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Abstract 

A new algorithm is proposed, which is 
called Generalized Ant Colony Optimiza-
tion (GACO) algorithm. Two new func-
tions are presented to model the behavior 
for describing the pheromone evaporation 
and pheromone added to the edges that 
belong to the best-so-far solution. A class 
of strictly increasing function is proposed, 
which gives a general form of expression 
for the probability of selecting the next 
node. An important theorem is proved for 
describing the convergence of GACO al-
gorithm, i.e. for a sufficiently large num-
ber of algorithm iterations, the probability 
of finding the globally optimal solution at 
least once tends to 1. 

Keywords: artificial intelligence, ant col-
ony optimization, ant algorithms, conver-
gence proof, approximation algorithms, 
GACO algorithm. 

1. Introduction 

In ant colony optimization (ACO) al-
gorithms, some artificial ants are intro-
duced to construct solutions to the con-
sidered problem from the indirect com-
munication mediated by the environment 
[1]. The construction of good solutions is 
a result of the artificial ants’ cooperative 
interaction. 

Although a number of applications to 
many different-hard combinatorial opti-

mization problems [2] [3] has empirically 
shown the effectiveness of ant colony op-
timization, scientists have developed very 
little theory to explain the reasons under-
lying ACO’s success. 

At present, scientists know litter about 
the behavior of real ants, which implies 
that it is very difficult to simulate the be-
havior of real ants by artificial methods. 
Therefore, we have to introduce artificial 
ants for simplifying our analysis. 

Although there may be some differ-
ences between the behavior of artificial 
ants and the behavior of real ants in the 
world, our purpose is, through learning 
the complex behavior of animals, to find 
some effective methods for solving some 
difficult problems. 

For example, Birattari et al. [4] have 
proposed an interpretation of ACO in the 
framework of optimal control and rein-
forcement learning. Meuleau and Dorigo 
[5] have shown that ACO algorithms and 
stochastic gradient descent are strongly 
related and that a particular form of ACO 
algorithms converges to a local optimum 
with probability 1. Gutjahr proved con-
vergence to the globally optimal solution 
with probability 1 of a particular ant 
colony optimization algorithm called 
graph-based ant system (GBAS) [6]. 
Stützle and Dorigo presented a simple 
convergence proof for min,gbACO   algo-

rithm [7], where gb indicates that the 
global best pheromone update rule is used, 
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and min indicates that a lower limit on 
the range of feasible pheromone trails is 
enforced. 

Artificial ants (or ants for short in the 
following) are also introduced in GACO 
algorithm. Different from min,gbACO  al-

gorithm[7], a general formula for ant so-
lution construction is proposed in GACO 
algorithm, while the formula for ant solu-
tion construction presented in min,gbACO   

algorithm is a particular form of GACO 
algorithm. A new feasible pheromone 
trails update method is also introduced 
for the global best pheromone update rule. 
A proposition is proved for describing the 
upper bound and the lower bound of the 
pheromone trails. An important theorem 
is proved for describing the convergence 
of GACO algorithm. 

2. Generalized Ant Colony Optimiza-
tion Algorithm 

Artificial ants can build candidate solu-
tions by performing randomized walks on 
the completely connected, weighted 
graph for the considered problem. Each 
artificial ant is put on a randomly chosen 
node (vertex) of the graph and then it per-
forms a randomized walk by moving at 
each step from the source node to the tar-
get node in the graph in such a way that 
the next node (vertex) is chosen stochas-
tically according to the strength of the 
pheromone currently on the edges (arcs). 
While moving from one node to another 
of the graph, constraints are used to pre-
vent ants from building infeasible solu-
tions. Once the ants have completed their 
walk, pheromone trails are updated. The 
general form of expression for the prob-
ability selecting the next node by an ant 
at a source node is described as follows. 
 
ANT SOLUTION CONSTRUCTION of 
GACO ALGORITHM 

While (the next vertex be-
longs to the components of 
the problem) do: 
At iteration m, for each 
source node i, select the 
next node (or target node) 
j randomly following 
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Where  mtjiP ,, is the probability se-

lected by an artificial ant at iteration m ,  
from the source node i  to the target node 
(next node) j along the connection  ji, , 

mt  is a strictly increasing function of m  
and corresponds to the starting instant at 
iteration m , and when m , mt  

(For example, we can choose mtm   for 

a small constant 0 ).  F  denotes a 
strictly increasing function with one real 
variable  , i.e. 0ddF  and   0F , 

 mtji ,,  is the amount of pheromone on 

the connection  ji, at iteration m ,  and iD  

is the set if and only if the source node is 
i and the target node belongs to the feasi-
ble components. If the set iD is empty at 
some point in the solution construction, 
the ant is dropped and its solution con-
struction is terminated. 

