
previously mentioned paper. In the table NA means not
available in reference [26].

Table 7 Comparison of clustering quality indices for
the various methods using small soybean data set

Quality Measures
Method

CPI RI ARI JI

0 1 1 1 1
1 0.81 0.85 0.65 0.61
2 0.79 0.83 0.55 0.49
3 Fuzzy k-modes[26] 0.79 NA NA NA
4 (Conceptual k-means)
[26]

0.70 NA NA NA

5 (Hard k-modes) [26] 0.78 NA NA NA
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Again Method 0 is superior in terms of all the cluster
quality indices. Methods 1 and 2 are similar in terms of
the indices.

6.3. Large soybean data set

The same methods as above were also applied to the large
soybean data set also found in the machine learning data
base. The number of records in this case is 307. The
attributes are the same as before. There are 19 classes in
this case. The folklore seems to be that the last four
classes are unjustified by the data since they have so few
corresponding instances. There are 705 missing attribute
values , that in the authors methods, rightly or wrongly,
are treated as a distinct category. The plot below is a plot
of 2-dimensional vectors that have the intra distances as
the original data vectors. It is obvious that clusters are not
very definite in this case.
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Figure 4 Plot of equivalent vectors for feature vectors
in large soybean data set

The total number of iterations required to obtain
equivalent feature vectors with 4 components is 5000.
The learning rate was 0.0001. The learning schedule
required to obtain the distant equivalent feature vectors is
shown in Figure 5. Using distant-equivalent feature
vectors with fewer than 4 components was not found to
be successful.
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Figure 5 Schedule for determining distant equivalent
feature vectors

A comparison of the 3 methods applied by the author is
given in Table 8.

Table 8 Comparison of the three methods applied by
author to large soybean data set

Quality Index
Method

CPI RI ARI JI

0 0.62 0.92 0.35 0.24
1 0.27 0.56 0.14 0.15
2 0.49 0.79 0.24 0.20
Again Method 0 is superior by all counts to the other 2
methods. The naiive method, method 2, is superior to
method 1 proposed by Ralambondrainy in this case.

6.4. Zoo Data Base

Another data set to which the method of this paper is
applied is also from the Machine Learning Database. It is
referred to as the Zoo database. The number of instances
is 101. The number of attributes is 16. Even though one
of the attributes, the number of legs, is numeric,
differences in this value are not meaningful as far as class
is concerned and this attribute is therefore treated as
categorical. The number of classes of animals is 7.
To determine the distance equivalent vectors with 4
components 5000 iterations were used. The learning rate
used was 0.001. The number of clusters allowed was 7.
The contingency matrix is in Table 9.

Table 9 Contingency matrix for zoo database and
method 0

cluster
0 1 2 3 4 5 6
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class
0 0 22 19 0 0 0 0
1 0 0 0 0 0 0 13
2 0 0 0 20 0 0 0
3 0 0 0 0 2 8 0
4 0 0 0 0 8 0 0
5 2 0 0 0 0 1 0
6 4 0 0 0 0 0 1

A comparison of results for 5 methods including 2
provided by another author is shown in Table 10.

Table 10 Comparison of methods applied by author
and other researchers to zoo data set
Quality index
method

CPI RI ARI JI

0 0.94 0.90 0.69 0.60
1 0.87 0.69 0.04 0.12
2 0.86 0.68 0.02 0.12
3 (Entropy based)
[34]

0.90 NA NA NA

4 (k-means) [34] 0.84 NA NA NA
5 k-mode [51] 0.60 NA NA NA
6 Fuzzy k-modes[51] 0.64 NA NA NA
7Kim's fuzzy
centroids [51]

0.75 NA NA NA

In the table, NA, means not available. The results in 3 and
4 are from paper [34] and in rows 5-7 are from [51] .
Again Method 0 proves to be better in terms of
partitioning accuracy. Methods 1 and 2 are similar in
terms of the indices. Reference [34] that describes an
entropy-based method, did not have values for RI, ARI,
and JI nor did the other methods.

6.5. Australian Credit Data Base

This dataset contains results of credit card applications.
There are 690 instances with 6 numerical and 8
categorical attributes. There are 2 classes. This data base
was generated by Quinlan [56, 57] and may be retrieved
from [54]. Kim etal. [51] refer to the Australian credit
database in their test but do not use the entire data set but
only 202 applicants and 9 attributes as opposed to 690
instances and 14 attributes. The authors do not describe
how this subset is obtained. The results are in Table 11.

Table 11 Cluster quality measures for the Australian
Credit Data Base

Quality index
method

CPI RI ARI JI

0 0.81 0.70 0.39 0.54

1 0.56 0.51 0.03 0.50
2 0.56 0.51 0.03 0.50
3 k-mode [51] 0.66 NA NA NA
4 Fuzzy k-modes[51] 0.74 NA NA NA
5Kim's fuzzy
centroids [51]

0.80 NA NA NA

Again method 0 fares better than the others.

7. Summary and Conclusion

A method for clustering feature vectors with mixed
numeric and categorical attributes has been described. In
the proposed method, a set of feature vectors, of very
small dimension ( 3-5 components), equivalent to the
original set of feature vectors in terms of inter feature
vector distances but having only numeric components is
generated and then FCM is applied to the new set of
feature vectors. The method that is used for finding the
new set of feature vectors is gradient descent. The method
has been shown to be very effective in terms of the
resulting cluster partition.
There is potential for improvement however. The idea of
mapping to a FCM clusterable set of feature vectors
appears to be sound but computationally intensive and it is
therefore appropriate to look for other means of doing so.
The error function may have a large number of local
optima and therefore other optimization methods should
be considered. The main effort is in determining the
feature vectors from a distance matrix which is in the
domain of multidimensional scaling.
Another drawback of the proposed method is that when
the number of records is very large the dissimilarity
matrix will be extremely large and data reduction methods
will have to be considered. One data reduction method
consists of clustering and then replacing the original data
set by the centroids of the clusters. However this takes us
back to the original problem of finding centroids when the
feature vectors are mixed categorical and numeric.
Another area for future work is the development of
methods in the case where there is a combination of
ordinal and categorical features. Feature vectors generally
consist of all 3 types of features including ordinal and
categorical. For ordinal neither distance nor aggregation is
defined. For categorical features distance is defined but
aggregation is not defined.
Future work will therefore consist of applying a more
efficient multidimensional scaling method and of
combining the method for dealing with ordinal features
proposed by the author in other papers [58-61] with the
method for dealing with categorical features proposed
here.
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