In PHEROMONE UPDATE of GACO 
ALGORITHM described bellow, once all 
the ants have terminated their procedure 
described by ANT SOLUTION CON-
STRUCTION of GACO ALGORITHM 
mentioned above, a pheromone update 
phase is started in which the pheromone 
trails are modified, the detail will be dis-
cussed in the following.  

Let ŝ be the best feasible solution found 
so far and mts be the best feasible solution 

in the current algorithm iteration mt ;  sf ˆ  

and  mtsf  are the corresponding objec-
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tive function (cost) values. The goal of 
the minimization problem is to find the 
globally optimal solution, i.e., a feasible 
candidate solution of minimum cost. The 
pheromone update procedure is described 
as follows. 
PHEROMONE UPDATE of GACO AL-
GORITHM 

       1,,,,:,  mmm tjittjiji   

If    sfsf mt ˆ , then mtss ˆ  

  sji ˆ,  :      mmm ttjitji   ,,,,  

Where t denotes time,  t and  t are 
continuous function of time t , we call 
 t evaporation rate function and  t  

global increasing function. Although  t  

and  t are continuous functions of time, 

only those discrete values  mt  and 
 mt   ( ,2,1,0m ) corresponding to the 

discrete time  ,1,0 mtt m (where 

  mttt 100 ) are introduced in 
our PHEROMONE UPDATE of GACO 
ALGORITHM, which is convenient for 
computer simulation. The mathematical 
modeling for  t  and  t is described as 
follows. 

Obviously, the value of the pheromone 
can not be negative and will be decreased 
by the behavior of evaporation on all the 
connections, we have that   10  t . 
With the passage of time, more amount of 
pheromone will be evaporated. Therefore, 
we choose a strictly decreasing function 
 t for describing pheromone evapora-

tion, i.e.   0dttd .  

From the first expression  (  tji ,,   

   tjit ,,  ) of PHEROMONE UP-

DATE of GACO ALGORITHM, we un-
derstand that if the value of  t is close to 

0, then the updated pheromone  tji ,, is 

also close to 0, therefore, the changing 
rate of  tji ,, is close to 0, which may 

imply that   dttd is proportional to 

 t for modeling of  t . It corresponds 

to the case that there is no or very litter 
amount of pheromone on the connec-
tion  ji, , or the amount of pheromone on 

the edge  ji, has been evaporated for a 

long time. 
On the other hand, if the value of  t  

is close to 1, the updated pheromone 
 tji ,,  almost keeps unchanged by using 

the pheromone update procedure rule 
     tjittji ,,,,   , or we say that the 

changing rate of  tji ,, is also close to 0, 

which may imply that   dttd is propor-

tional to  t1 for modeling of  t . It 
corresponds to the state that the amount 
of pheromone on the connection  ji,  

maintains equilibrium between the proce-
dure of the amount of pheromone trails 
decreasing by evaporation and increasing 
by the ants passed by. 

As mentioned above, for evaporation 
rate function  t , a reasonable assump-

tion is that   dttd is proportional to  t  

and  t1 , i.e. 
 

  
 1

dt

d
  (2) 

 
where  is a constant and 0 . The solu-
tion to differential equation (2) is 
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 (3) 

 
where C is a constant. Let   00   , we 
have 
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where  000 1   . If  1,00  , then 

00  , from (4) we see that , in such a 

situation, the following holds:   0t , 

  0inf t  and   1sup t . 
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Now, we discuss the modeling of 
global increasing function  t . 

From the update rule  tji ,,   

   ttji  ,,  and the concept of positive 

feedback, the positive function  t  can 
be added to those edges that belong to the 
best-so-far solution (including the solu-
tion in the current iteration). As the value 
of  tji ,, is always finite, the upper 

bound of  t must be finite. The key dif-

ference between  t  and  t   is that 

 t   should be a class of strictly increas-
ing function with positive lower and up-
per bound, i.e.    BtA 0 , and 

0)( dttd .  

Similar to the procedure of modeling 
of  t , we suppose that   dttd is pro-

portional to   At  and  tB  , i.e. 
 

    
 BA

dt

d
 (5) 

 
where  is a positive constant. Then the 
general solution to differential equation 
(5) is described in the following  
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where C is a constant. If we let   00   , 
the solution to differential equation (5) is 
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where    000   BA . Clearly, if 

 BA,0  , then 00  , from (7) we 

have that   0t ,  tA inf  and 

 tB sup . 

3. Convergence Analysis for GACO 
Algorithm 

Proposition: Assume   10  t , 

  0dttd ,    BtA 0  and 

0)( dttd ， if   0,, 0 tji , then, for 

any 0ttm  , the following holds: 
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where  tB sup ,  00   . 

Proof: The maximum possible amount 
of pheromone added to any edge  ji,  

after any iteration is B . Clearly, at itera-
tion 1t , the maximum possible phero-
mone trail is 
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Using   10  t and   0,, 0 tji , we get: 
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Similarly, using (9), at iteration 2t , the 
maximum possible pheromone trail is 
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i.e. 
 

 
     

   0
0

212

1
,,

,,,,0

t

B
tji

tjitjit










 (13) 

 
Obviously, the lower bound of  mtji ,,  is: 
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any edge  ji, at any iteration m is 
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Therefore, for any 0ttm  , the following 

holds: 
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For convenient discussion in the fol-

lowing, lowb and upb  are introduced to 

denote the lower bound and the upper 
bound of pheromone trails for any 
edge  ji, respectively, i.e. 0lowb   and 

    00upb 1,, tBtji   . 

The algorithm is initialized as follows. 
First, Generate a feasible solution ŝ , and 
then, ),( ji , set 00),,(  tji , where 

upb0lowb   , is a parameter. If 00 t  

corresponds to the initial state, then the 
upper bound upb can be given as 

 00upb 1   B . 

Theorem: Let  mtP be the probability 
that GACO algorithm finds the globally 
optimal solution at least once within the 
first m iterations, the following holds:  

 
   1lim 


m

m
tP  (16) 

 
Proof: Due to ],[ maxmin    

 upblowb, , we can construct a class of 

positive function   0F , which is 

strictly increasing on ],[ upblowb    

],[ maxmin  , i.e. 0ddF . Because 

0min   and upbmax   , we can guarantee 

that any feasible choice in (1) is done 
with a probability 0min p , and that the 

lower bound for minp can be given as 
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where cN is the cardinal number of the set 
for the considered problem. Then, the 
globally optimal solution can be gener-
ated with a probability 0min  npp  

(where n  is the maximum length of 
a sequence associated with the considered 
problem), therefore, the probability that 
GACO algorithm does not find the glob-
ally optimal solution within the first m it-

erations is mp)1(  . Because it is enough 

that one ant finds the globally optimal 
solution, the probability that GACO algo-
rithm finds the globally optimal solution 
at least once within the first m iterations 
can be given as 
 

    mm ptP  11  (18) 
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Clearly, as 10  p , we have that 

    1limlim   tPtP tmm . Therefore, 
for an arbitrary choice of a small 0  

and for a sufficiently large time t , it 
holds that   1tP . 

4. Conclusions 

In GACO algorithm, the general form 
of function  F is a strictly increasing 

function with variable  , i.e.   0 F , 
which is different from the formula pre-
sented in [7]. In [7], the polynomial func-
tion  was introduced, where 0 , 
which could be traced back to earlier lit-
erature [8], a more special form of func-
tion 2 proposed by S. Goss et al. Obvi-

ously,   ( 0 ) is only a special form 
of function  F . The improvement pro-
posed in this paper may get more general 
form of convenient expression for some 
applications. 

In GACO algorithm, a new feasible 
pheromone trails update method is intro-
duced for mathematical modeling of  t  

and  t , which is different from the 
evaporation factor 1 and a function 

 sg proposed in min,gbACO  [7]. On the 

other hand, for the pheromone update rule, 
a lower limit min on the range of feasible 

pheromone trails enforced by min,gbACO   

is not required in GACO algorithm. 
The important convergence theorem 

shows that, the probability of finding the 
globally optimal solution at least once is  
  1tP . On the point of view in the-

ory, the important convergence property 
tells us that, at least to some extent, 
GACO algorithm can be used to some 
combinatorial optimization problems. 
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